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Asstract. For analytic function of the form f;(z) = 2+ >, _,a%2", in the open unit
disk, the study on class I',(¢1, (2; ) is extended to the class of I'p, (1, ¢2;y) and some
of their properties in relation to the coefficient bounds, convex combination as well as
convolution were discussed.
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Introduction

Let A denote the class of functions of the form
f(z)=z+ Zanz"
n=2

analytic and normalized with f(0) = f/(0) — 1 = 0 in the open disk,
U={z€(C:|z] <1}. Makinde and Oladipo [6] intoduced the class

Gz)+1 -1

Q(G(2) +3) + &

for some complex (;, (2, @ and for some real 7,0 < [(;] < 1,0 < |[2] < 1,]a] < 1 and

0 < v < 1. See also, [1,2,3,4,5,7,8].

In this paper, we investigated the extension of the class I', ({1, (3, v to the class I'p, (¢1, (25 77)

Defined by
<+}
for the integral operator

2z k ne 1/«
(3) F,, (2) = / (D Jj(s)) ds,a € C
0

t=1

(1) Fa(Chy Cor ) = {fi €A

Gz)++ -1
G(G(2) + 1)+ G

(2) I'palCr,C2sy) = {fi €A
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Where

(4) D" fi(z —z—l—Zn anz" k=1,2,3,...

Moreover,
Let D" fi(z) = z+> o, n*ai 2" and D"g;(2) = z+> -, n*bi 2", we define the convolution
of D" fi(z) and D"g;(z) by

(5) D" f;(2) * D"g;(z) = (D" f; « D"g;) (= —z—i—ana b 2"

We shall now present our main results.

Main Results
Theorem 1 Let D" f; be in A. Then D" f; is in the class I'p, (¢, (2; ) if and only if
k oo
(6) ZZ My + 1) + an®(vG — D]las] < |G+ al| — |1 —q
=1 n=2

YIC + ae| > |1 —«af
Proof

k1 ( Dprtifi(z) 1
> it E( Dofi(z) 1) +a-1

n+1f;(z)
Cl(Zlei(DD:W - 1) +§+§2>

L—a+30 3%, nf(n —a)dz"
Crale + 300 300, nk(ny + ala)al 2"

1—al+ 38,52, nf(n — a)ld|
|Crala] — Zz 1 Doy R (1 4 aGy)al |

k>1

< 7

Let D™ f;(2) satisfy the inequality (6) above, then D" f;(z) belong to the class I"p, ({1, (2;7)
Coversely, Let D" f;(2) € I'pa(C1,(2;7), then inequality

S
DY MG+ 1) + anf (76 = D)]]al] < |G+ ad| - 1 al

i=1 n=2
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is satisfied. Corollary 1 If D" f;(z) € I'p, ({1, (2;7) then

|ai|< 7’C1+QC2|_’1_O“
T k(G 4 1) +ank(v( — 1)

Theorem 2 Let the function D" f;(z) € I'p,((1,(2;v) and the function D"g;(z) defined
by

2)=z+ anb;z”
n=2

be in the same I'p, ({1, (2;7). Then the function H;(z) defined by

Hi(2) = (1= \)D"f;(2) + AD"gi(2) = 2z + ancz n

also belong to the class I'p, ({1, (2;7)

where C!, = (1 — \)a’, + M\, 0 <A <1

Proof Suppose that both D" f;(z) and D"g;(z) belong to the class I'p, ({1, (2; 7).
Then by (6), we have

k oo
Z Z [ (v + 1) 4+ an® (v — 1)]ICy)
=1 n=2

ko

— Z "y 4 1) + an® (v — D] (1 — Nal, + Ab|
2

i=1 n=

ko
= VYOS [ G+ 1) + an® (96 — 1)] ||

=1 n=2

ko

+ A [ G+ 1) + ant (16— 1]

=1 n=2

(1= NG+ aG| = [1—al} + My[G + ale| — |1 —al}
V|G + aG| =1 —af

IN

Thus, the convex combination of D" f;(z) and D"g;(z) also belong to the class I"p,((1, (2;7)
Theorem 3 Let the function D" f;;(2) € I'pa((1, (2;7) and the function D" f;»(z) belong
to the class I'p, (01, B2;7). Then D™ f;1(2) * D" fia(2) = (D" fi1 * D" fi2)(2) belong to the

class I'pa(C1; C2;7) C TpalBr, B2;7)
Proof D" f;1(z) € T'pa((1, (2;y) implies that

k oo
SN[ (G+ D) + anf (G — D]lak | < 416G+ aG| — [1—a

i=1 n=2
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and D" fis(2) € I'pa(B1, B2;y) implies that

i

i=1

[e.9]

B+ 1) 4+ anf (782 — 1)]|aky] < [B1 + afe] — |1 — o
:2

3

nk
where o, ai, < 1

Now,

[ S)

(D" fix D" f)(z) = D) [0 (81 + 1) + anf (82 — 1)] |ai, | b,
i=1 n=2

[ S)

< Z Z [ (vG + 1) 4+ an®(vG — 1)]]al,]

i=1 n=2

< G+ al] — |1 - «af

This implies that (D" f;; x D" f;5)(z) belong to the class I'p, (1, (2;y) C T'pa(f1, B2;7)
Corollary 2 Let (D" f;; x D™ fi2)(z) belong to the class I'p,(¢1,(2;7) C T'pa(B1, B2;7)-
Then

|ai ||a’ | Py’Cl—i_aC?‘_’l_O“
T (G 4 1) + anf (76 — 1)
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