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Abstract. In a digraph G, the eccentricity e(u) of a vertex u is the maximum distance
from u to any other vertex in G. A vertex v is an eccentric vertex of u if the distance from
u to v equals e(u). An eccentric digraph ED(G) of a graph G has vertices, same as that
of G but has directed edges that correspond to the relation that v is an eccentric vertex
of u. In other words, there are directed edges in ED(G) from a vertex u to those vertices
v which are farthest from u. In this paper we have examined the problem of finding the
structure of the second iterated eccentric digraph of a tree and obtained a solution.
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1. Introduction

The field of graph theory is rich in its theoretical development as well as in finding
application in different areas. One of the well-investigated notions in graph theory is
the distance between vertices in a graph, especially when a graph is used in modeling
real-world problems. This notion of distance has given rise to other concepts on graphs.
Based on the related concept of eccentricity of a vertex which is the maximum distance
from a vertex to any other vertex in a graph, the idea of an eccentric digraph of a
graph was introduced by Buckley [3] and this was extended to the eccentric digraph of
a digraph by Boland and Miller [2]. Several authors [2, 5, 6, 7] have investigated the
problem of finding eccentric digraphs of graphs and digraphs. The problem of finding
the structure of the second iteration of the eccentric digraph of a tree, is one among
a list of problems proposed by Boland et al [1]. In this paper we have examined this
problem and obtained a solution. Also we have obtained the domination numbers of
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the eccentric digraph and the second iterated eccentric digraph of a tree as well as a
diameter maximal graph with odd diameter.

2. Preliminaries

We recall needed notions. For unexplained notions and notations on graphs and
digraphs, we refer to [4, 8].

A directed graph or a digraph G = (V,E) consists of a finite nonempty set V = V (G) of
objects called vertices or points and a set E = E(G) of ordered pairs of vertices called
directed edges or arcs; that is, E(G) represents a binary relation defined on V (G). If
the set E consists of unordered pairs of vertices, called edges, then G is an undirected
graph. A tree is a connected undirected graph with no cycles. The order |G| of G is
the cardinality |V (G)| of V (G) i.e. |G| = |V (G)|. The digraph G is called a complete
symmetric digraph or a symmetric clique if G contains the arc (u, v) as well as the arc
(v, u) for every pair of vertices u, v in G and it is denoted by K∗

p , if G contains p vertices.
In the case of undirected graph, a complete graph on p vertices, in which every vertex
is adjacent to every other vertex, is denoted by Kp and its complement which has the
same p vertices but has no edges is denoted by Kp. A maximal strongly connected sub-
graph of a digraph G is called a strong component of G.

For two vertex disjoint digraphs G1 and G2, G1 ⊕ G2 is the digraph obtained by join-
ing an arc from each vertex of G1 to every vertex of G2. Let G1 = (V1, E1) and G2 =

(V2, E2) be two graphs. Then the union of G1 and G2 is defined as the graph G1 ∪G2 =
(V1 ∪V2, E1 ∪E2) while the graph G1+G2 is obtained from G1 ∪G2 by adding the edges
{xy : x ∈ V (G), y ∈ V (H)}. For three or more graphs G1, G2, G3, · · · , Gn, the sequential
join [4] G1+G2+G3+ · · ·+Gn is the graph (G1+G2)∪(G2+G3)∪· · ·∪(Gn−1+Gn). Also,
for a set S ⊆ V, the subgraph induced by the vertices in S, is denoted by G[S] so that
this subgraph has all the elements of S as its vertices and has all the arcs (or edges)
among the vertices of S that are present in the digraph (or the graph) G with vertex
set V. Two graphs (or digraphs) G and H are said to be isomorphic if there exists a
bijection f from V (G) to V (H) such that (u, v) is an edge (or arc) in G if and only if
(f(u), f(v)) is an edge (or arc) in H and the isomorphism is denoted by G ∼= H.

If (u, v) is an arc of the digraph G, then u is said to be adjacent to v and v is adja-
cent from u. The set of vertices which are adjacent from a given vertex v in a digraph
G is denoted by N+(v) and the set of vertices adjacent to v, is denoted by N−(v). The
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cardinality of N+(v) is the out-degree of v, that is denoted by deg+(v) and the cardi-
nality of N−(v) is the in-degree of v, which is denoted by deg−(v). The set of mutually
non-adjacent vertices of G is called a stable set. The number of arcs in a shortest di-
rected path from u to v is the distance from u to v, denoted by d(u, v). If there is no
directed path from u to v in G, then we define d(u, v) = ∞. In the case of a undirected
graph, the distance d(u, v) is the number of edges in a shortest path from u to v. The
eccentricity e(u) of a vertex u in a digraph (or graph) G is the maximum distance from
u to any other vertex in G. Vertex v is an eccentric vertex of u if d(u, v) = e(u). The set
of all eccentric vertices of u is denoted by E(u). The radius of G is the minimum eccen-
tricity of the vertices in G; the diameter is the maximum eccentricity of the vertices
in G. A vertex whose eccentricity equals the radius, is called a central vertex of G. A
vertex whose eccentricity equals the diameter, is called a peripheral vertex of G. The
set of all central vertices of G is called the center of G, denoted by C(G). The set of all
peripheral vertices is denoted by P (G) and it is called as periphery of G. The set of all
eccentric vertices of G is denoted by EP (G).

A graph G is said to be a diameter maximal graph (also called an upper diameter
critical graph), if diam(G + e) < diam(G) for every e ∈ E(G), where G is the comple-
ment of G. In an undirected graph G, a u− v path is called an eccentric path if either
u is an eccentric vertex of v or v is an eccentric vertex of u, whereas in the case of a
digraph, a u−v directed path is called an eccentric path if v is an eccentric vertex of u.
A set S ⊆ V is called a dominating set of a digraph G = (V,E) if each vertex of V (G) is
adjacent from at least one vertex of S. The cardinality of a minimal dominating set is
called the domination number of G, denoted by γ(G). A graph (or digraph) G is called
a unique eccentric point graph (u.e.p.) [9] if every vertex of G has only one eccentric
vertex. We note that if a vertex in a digraph G has out-degree zero, then this vertex
has all the other vertices of the given digraph as its eccentric vertices.

The eccentric digraph of a digraph G, denoted ED(G), is the digraph on the same
vertex set as G, but with an arc from vertex u to vertex v in ED(G) if and only if v
is an eccentric vertex of u. The eccentric digraph of a (undirected) graph G is defined
in a similar manner. As an illustration, a tree T is shown in Fig. 1. The eccen-
tric digraph ED(T ) of the tree T in Fig. 1 and the second iterated eccentric digraph
ED2(T ) = ED(ED(T )) of the tree T are shown in Figs. 2 and 3 respectively. For every
digraph G, there exist smallest positive integer numbers p > 0 and t ≥ 0, such that
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EDp+t(G) = EDt(G). The integers p and t are called the period of G, denoted by p(G)

and the tail of G, denoted by t(G). If t = 0, then G is called periodic.
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Figure 1. A Tree T
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Figure 2. Eccentric digraph ED(T ) of the Tree T in Fig.1

3. Trees and their Eccentric Digraphs

We first consider the digraph K∗
n−l ⊕K∗

l , and examine the structure of the eccentric
digraph of G.

Theorem 3.1. If the digraphK∗
n−l⊕K∗

l = G = (V,E)with |V | = n, and some l, 1 ≤ l < n,

then
(i) there exists a digraph H such that ED(H) = G

(ii) ED(G) = K∗
l ⊕K∗

n−l and G is periodic with period 2.
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Figure 3. Second iterated eccentric digraph ED2(T ) of the tree T in Fig.1

Proof. Let S = {u1, u2, u3, · · · , ul} ⊆ V and V −S = {v1, v2, v3, · · · , vn−l} such that G[S] =

K∗
l and V −S is a stable set. Now to prove statement (i), consider a strong digraph H1

with vertex set V (H1) = V − S. We construct a digraph H = (V, F ) where

F = E(H1) ∪ {(ui, v1)/1 ≤ i ≤ l}.

Then G[V −S] is a strong component of H and S is a stable set of H. Moreover, no ver-
tex of S is reached in H. This implies that in H every vertex of S is an eccentric vertex
of every other vertex of V and no vertex of V − S can be an eccentric vertex. Hence
in ED(H) every vertex of S is adjacent from every other vertex of V and no vertex of
V − S is adjacent from any vertex of V. Thus ED(H) = K∗

n−l ⊕K∗
l = G.

Now we prove statement (ii). It is clear that no vertex in V −S is reached in G from
any vertex of V. This implies that all the vertices of V − S are eccentric vertices in G.

It follows that the eccentric digraph ED(G) has the same vertex set V and there is an
edge from every vertex of V to every vertex of V − S and deg−(v) = 0 for all v ∈ S. It
follows that in ED(G), S is a stable set and V − S is a symmetric clique. That is

ED(G) = K∗
l ⊕K∗

n−l.

Now in ED2(G), every vertex of V − S is of in-degree zero and there is an edge from
every vertex of V to every vertex of S. Hence

ED2(G) = K∗
n−l ⊕K∗

l = G.

Thus G is periodic with period two. �
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Corollary 3.2. Let G be a digraph on 2n vertices such that G = K∗
2n−l ⊕K∗

l , for some
l, 1 ≤ l < 2n. Then ED(G) ∼= G, when l = n.

Proof. Let G be a digraph on 2n vertices such that G = K∗
2n−l ⊕ K∗

l , for some l. Then
by Theorem 3.1, ED(G) = K∗

l ⊕ K∗
2n−l. Furthermore if l = n, then G = K∗

n ⊕ K∗
n and

ED(G) = K∗
n ⊕K∗

n. Thus ED(G) ∼= G.

�

Now we consider trees T in order to study the structure of the second iterated ec-
centric digraph ED2(T ). First we show in the following Lemma that the periphery of
T is exactly the set of all eccentric vertices of T.

Lemma 3.3. If T is a tree then P (T ) = EP (T ).

Proof. Let T be a tree and suppose that P (T ) ̸= EP (T ). Then there is a vertex v in
EP (T ) such that v /∈ P (T ). Since deg(u) = 1, for all u in P (T ), deg(v) > 1. Let v1 and v2

be the neighbors of v. Since v ∈ EP (T ), there is a vertex w ∈ V (T ) such that v ∈ E(w).

Furthermore, a w − v path passes through either v1 or v2 but not both. If w − v path
passes through v1, then d(w, v2) > d(w, v) which is not true. This leads to deg(v) = 1

and hence v ∈ P (T ). Therefore P (T ) = EP (T ). �

Theorem 3.4. If T is a tree on n vertices with |P (T )| = l, then

ED2(T ) = K∗
l +K∗

n−l, n > l + 1.

Proof. Let T be a tree on n vertices with |P (T )| = l. Let

P (T ) = {u1, u2, u3, · · · , ul}

and
V (T )− P (T ) = {v1, v2, v3, · · · , vn−l}.

Then by Lemma 3.3, |P (T )| = |EP (T )| = l. Also, any two vertices of P (T ) are either ec-
centric vertices of each other or have a common neighbor. This implies that in ED(T ),
the set of all vertices ui induces a strong digraph and the other vertices v′is cannot
be reached and hence each and every vertex vi(1 ≤ i ≤ n − l) is eccentric vertex to
every other vertex in ED(T ). Consequently in ED2(T ) the set of all vertices vi induces
a complete symmetric digraph and there are edges from every ui to every vi. Hence
ED2(T ) = K∗

l +K∗
n−l, n > l + 1. �

Corollary 3.5. Let T be a tree on n vertices with |P (T )| = l. Then the period p(T ) = 2

and the tail t(T ) = 2.
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Proof. By Theorem 3.4, ED2(T ) = K∗
n−r ⊕K∗

r . Now by Theorem 3.1, ED2(T ) is periodic
with period 2. Thus the period and tail of T are each equal to two. �

The following Theorem gives tight bounds on the number of edges of the eccentric
digraph ED(T ) of a tree T.

Theorem 3.6. If T is a tree on n vertices with radius r then

2 ≤ |E(ED(T )| ≤ l(n− r)

where |P (T )| = l.

Proof. Let T = (V,E) be a tree on n vertices with radius r and |P (T )| = l. Let V = V1 ∪
V2∪V3∪V4 where V1 is the set of all central vertices, V2 = P (T ), V3 = {u ∈ V −(V1∪V2)/u

is an internal vertex of some eccentric path} and V4 = V −(V1∪V2∪V3). Now by Lemma
3.3, |EP (T )| = |P (T )| = l. This implies that, |V1| ≤ 2, |V2| = l, |V3| ≤ l(r − 1) and
|V4| ≤ n − 1 − lr. Each of the vertices of V2 as well as of V3 has at most l − 1 eccentric
vertices and every vertex of V4 has at most l eccentric vertices whereas V1 has exactly
l eccentric vertices.
It is clear that

|E(ED(T )| =
∑
v∈V

|E(v)|

=
∑
v∈V1

|E(v)|+
∑
v∈V2

|E(v)|+
∑
v∈V3

|E(v)|+
∑
v∈V4

|E(v)|

≤ l + l(l − 1) + l(r − 1)(l − 1) + (n− 1− lr)l

= l(n− r)

That is |E(ED(T )| ≤ l(n− r). Since a tree has at least 2 vertices, |E(ED(T )| ≥ 2. Fur-
thermore the lower bound is attained when T = K2 and the upper bound is attained
when the degree of the unique central vertex is l. �

Theorem 3.7. If T is a tree on n vertices with |P (T )| = l, then the domination number
γ(ED(T )) = n− l and γ(ED2(T )) = l.

Proof. Let T be a tree on n vertices with |P (T )| = l. Then by Lemma 3.3, |EP (T )| = l.

Also it is clear that in ED(T ), n− l vertices are of in-degree zero. Hence γ(ED(T )) =

n−l.Furthermore by Theorem 3.4, ED2(T ) = K∗
l ⊕K∗

n−l.This implies that γ(ED2(T )) =

l. �
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4. Diameter Maximal Graphs and Their Eccentric Digraphs

We now consider a diameter maximal graph G of odd diameter and obtain properties
of the eccentric graph of G.

Lemma 4.1. [4] Let G be a diameter maximal graph.
i) If G is connected then it has a unique pair of eccentric peripheral vertices and for
some d− 1 positive integers ai, 1 ≤ i ≤ d− 1, G has the form

K1 +Ka1 +Ka2 + · · ·+Kad−1
+K1

ii) If G is disconnected then G = Km ∪Kn.
iii) If G has an odd diameter then G is a u.e.p graph.

Theorem 4.2. The eccentric digraph ED(G) of a diameter maximal graph G of odd
diameter is a K∗

2 with one end having m independent in-neighbors and other end having
n independent in-neighbors.

Proof. Let G be a diameter maximal graph with odd diameter d. Then by Lemma 4.1
there exists d− 1 positive integers a1, a2, a3, · · · , ad−1 such that

G = K1(= {u}) +Ka1 +Ka2 + · · ·+Kad−1
+K1(= {v}).

AlsoP (G) = EP (G)with |P (G)| = 2 andG is a u.e.p graph. LetP (G) = {u, v}.Then it is
clear that for all w ∈ Kai , 1 ≤ i ≤ (d−1)/2, E(w) = {v} and for all w ∈ Kai , (d−1)/2 ≤ i ≤
(d−1), E(w) = {u}.This implies that inED(G), all the verticesw ∈ Kai, 1 ≤ i ≤ (d−1)/2

are adjacent to v and all the vertices w ∈ Kai , (d − 1)/2 ≤ i ≤ (d − 1) are adjacent to
u. Also u and v are adjacent to each other in ED(G). Thus, ED(G) is a K∗

2 with one
end having m independent in-neighbors and the other end having n independent in-
neighbors. �

Theorem 4.3. If G is a diameter maximal graph with odd diameter, then G has period
two and tail two.

Proof. If G is a diameter maximal graph with odd diameter. Then by Lemma 4.1,
|P (G)| = 2. Let P (G) = {u, v}. Now by Theorem 4.2, ED(G) is a K∗

2 with one end
u having m independent in-neighbors and the other end v having n independent in-
neighbors. Let

N−
ED(G)(u) = {u1, u2, u3, · · · , um}

and
N−

ED(G)(v) = {v1, v2, v3, · · · , vn}.
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Since deg−ED(G)(w) = 0, for all w ∈ N−
ED(G)(u) ∪N−

ED(G)(v), we have

EP (ED(G)) = N−
ED(G)(u) ∪N−

ED(G)(v) = {u1, u2, u3, · · · , um, v1, v2, v3, · · · , vn}.

It can be seen that in ED(G), E(u) = E(v) = EP (ED(G)) and E(w) = N−
ED(G)(v) or

E(w) = N−
ED(G)(u) according as w ∈ N−

ED(G)(u) or w ∈ N−
ED(G)(v). This implies that

ED2(G) = K∗
2 ⊕ K∗

m+n. Then by theorem 3.1, ED4(G) = ED2(G). Therefore G has
period two and tail two. �

Theorem 4.4. If G is a diameter maximal graph with odd diameter then
(i) γ(ED(G)) = m+ n and (ii)γ(ED2(G)) = 2.

Proof. Let G be a diameter maximal graph with odd diameter. In order to prove s-
tatement (i), we note that by theorem 4.2, the eccentric digraph ED(G) is a K∗

2 with
one end having m independent in-neighbors and other end having n independent in-
neighbors. This implies that γ(ED(G)) = m+ n.

Now to prove statement (ii), we have, as in the proof of Theorem 4.3, ED2(G) =

K∗
2 ⊕K∗

m+n. Hence γ(ED2(G)) = 2. �
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