ON GENERALIZED ABSOLUTE MATRIX SUMMABILITY

HIKMET SEYHAN ÖZARSLAN

Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey

Abstract. In this paper a general theorem on \(|A, p_n; \delta|_k \) summability factors, which generalizes a theorem of Bor [3] on \(|\vec{N}, p_n|_k \) summability factors, has been proved under weaker conditions by using an almost increasing sequence.

2010 Mathematics Subject Classification. 40D25, 40F05, 40G99.
Key words and phrases. Absolute matrix summability, almost increasing sequences, infinite series.

1. Introduction

A positive sequence \((b_n)\) is said to be almost increasing if there exists a positive increasing sequence \((c_n)\) and two positive constants \(A\) and \(B\) such that \(Ac_n \leq b_n \leq Bc_n\) (see [1]). Obviously every increasing sequence is almost increasing sequence but the converse need not be true as can be seen from the example \(b_n = ne^{(-1)^n}\). Let \(\sum a_n\) be a given infinite series with the partial sums \((s_n)\). Let \((p_n)\) be a sequence of positive numbers such that

\[
P_n = \sum_{v=0}^{n} p_v \to \infty \quad \text{as} \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \geq 1).
\]

The sequence-to-sequence transformation

\[
\sigma_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v
\]

defines the sequence \((\sigma_n)\) of the Riesz mean or simply the \((\vec{N}, p_n)\) mean of the sequence \((s_n)\), generated by the sequence of coefficients \((p_n)\) (see [4]). The series \(\sum a_n\) is said to be summable \(|\vec{N}, p_n|_k, \ k \geq 1, \) if (see [2])

\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |\Delta \sigma_{n-1}|^k < \infty,
\]

\(\copyright2014\) Asia Pacific Journal of Mathematics
where

\[
\Delta \sigma_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_v, \quad n \geq 1.
\]

Let \(A = (a_{nv}) \) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then \(A \) defines the sequence-to-sequence transformation, mapping the sequence \(s = (s_n) \) to \(As = (A_n(s)) \), where

\[
A_n(s) = \sum_{v=0}^{n} a_{nv} s_v, \quad n = 0, 1, \ldots
\]

The series \(\sum a_n \) is said to be summable \(|A, p_n| k \), \(k \geq 1 \), if (see [7])

\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |\bar{A}A_n(s)|^k < \infty,
\]

and it is said to be summable \(|A, p_n; \delta| k \), \(k \geq 1 \) and \(\delta \geq 0 \), if (see [5])

\[
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{\delta k+k-1} |\bar{A}A_n(s)|^k < \infty,
\]

where

\[
\bar{A}A_n(s) = A_n(s) - A_{n-1}(s).
\]

If we take \(a_{nv} = \frac{p_v}{P_n} \) and \(\delta = 0 \), then \(|A, p_n; \delta|_k \) summability reduces to \(|\bar{N}, p_n|_k \) summability. In the special case \(\delta = 0 \) and \(p_n = 1 \) for all \(n \), \(|A, p_n; \delta|_k \) summability is the same as \(|A|_k \) summability. Also if we take \(a_{nv} = \frac{p_v}{P_n} \), then \(|A, p_n; \delta|_k \) summability is the same as \(|\bar{N}, p_n; \delta|_k \) summability.

Before stating the main theorem we must first introduce some further notations.

Given a normal matrix \(A = (a_{nv}) \), we associate two lower semimatrices \(\bar{A} = (\bar{a}_{nv}) \) and \(\hat{A} = (\hat{a}_{nv}) \) as follows:

\[
\bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \ldots
\]

and

\[
\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \quad n = 1, 2, \ldots
\]

It may be noted that \(\bar{A} \) and \(\hat{A} \) are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

\[
A_n(s) = \sum_{v=0}^{n} a_{nv} s_v = \sum_{v=0}^{n} \bar{a}_{nv} a_v
\]
and

\[\Delta A_n(s) = \sum_{v=0}^{n} \tilde{a}_{nv}a_v. \]

2. Known result

In [3], we have proved the following theorem dealing with \(|\tilde{N}, p_n|_k \) summability factors of an infinite series.

Theorem A. Let \((p_n) \) be a sequence of positive numbers such that

\[P_n = O(np_n) \quad as \quad n \to \infty. \]

Let \((X_n) \) is a positive non-decreasing sequence and suppose that there exist sequences \((\beta_n) \) and \((\lambda_n) \) such that

\[|\Delta \lambda_n| \leq \beta_n, \]

\[\beta_n \to 0 \quad as \quad n \to \infty, \]

\[\sum_{n=1}^{\infty} n |\Delta \beta_n| X_n < \infty \]

and

\[|\lambda_n| X_n = O(1) \quad as \quad n \to \infty. \]

If

\[\sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k = O(X_m) \quad as \quad m \to \infty, \]

where

\[t_n = \frac{1}{n+1} \sum_{v=1}^{n} va_v, \]

then the series \(\sum a_n \lambda_n \) is summable \(|\tilde{N}, p_n|_k, k \geq 1. \)

3. The main result

The aim of this paper is to generalize Theorem A to \(|A, p_n; \delta|_k \) summability under weaker conditions. Now, we shall prove the following theorem.

Theorem. Let \(A = (a_{nv}) \) be a positive normal matrix such that

\[\tilde{a}_{n0} = 1, \quad n = 0, 1, ..., \]

\[a_{n-1,v} \geq a_{nv}, \quad for \quad n \geq v + 1, \]
(20) \[a_{nn} = O \left(\frac{P_n}{P_n^2} \right), \]

(21) \[|\hat{a}_{n,v+1}| = O \left(v |\Delta_v \hat{a}_{nv}| \right). \]

If \((X_n)\) is an almost increasing sequence. If the sequences \((\beta_n)\) and \((\lambda_n)\) are satisfied the conditions (12)-(16) of Theorem A and if the conditions

\[
\sum_{n=1}^{m} \left(\frac{P_n}{P_n} \right)^{\delta k-1} |t_n|^k = O(X_m) \quad \text{as} \quad m \to \infty,
\]

\[
\sum_{n=v+1}^{\infty} \left(\frac{P_n}{P_n} \right)^{\delta k} |\Delta_v \hat{a}_{nv}| = O \left\{ \left(\frac{P_v}{P_v} \right)^{\delta k-1} \right\}
\]

are satisfied, then the series \(\sum a_n \lambda_n\) is summable \(|A, p_n; \delta|, k \geq 1\) and \(0 \leq \delta < 1/k\).

It may be noted that, if we take \((X_n)\) as a positive non-decreasing sequence, \(a_{nv} = \frac{P_v}{P_n}\) and \(\delta = 0\) in this theorem, then we get Theorem A.

We need the following lemma for the proof of our theorem.

Lemma ([6]). Under the conditions on \((X_n), (\beta_n)\) and \((\lambda_n)\) as taken in the statement of the theorem, then we have the following:

(24) \[n \beta_n X_n = O(1) \quad \text{as} \quad n \to \infty, \]

(25) \[\sum_{n=1}^{\infty} \beta_n X_n < \infty. \]

4. **Proof of the theorem**

Let \((T_n)\) denotes A-transform of the series \(\sum a_n \lambda_n\). Then, by (10) and (11), we have

\[\bar{\Delta} T_n = \sum_{v=1}^{n} \hat{a}_{nv} a_v \lambda_v = \sum_{v=1}^{n} \frac{\hat{a}_{nv} \lambda_v}{v} v a_v. \]

By Abel’s transformation, we have

\[
\bar{\Delta} T_n = \sum_{v=1}^{n-1} \Delta_v \left(\frac{\hat{a}_{nv} \lambda_v}{v} \right) \sum_{r=1}^{v} r a_r + \frac{\hat{a}_{nn} \lambda_n}{n} \sum_{r=1}^{n} r a_r \\
= \frac{n+1}{n} a_{nn} \lambda_n t_n + \sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_v (\hat{a}_{nv}) \lambda_v t_v \\
+ \sum_{v=1}^{n-1} \frac{v}{v} \hat{a}_{n,v+1} \Delta v t_v + \sum_{v=1}^{n-1} \frac{1}{v} \hat{a}_{n,v+1} \lambda_{v+1} t_v \\
= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}, \quad \text{say.} \]
To complete the proof of the theorem, by Minkowski’s inequality, it is enough to show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k + 1} |T_{n,r}|^k < \infty, \quad \text{for } r = 1, 2, 3, 4.$$

Firstly, we have that

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k + 1} |T_{n,1}|^k = O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k - 1} |\lambda_n|^k |t_n|^k$$

$$= O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k - 1} |\lambda_n||\lambda_n|^{k-1} |t_n|^k$$

$$= O(1) \sum_{n=1}^{m} \Delta |\lambda_n| \sum_{v=1}^{n} \left(\frac{P_v}{p_v}\right)^{\delta k - 1} |t_v|^k + O(1) |\lambda_m| \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k - 1} |t_n|^k$$

$$= O(1) \sum_{n=1}^{m} |\Delta \lambda_n| X_n + O(1) |\lambda_m| X_m$$

$$= O(1) \beta_n X_n + O(1) |\lambda_m| X_m$$

$$= O(1) \quad \text{as} \quad m \to \infty,$$

by virtue of the hypotheses of the theorem and lemma. Now, when $k > 1$, applying Hölder’s inequality with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$, as in $T_{n,1}$, we have that

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k + 1} |T_{n,2}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k + 1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})||\lambda_v|^k |t_v|^k \right)^k$$

$$= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k - 1} \left(\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})||\lambda_v|^k |t_v|^k \right)^{k-1}$$

$$= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k - 1} \sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})||\lambda_v|^k |t_v|^k$$

$$= O(1) \sum_{v=1}^{m} |\lambda_v|^{k-1} |\lambda_v||t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k} |\Delta_v(\hat{a}_{nv})|$$

$$= O(1) \sum_{v=1}^{m} |\lambda_v| \left(\frac{P_v}{p_v}\right)^{\delta k - 1} |t_v|^k$$

$$= O(1) \quad \text{as} \quad m \to \infty,$$
by virtue of the hypotheses of the theorem and lemma.

Now, since \(v\beta_v = O \left(\frac{1}{X_v} \right) = O(1) \), by (24), we have that

\[
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} |T_{n,3}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta v| |t_v| \right)^k
\]

\[
\begin{align*}
&= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\beta_v| t_v \right)^k \times \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| \beta_v \right)^{k-1} \\
&= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} \sum_{v=1}^{n-1} v |\Delta v| \hat{a}_{nv} \beta_v |t_v|^k \\
&= O(1) \sum_{v=1}^{m} v \beta_v |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k} |\Delta v| \hat{a}_{nv} \\
&= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^{\delta k-1} v \beta_v |t_v|^k \\
&= O(1) \sum_{v=1}^{m-1} |\Delta (v\beta_v)| \sum_{i=1}^{v} \left(\frac{P_i}{p_i} \right)^{\delta k-1} |t_i|^k + O(1)m\beta_m \sum_{v=1}^{m} \left(\frac{P_v}{p_v} \right)^{\delta k-1} |t_v|^k \\
&= O(1) \sum_{v=1}^{m-1} v |\Delta \beta_v| X_v + O(1) \sum_{v=1}^{m} \beta_{v+1} X_v + O(1)m\beta_m X_m \\
&= O(1) \text{ as } m \to \infty,
\]

by virtue of the hypotheses of the theorem and lemma.

Finally, as in \(T_{n,1} \), we have that

\[
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} |T_{n,4}|^k = O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} \left(\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\lambda_{v+1}| |t_v| \right)^k
\]

\[
\begin{align*}
&= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} \left(\sum_{v=1}^{n-1} |\Delta v| \hat{a}_{nv} |\lambda_{v+1}| |t_v| \right)^k \\
&= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k + k-1} \left(\sum_{v=1}^{n-1} |\Delta v| \hat{a}_{nv} |\lambda_{v+1}| |t_v|^k \right)^k \times \left(\sum_{v=1}^{n-1} |\Delta v| \hat{a}_{nv} \right)^{k-1} \\
&= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| |t_v|^k \sum_{n=v+1}^{m+1} \left(\frac{P_n}{p_n} \right)^{\delta k} |\Delta v| \hat{a}_{nv} \\
\end{align*}
\]
\[\begin{align*}
&= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| \left(\frac{p_v}{p_v} \right)^{\delta k-1} |t_v|^k \\
&= O(1) \quad \text{as} \quad m \to \infty,
\end{align*} \]

by virtue of the hypotheses of the theorem and lemma. Therefore, we get that

\[\sum_{n=1}^{m} \left(\frac{p_n}{p_n} \right)^{\delta k+k-1} |T_{n,r}|^k = O(1) \quad \text{as} \quad m \to \infty, \quad \text{for} \quad r = 1, 2, 3, 4. \]

This completes the proof of the theorem.

Acknowledgements

This work was supported by Research Fund of the Erciyes University. Project Number: FBA-2014-3846.

References

