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Abstract. This paper deals with an economic production quantity (EPQ) model for dete-
riorating items with price and advertisement dependent demand. We have considered
three types of continuous probabilistic deterioration functions to determine the total
inventory cost. Here, the rate of replenishment is considered to be a variable and the
generalized unit production cost function is formulated by incorporating costs of several
factors like raw material, labour, replenishment rate, advertisement and other factors
of the manufacturing system. The selling price of a unit is determined by a mark-up
over the production cost. This model aids in minimizing the total inventory cost of the
manufacturer by finding the optimal cycle length and the optimal quantity. The optimal
solution of the model is illustrated with the help of numerical examples. A numerical
comparison between the three models is also given. Finally sensitivity analysis and
graphical representations of the total cost functions are given to demonstrate the mod-
el.
2010 Mathematics Subject Classification. 90B05.
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1. Introduction

In the production system, the output (i.e., product) of a firm depends upon the combination
of production factors. These factors may be raw material, number of labours, production pro-
cedure, firm size, quality of the product etc. Because of these changes, production rate and
cost are changed too. Moreover, due to increased equipment wear, overtime labor, greater de-
fect rates, etc, the production rate should be a decision variable in determining the lot size
or run length of a manufactured item. Also, in practice, the unit production cost varies with
production rate, raw material cost, labour charge and advertisement cost of the production
process. In this investigation, unit production cost is dependent on the cost of raw materials,
labour charges, advertisement cost, produced units, etc.

c⃝2014 Asia Pacific Journal of Mathematics

197



Generally, high selling price of an item affects the demand, which in turn affects the deci-
sions about production and inventory policies. The advertising by the sales team is one of the
most important factors used to increase the retailer’s profit in modern marketing system. The
purpose of the advertisement is to enhance potential customer’s responses to a business orga-
nization. In general, this strategy is only to sell more items in a short time. Increase in the
advertising intensity not only increases the probability of successful marketing targets but al-
so the demand from the customers. Therefore, the more investment in advertising gives more
profits for the company. In this direction, our model encourage the retailers to consider the de-
mand as an increasing function of advertising parameter with decreasing value of selling price.

Deterioration plays a significant role in many inventory systems. Deterioration is defined
as decay, damage, dryness and spoilage. It is the process in which an item loses its utility
and becomes useless. In the real life situation, it is too difficult to preserve highly volatile
items like alcohol, liquid medicines, blood, etc., for all manufacturing sectors. These types of
items may deteriorate over time. So decay or deterioration of physical goods in stock is a very
realistic factor and there is a big need to consider this in inventory modeling. The next section
reviews the relevant literature on inventory management issues from the perspective of the
production industries.

2. Literature Review

In the production lot size models, both production rate and production cost are assumed to
be constant and independent of each other. Several researchers developed inventory models
for a single item or multiple items with a constant or variable production rate (as a function of
demand and/or on-hand inventory). In this connection, one may refer the works of Misra [1],
Mandal [2], Mandal [3] and Maiti [4]. In their models, the production cost is assumed to be
constant. Khouja [5] provided an economic production lot size model under volume flexibility
where unit production cost depends upon the raw material, labour force and tool wear out cost
incurred. Here, unit production cost is a function of production rate. Bhandari [6] extended
the work of Khouja [5] by including the marketing cost and taking a generalized unit cost func-
tion in to account.

In the present competitive market, the marketing policies and promotion of a product in
the form of advertisement, display, etc. change the demand pattern of that item amongst the
customers and have a motivational effect on the people to buy more. Also, the selling price of
an item is one of the important factors in selecting an item for use. It is commonly seen that
higher selling price causes decrease in demand whereas lower selling price has the reverse
effect. Hence, it can be concluded that the demand of an item is a function of marketing cost
and selling price of an item. Kotler [7] incorporated marketing policies into inventory deci-
sions and studied the relationship between economic order quantity and decision. Ladany [8]
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discussed the effect of price variation on demand and consequently on EOQ. Subramanyan
[9], Urban [10], Goyal [11], Luo [12] developed inventory models incorporating the effect of
price variations and advertisement on demand. Mondal [13] developed an inventory models
for defective items incorporating marketing decisions with variable production cost. Chang
[14] studied an economic manufacturing quantity model for a two-stage assembly system with
imperfect processes and variable production rate. Soni [15] investigated an optimal strategy
for an integrated inventory system involving variable production and defective items under
retailer partial trade credit policy. Deane [16] considered a model for scheduling online adver-
tisements to maximize revenue under variable display frequency.

Deterioration is defined as decay, damage, spoilage, evaporation, obsolescence, pilferage,
loss of utility or loss of marginal value of a commodity that results in decreased usefulness.
Ghare and Schrader [17] were the first authors who considered the effect of deteriorating items
in inventory model. They discussed the general EOQ (economic order quantity) model with di-
rect spoilage and exponential deterioration. Covert and Philip [18] extended the work of Ghare
and Schrader [17] with Weibull distribution and gamma distribution. Philip [19] deduced a
three parameter Weibull distribution for the deteriorating time. Misra [20] developed optimal
production lotsize model with finite production rate and different types of deterioration rates
but without any backordering. Shah [21] discussed an order-level lot size model for both expo-
nential and Weibull distributed deterioration with backordering. Optimal selling price and lot
size, time varying deterioration and partial backlogging was developed by Sana [22]. Ghosh
[23] discussed an optimal price and lot size determination for a perishable product under con-
ditions of finite production, partial backordering and lost sale. Mahata [24] gave an optimal
strategy for an EOQ model with non-instantaneous receipt and exponentially deteriorating
items under permissible delay in payments. Maihami [25] considered an inventory control
model for non-instantaneous deteriorating items with partial backlogging and time and price
dependent demand. Krishnamoorthi [26] developed an economic production lot size model for
product life cycle (maturity stage) with defective items with shortages. Sarkar [27] found out
an EOQ model with delay in payments and a variable deterioration rate. Sarkar [28] derived a
probabilistic deterioration model to find the integer number of deliveries and lot size with the
help of an algebraic procedure. Sarkar [29] investigated an economic manufacturing quanti-
ty model with probabilistic deterioration in a production system. Palanivel [30] developed an
EPQ model for deteriorating items with variable production cost, time dependent holding cost
and partial backlogging under inflation.

In the present work, a deterministic EPQ model for deteriorating items with price and ad-
vertisement dependent demand and variable production rate is considered. Moreover, the unit
production cost is a function of raw materials, labour charges, advertisement cost, produced
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units, etc. and the selling price is a mark-up over the unit production cost. Also in this mod-
el, we have considered that the deterioration function follows probability distribution like (a)
uniform distribution, (b) triangular distribution, and (c) beta distribution. We have used the
suitable numerical examples to illustrate the model. Sensitivity analysis of the optimal solu-
tion with respect to major parameters of the system is carried out.

The rest of the paper is organized as follows: In Section 3, the assumptions and notations,
which are used throughout this article, are described. In Section 4, the mathematical model to
minimize the total annual inventory cost is established. Section 5 presents solution procedure
to find the optimal cycle length and optimal production quantity. Numerical examples are
provided in Section 6 to illustrate the theory and the solution procedure. This is followed by
sensitivity analysis and conclusion.

3. Assumptions and Notations

To develop the mathematical model, the following assumptions are being made:
3.1 Assumptions

1. A single item is considered over an infinite planning horizon.
2. The demand rate D is a deterministic function of selling price, s and advertisement

cost, Ac per unit item i.e. D(Ac, s) = Aγ
c (x− ys), x.y, γ ≥ 0.

3. The production rate per unit time P is variable, which is more than the demand rate.
4. The unit production cost v(P ) = Crw +Ac + L/P g +KP h where Crw, L and K are non

- negative real numbers to be provide the best fit for the estimated unit cost function.
Crw, L and K represent the raw material cost, labour charges and a positive constant.
Also g, h are chosen to provide the feasible solution to the model. We shall use v and
v(P ) interchangeable in the rest of the paper.

5. The selling price is determined by a mark - up over the unit production cost, v i.e.
s = n.v, n > 1, where n is a mark - up .

6. Deterioration follows continuous probability distribution function as (a) uniform dis-
tribution (b) triangular distribution (c) beta distribution.

7. There is no replacement or repair of deteriorated items takes place in a given cycle.
8. The lead time is zero and shortages are not allowed.

3.2 Notations
In addition, the following notations are used throughout this paper:

t1 Duration of the replenishment rate.
T The length of the production inventory cycle.
q1(t) The inventory level at time t, 0 ≤ t ≤ t1.
q2(t) The inventory level at time t, t1 ≤ t ≤ T .
θ The probabilistic deterioration rate of the item.
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A The setup cost per cycle.
C1 The holding cost per unit per unit time.
Q The production lot size per cycle.
TC The total cost of the system.

4. Formulation and solution of the model

The inventory system is developed as follows: The inventory cycle starts at t = 0 with zero
inventory and increases up to time t1 at a rate P and also simultaneously decreases due to
demand and deterioration. In the interval [t1, T ] , the inventory level is decreasing only due to
demand rate and deterioration. Finally, the inventory reaches the zero level at time T . The
related figure-1 of the model is as follows.

Figure 1. Graphical representation of the inventory system

Based on the above description, during the time interval [0, t1], the differential equation rep-
resenting the inventory status is given by

(1) dq1(t)

dt
+ θq1(t) = P −D, 0 ≤ t ≤ t1

With the condition q1(0) = 0, the solution of equation (1) is

(2) q1(t) =
P −D

θ

[
1− e−θt

]
, 0 ≤ t ≤ t1

In the second interval [t1, T ], the differential equation below represents the inventory status:

(3) dq2(t)

dt
+ θq2(t) = −D, t1 ≤ t ≤ T

With the condition q2(T ) = 0, we get the solution of equation (3) is

(4) q2(t) =
D

θ

[
eθ(T−t) − 1

]
, t1 ≤ t ≤ T
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Put t = t1 in equations (2) and (4) we find the value of t1 as

(5) t1 =
1

θ
ln

{
1 +

D

P
[eθT − 1]

}
.

Since the production occurs in the continuous time-span [0, t1], then the production lot size in
the problem is,

(6) Q = Pt1.

The maximum inventory level S in the problem is given by,

(7) S = q(t1) =
P −D

θ

[
1− e−θt1

]
.

Now we want to find the different inventory costs as:
Setup cost =A.
The holding cost HC is given by

HC = C1

[∫ t1

0
q1(t)dt+

∫ T

t1

q2(t)dt

]
=

C1

θ2

{
P
[
θt1 + e−θt1 − 1

]
+D

[
eθ(T−t1) − θT − e−θt1

]}
(8)

Since q1(t1) = q2(t1), which implies equation (8) can be rearranged as follows:

(9) HC =
C1

θ
[Pt1 −DT ] .

The deteriorating cost DC is given by

(10) DC = p [Pt1 −DT ] .

Total average cost per cycle = setup cost + inventory holding cost + deterioration cost. So, the
total variable cost per unit time is

TC =
1

T
[A+HC +DC]

=
A

T
+

C1 + θp

θT
[Pt1 −DT ]

=
A

T
+

C1 + θp

θT

[
P

θ
ln

{
1 +

D

P
[eθT − 1]

}
−DT

]
(11)

Now, we consider the deterioration rate θ follows three different types of probability distri-
bution function as θ = E[f(x)] , where f(x) follows (1) uniform distribution, (2) triangular
distribution and (3) beta distribution.

Case 1: θ follows uniform distribution
We consider that θ follows uniform distribution as θ = E[f(x)] = (a+ b)/2, a > 0, b > 0, a < b.

Now from equation (11), we have

(12) TC1 =
A

T
+

2C1 + (a+ b)p

(a+ b)T

[
2P

(a+ b)
ln

{
1 +

D

P

[
e(a+b)T/2 − 1

]}
−DT

]
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Case 2: θ follows triangular distribution
Now, we assume that θ follows triangular distribution as θ = E[f(x)] = (a+ b+ c)/3, where

f(x) is the probability density function of triangular distribution with lower limit a, upper
limit b and mode c as well as a < b and a ≤ c ≤ b.

Therefore, the equation of TC can be written as

(13) TC2 =
A

T
+

3C1 + (a+ b+ c)p

(a+ b+ c)T

[
3P

(a+ b+ c)
ln

{
1 +

D

P

[
e(a+b+c)T/3 − 1

]}
−DT

]

Case 3: θ follows beta distribution
Now, we consider that θ follows beta distribution as θ = E[f(x)] = α/(α + β), where f(x)

follows beta distribution which is a continuous probability distributions defined on the interval
(0, 1) parameterized by two positive parameters, denoted by α and β.

From equation (11), we have

(14) TC3 =
A

T
+

[
C1 +

αp

α+ β

] [
α+ β

αT

] [
P (α+ β)

α
ln

{
1 +

D

P

[
eαT/(α+β) − 1

]}
−DT

]

5. Solution procedure

To find the optimal solution, the following procedures are considered: Now the production
rate that minimizes the unit production cost is given by v′(P ) = 0. Therefore v′(P ) = 0 implies

−gL

P g+1
+KhP h−1 = 0

(15) ⇒ P =

(
Lg

Kh

) 1
g+h

5.1 Determination of the optimal cycle length T
Here the objective is to minimize the total inventory cost by finding the optimal cycle length.

First we need the following theorem and lemma which are used to find the optimal cycle length.
Theorem 1: (Intermediate Value Theorem)

Let g be a continuous function on the closed interval [a, b] and let g(a).g(b) < 0. Then there
exists c ∈ (a, b) such that g(c) = 0.

Lemma 1:
If f(t) is a continuous function on (a, b) and if df

dt is non-decreasing, then f(t) is convex.

Case 1: θ follows uniform distribution
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We have dTC1(T )
dT = f1(t)

T 2 , where

f1(t) = −A− 2C1 + (a+ b)p

(a+ b)

{[
2P

(a+ b)
ln

(
1 +

D

P

[
e(a+b)T/2 − 1

])]
−

[
PTDe(a+b)T/2

P +D
[
e(a+b)T/2 − 1

]]}(16)

Then both f1(T ) and dTC1(T )
dT have the same sign. The optimal value of T , say T ∗

1 , is obtained
by solving the equation f1(T ) = 0.

We also have df1(t)
dT = PDT (P −D)e(a+b)T/2 (C1 + p(a+ b)/2) > 0 if T > 0, since P > D.

Hence f1(t) is increasing on (0,∞), and so dTC1(T )
dT is increasing on (0,∞).

From lemma 1, TC1(T ) is convex function on (0,∞). Also f1(0) = −A < 0 and limT→∞ f1(T ) =

∞ > 0 implies that

(17)

dTC1(T )

dT
=


< 0 if T ∈ (0, T ∗

1 )

= 0 if T = T ∗
1

> 0 if T ∈ (T ∗
1 ,∞)

Based upon the above arguments, the intermediate value theorem shows that the optimal
solution, T ∗

1 , exists and unique.

Case 2: θ follows triangular distribution

Now We have dTC2(T )
dT = f2(t)

T 2 , where

f2(t) = −A− 3C1 + (a+ b+ c)p

(a+ b+ c)

{[
3P

(a+ b+ c)
ln

(
1 +

D

P

[
e(a+b+c)T/3 − 1

])]
−

[
PTDe(a+b+c)T/3

P +D
[
e(a+b+c)T/3 − 1

]]}(18)

Then both f2(T ) and dTC2(T )
dT have the same sign. The optimal value of T , say T ∗

2 , is obtained

by solving the equation f2(T ) = 0.

We also have df2(t)
dT = PDT (P −D)e(a+b+c)T/3 (C1 + p(a+ b+ c)/3) > 0 if T > 0, since P > D.

Hence f2(t) is increasing on (0,∞), and so dTC2(T )
dT is increasing on (0,∞).

From lemma 1, TC2(T ) is convex function on (0,∞). Also f2(0) = −A < 0 and limT→∞ f2(T ) =

∞ > 0 implies that
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(19)

dTC2(T )

dT
=


< 0 if T ∈ (0, T ∗

2 )

= 0 if T = T ∗
2

> 0 if T ∈ (T ∗
2 ,∞)

Based upon the above arguments, the intermediate value theorem shows that the optimal
solution, T ∗

2 , exists and unique.

Case 3: θ follows beta distribution

Now dTC3(T )
dT = f3(t)

T 2 , where

f3(t) = −A−
[
C1 +

αp

α+ β

] [
α+ β

α

]{[
P (α+ β)

α
ln

{
1 +

D

P

[
eαT/(α+β) − 1

]}]
−

[
PTDeαT/(α+β)

P +D
[
eαT/(α+β) − 1

]]}(20)

Then both f3(T ) and dTC3(T )
dT have the same sign. The optimal value of T , say T ∗

3 , is obtained

by solving the equation f3(T ) = 0.

We also have df3(t)
dT = PDT (P −D)eαT/(α+β) (C1 + pα/(α+ β)) > 0 if T > 0, since P > D.

Hence f3(t) is increasing on (0,∞), and so dTC3(T )
dT is increasing on (0,∞).

From lemma 1, TC3(T ) is convex function on (0,∞). Also f3(0) = −A < 0 and limT→∞ f3(T ) =

∞ > 0 implies that

(21)

dTC3(T )

dT
=


< 0 if T ∈ (0, T ∗

3 )

= 0 if T = T ∗
3

> 0 if T ∈ (T ∗
3 ,∞)

Based upon the above arguments, the intermediate value theorem shows that the optimal
solution, T ∗

3 , exists and unique.

Theorem 2:
a) TC1(T ) has the unique optimal solution T ∗

1 on the non-negative interval (0,∞).
b) TC2(T ) has the unique optimal solution T ∗

2 on the non-negative interval (0,∞).
c) TC3(T ) has the unique optimal solution T ∗

3 on the non-negative interval (0,∞).
Proof: The above arguments imply that Theorem 2 holds.

From equations (5), (12), (13), (14) and (15), the optimal value of t∗1, TC∗
1 , TC

∗
2 , TC

∗
3 and P ∗

respectively can be obtained.
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6. Numerical Examples

Example 1
Consider an inventory system with the following data: Setup cost A = $500/year; Hold-

ing cost C1 = $10/unit/year; Advertisement cost Ac = $50/Advertisement; Labour Charge L =
$1500/year; Raw material Cost Crw = $45/unit/year; γ= 0.01; x = 200; y = 0.6; g = 0.76; h = 1.5;
K= 0.01; n= 1.18; a = 0.15; b= 0.25.

Then we get the optimal values as t1 = 0.6332 years, T = 0.8904 years, P = 144 units, D =
100 units and TC = $1087.2. That is, the manufacturer should produce the product upto t1 =
0.6332 years and maintain the inventory level upto T = 0.8904 years.

Figure - 2 shows that, TC is convex with respect to T when θ follows uniform distribution.
If the deterioration follows uniform distribution, then the total cost decreases with the cycle
length and it attains the minimum value $1087.2 at T = 0.8904 years. If the production inven-
tory cycle length is longer than 0.8904, then the total cost increases.

Figure 2. The total cost function with respect to T when θ follows uniform distribution.

Example 2
Consider an inventory system with the following data: Setup cost A = $500/year; Hold-

ing cost C1 = $10/unit/year; Advertisement cost Ac = $50/Advertisement; Labour Charge L =
$1500/year; Raw material Cost Crw = $45/unit/year; γ= 0.01; x = 200; y = 0.6; g = 0.76; h = 1.5;
K= 0.01; n= 1.18; a = 0.15; b= 0.35; c = 0.25.
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Then we get the optimal values as t1 = 0.5818 years, T = 0.8151 years, P = 144 units, D =
100 units and TC = $1182.2. That is, the manufacturer should produce the product upto t1 =
0.5818 years and maintain the inventory level upto T = 0.8151 years.

Figure 3. The total cost function with respect to T when θ follows triangular distribution.

From figure 3, it is observed that the total cost TC decreases with T and it attains the
minimum value $1182.2 at T = 0.8151 years, when the deterioration follows triangular distri-
bution. If T crosses 0.8151 years, the total cost then increases. The graph (Fig. 3) shows that
the function TC is convex with respect to T when θ follows triangular distribution.

Example 3
Consider an inventory system with the following data: Setup cost A = $500/year; Hold-

ing cost C1 = $10/unit/year; Advertisement cost Ac = $50/Advertisement; Labour Charge L =
$1500/year; Raw material Cost Crw = $45/unit/year; γ= 0.01; x = 200; y = 0.6; g = 0.76; h = 1.5;
K= 0.01; n= 1.18; α = 0.15; β= 0.35.

Then we get the optimal values as t1 = 0.5413 years, T = 0.7559 years, P = 144 units, D =
100 units and TC = $1269.9. That is, the manufacturer should produce the product upto t1 =
0.5413 years and maintain the inventory level upto T = 0.7559 years.

Figure 4 illustrates that, TC is convex with respect to T when θ follows beta distribution.
Suppose deterioration follows beta distribution, the total cost decreases with the cycle length
and it attains the minimum value $1269.9 at T = 0.7559 years. Then the total cost increases,
if the inventory cycle length is longer than 0.7559.

6.1. Comparison between the three models by the graphical representations
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Figure 4. The total cost function with respect to T when θ follows beta distribution.

The comparison between the three probabilistic deteriorated models is done with the help of
graphical representations. The following plots are due to the change of the three probabilistic
deterioration functions.

Figure 5. Total cost with respect to production cycle length for different distri-
butions of θ

There are two figures (figure 5 and figure 6) and each of the two figures contains a combina-
tion of three plots in which the above plot is for beta distribution, middle-plot is for triangular
distribution and last (downside) plot is for uniform distribution. From figures 5 and 6, it is
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Figure 6. Total cost with respect to t1 and T for different distributions of θ

observed that the total cost will be minimized when the deterioration follows uniform distri-
bution.

7. Sensitivity Analysis

We now study the effects of changes in the values of the system parametersA,C1, Ac, L, Crw, n, x

and y on the optimal replenishment policy. We change one parameter at a time keeping the
other parameters unchanged. The results are summarized in Table 1.
Based on our numerical results, we obtain the following managerial phenomena:

1. When the setup cost A and the holding cost C1 are increasing, total cost TC is also
increasing. That is, minimum setup cost and minimum cost for holding the items will
minimize the total cost of the manufacturer.

2. When the advertisement cost Ac is increasing, the total cost TC is increasing. That is,
the minimum advertisement cost will minimize the total cost of the manufacturer but
more advertisement cost implies more demand of the product.

3. When the labour charge L and raw material cost Crw are increasing, the total cost
TC is also increasing. That is, the increasing of labour charge and raw material cost
will increase the total cost of the manufacturer. In order to minimize the cost, the
manufacturer should decrease the labour charge and raw material cost.

4. When the mark-up value n and the parameter y are increasing, the total cost TC will
increase. That is, the increasing of n and y will increase the total cost of the manufac-
turer. But the increase in the value of the parameter x will give the variable changes
in the total cost.
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Parameter Parameter value TC(uniform) TC(triangular) TC(beta)
250 771.2625 839.1004 901.6759

A 500 1087.2000 1182.2000 1269.9000
750 1328.2000 1443.8000 1550.4000
5 1014.9000 1116.3000 1208.8000

C1 10 1087.2000 1182.2000 1269.9000
15 1155.0000 1244.8000 1328.2000
25 847.4981 916.9883 981.2353

Ac 50 1087.2000 1182.2000 1269.9000
75 1257.5000 1374.3000 1482.1000

1000 604.4070 654.9356 701.6338
L 1500 1087.2000 1182.2000 1269.9000

2000 1298.2000 1406.3000 1525.7000
35 998.7199 1084.6000 1162.7000

Crw 45 1087.2000 1182.2000 1269.9000
55 1161.9000 1265.7000 1361.3000
1.0 923.2228 1003.1000 1076.7000

n 1.2 1100.0000 1196.3000 1285.1000
1.5 1191.3000 1297.5000 1395.5000
150 1134.2000 1237.3000 1332.8000

x 175 1189.7000 1295.4000 1393.1000
200 1087.2000 1182.2000 1269.9000
0.4 537.8091 583.8414 626.3811

y 0.6 1087.2000 1182.2000 1269.9000
0.9 1123.2000 1225.5000 1320.3000

Table 1. Sensitivity analysis for various inventory parameters.

8. Conclusion

In this paper, the economic production lot size model for determining the optimal production
length and the optimal total cost for deteriorating items are developed. We also developed
the model incorporating both marketing decision and variable unit price depending on the
rate of production. Here the deterioration function follows probability distribution like (a)
uniform distribution, (b) triangular distribution, and (c) beta distribution. In each case, we
find the minimum total cost associated with the system. Furthermore, numerical examples
are provided to illustrate the model and the solution procedure. Also a numerical comparison
between the three models is shown graphically. Finally, sensitivity analysis is carried out with
respect to the key parameters.

The proposed model can be adopted in inventory control of production system such as food
industries, fish, fruits, domestic goods etc.,
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