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Abstract. In this paper, we give the existence and uniqueness of solutions for an abstract Caputo-
type fractional evolution problem with generalized real numbers in the initial conditions. The
mild solutions of our proposed model is constructed by using Laplace transform and a density
function. By applying some fixed point theorems on Colombeau algebra, we prove our main
results. As application, an illustrative example is given to show the applicability of our theoretical
results.
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1. Introduction

In this manuscript, we are concerned with the existence, uniqueness, regularity of
solutions for the following generalized fractional evolution problem

(1.1)

D
αu(t) = Au(t) + f(t, u(t)), 0 < α < 1,

u(0) = x0

where x0 ∈ (R̃)n is generalized real number, A be the infinitesimal generator of C0-generalized
semigroup (S(t))t≥0 of uniformly bounded linear operators on a class of Colombeau algebras
G(Rn). Nets of smooth functions (x0ε)ε∈(0,1] are used to approximate the initial data. The
purpose of this study is to prove the existence of a net of smooth solutions (xε)ε∈[0,1) up to a
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O(ε∞) asymptotic error term. The paper is written in the Colombeau generalized functions
framework. By using the Laplace transform and a density function, we present a new ex-
istence result of (1.1) with nonlinearity f , for initial data belong to the non-Archimedian
ring R̃n. Precisely, this sort of problem can be found, for example, in the study of singularly
perturbed partial differential equations, semi-classical analysis, and the regularization of
partial differential operators with non-smooth coefficients or pseudo-differential operators
with irregular symbols. We approach the problem from the perspective of asymptotic analysis:
the right-hand side and solution regularity, as well as the operator’s mapping qualities, will
be explained using asymptotic estimates in terms of the parameter (ε → 0). In [2, 3] the
author constructed an algebra, commutative, associative, differential, where D′ is injected so
that the product of indefinitely differentiable functions and the normal derivative are both
respected. When it comes to algebra, non-linear operations G are more general than multi-
plication. Therefore, this algebra is very convenient for finding and studying the solutions
to nonlinear differential equations with singular data and coefficients. This type of algebra
is essential for calculating the multiplication of distributions [5] and [16]. As a nonlinear
extension of distribution theory to deal with nonlinearities and singularities of data and coef-
ficients in PDE theory [16], these algebras contain the space of distributions D′ as a subspace
with an embedding realized through convolution with a suitable mollifier. The elements of Gs

are classes of smooth functions called moderate functions with respect to a set of negligible
functions.
In the classical literature, over the past few years, many researcher’s of focus within the theory
of fractional calculus as an interesting and popular tool in modelling many phenomena in
various fields of engineering, physics and economics. It often appears in viscoelasticity, elec-
trochemistry, control, porous media, electromagnetic, etc. (see [4,6]). The fractional evolution
problem studied in [1] by E. Bazhlekova. In its work, Emilia provides necessary and sufficient
conditions for an unbounded closed operator A in a Banach space X in order to solve the
abstract Cauchy problem for the fractional evolution equation Dαu = Au, 0 < α < 1. The
authors in [21], to reduce the Cauchy problem for a linear in-homogeneous partial differential
equation to the Cauchy problem for the corresponding homogeneous equation, the authors use
Duhamel’s principle. In [23], the non-local Cauchy problem for fractional evolution equations
in an arbitrary Banach space is studied by Y. Zhou et al, and several criteria for the existence
and uniqueness of mild solutions are found. The author in [13] offer a method for dealing
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with fractional derivatives, including singularities based on Colombeau’s theory of algebras
of generalized functions. It is interested to solving fractional nonlinear ODEs and PDEs with
singularities in the space of classical functions or distributions that have no solutions. There
are relevant techniques such as regularization using delta sequences and multiplication with
distinct cutoff functions to embed different kinds of fractional derivatives into the space of
Colombeau special algebra of generalized functions for these goals. S. Mirjana in [20] gives an
extension of Colombeau algebra of generalized functions to fractional derivatives. We apply it
in solving ODEs and PDEs with entire and fractional derivatives with respect to temporal and
spatial variables. In [14] the authors introduce the notion of C0−Semigroup with polynomial
growth in ε→ 0. Moreover, they show some properties concerning such notion, so that they
use them to solve the heat equation. Fixed point concept is very essential for proving the
existence and uniqueness of diverse mathematical models ( partial differential equations,
variational inequalities, etc). This theory has been studied by many researchers, but it is rare
to find a paper that presented the fixed point theory in Colombeau algebra. We will rely on
the work of J.Martin in [11], and we will use the topology of locally convex spaces to make
sense of the concept of a fixed point in a class of Colombeau algebra compatible with our
study of the evolution problem.
Motivated by the previous works, we write the mild solution of a representative of the

evolution problem (1.1) by using the Laplace transform and density function. The class of
such solution constituted an element of Gs(Rn), and we demonstrate that is the unique solution
in the spacial algebra Gs(Rn).

The organization of the paper is as follows. In section 2, we recall some basic properties of
the generalized functions theory. In section 3, we deal with the fixed point concept in a locally
convex space of generalized function. The new notion of generalized semigroup take place in
section 4. Section 5 is consecrated for the proof of the existence and uniqueness in Colombeau
algebra to the problem given in (1.1). In Section 6 we have introduced an example to illustrate
our work.

2. Preliminaries

In this sectionwe introduce preliminary facts which are used throughout this paper. For this,
we recall a few basics from the theory of generalized functions. The regularization methods
of Colombeau type is to model non-smooth objects by approximating nets of any smooth
functions. The elements of Colombeau algebras Gs are equivalence classes of regularization’s
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nets, i.e., sequences of smooth functions satisfying asymptotic conditions in the regularization
parameter ε. Let n ∈ N∗, as in [5], we define the set

E(Rn) =
(
C∞ (Rn)

)(0,1)
.

The set of moderate functions is given as follows

EsM(Rn) =
{

(uε)ε>0 ⊂ E(Rn)/∀K ⊂⊂ Rn,∀α ∈ Nn
0 ,

∃N ∈ N / sup
y∈K
|∂αuε(y)| = Oε→0(ε

−N)
}
.

The ideal of negligible functions is defined by

N (Rn) =
{

(uε)ε>0 ⊂ E(Rn)/∀K ⊂⊂ Rn,∀α ∈ Nn
0 ,

∀p ∈ N / sup
y∈K
|∂αuε(y)| = Oε→0(ε

p)
}
.

The Colombeau algebra is defined as a factor set

Gs(Rn) = EsM(Rn)/N (Rn).

For each x in Gs(Rn), we can write x = [(xε)ε].
The ring of all generalized real numbers is given by the following set

R̃ = E (R) /I (R) ,

where
E(R) =

{
(xε)ε ∈ (R)(0,1)/∃m ∈ N, |xε| = Oε→0(ε

−m)
}
,

and
I(R) =

{
(xε)ε ∈ (R)(0,1)/∀m ∈ N, |xε| = Oε→0(ε

m)
}
.

Where |.| is the absolute value, and note that R̃ is a ring obtained by factoringmoderate families
of real numbers with respect to negligible families.
We need basic definitions and properties of the fractional calculus theory which are used

further in this paper.

Definition 2.1. [13]
I) The Caputo derivative of order 0 < α < 1 for a function f is given by

cDαf(t) =
1

Γ(1− α)

∫ t

0

f
′
(τ)

(t− τ)α
dτ.
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II) The fractional integral of order 0 < α < 1 for a function f can be written as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ.

Definition 2.2. The fractional derivative of order in the sense of Caputo in the Colombeau
algebra is defined by

cDα F = [(cDα fε ∗ ρε)ε], 0 < α < 1

and the fractional integral in the algebra of Colombeau is defined by

IαF = [(Iαfε ∗ ρε)ε] 0 < α < 1.

Where (fε)ε>0 is a representative of F ∈ Gs(R) and ρε(x) = 1
ε
ρ(x

ε
), ρ is a test function such that

ρ ∈ C∞(R), ∫R ρ(x)dx = 1, ρ ≥ 0.

3. Generalized Fixed Points

3.1. Contraction operator in X̃ . The contraction map in Colombeau type algebra is discussed
in this subsection, this contraction type is inspired by that in the classic case in locally convex
spaces X . We need some basic definitions and properties of the contraction in locally convex
space. Firstly, we present the notion of locally convex spaces.

Definition 3.1. Let X be a vector space indowed with a familly (Ni)i∈I of seminorms. For all
i ∈ I , we denote τi the topology induced by the seminorm Ni, and τ the topology generated
by the classe of the all union sets τi . The pair

(
X, τ

) is said to be locally convex space.

The set of all balls of the form is called a basis of 0-neighbourhood

B(i, r) =
{
x ∈ X/ Ni(x) < r

}
, ∀i ∈ I and r > 0.

where (Ni)i is a family of seminorms.

Definition 3.2. We recall that a map Tε : X −→ X is called contraction if for all i ∈ I there
exits ki < 1 such that

∀(xε, yε) ∈ X ×X, Ni(Tεxε − Tεyε) ≤ ki Ni(xε − yε).

We will give a notion of contraction map in type Colombeau algebra.
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Definition 3.3. Consider a locally convex space X endowed with a familly of seminorms
(Ni)i∈I . A class of moderate functions compatible with properties of the space X is defined by

EsM(X) =
{

(xε)ε ∈ (X)(0,1)/∃m ∈ N,∀i ∈ I,Ni(xε) = Oε→0(ε
−m)

}
.

The corresponding class of negligible functions is given as follows

N (X) =
{

(xε)ε ∈ (X)(0,1)/∀m ∈ N,∀i ∈ I, Ni(xε) = Oε→0(ε
m)
}
.

The Colombeau algebra type is given in this case by

X̃ = EsM(X)/N s(X).

First, we will see if it’s possible to give a definition of a map T : X̃ → X̃ by the data of
a family (Tε)ε∈(0,1) of maps Tε : X → X where Tε is a linear and continuous operator. The
general idea is given in the following result

Lemma 3.4. [12, 19] Let (Tε)ε∈(0,1) be a given family of maps Tε : X → X . For each (xε)ε ∈ EM(X)

and (yε)ε ∈ N (X), suppose that

(1)
(
Tεxε

)
ε
∈ EM(X),

(2)
(
Tε(xε + yε)

)
ε
−
(
Tεxε

)
ε
∈ N (X).

Then

T :

X̃ −→ X̃

x =
[
(xε)ε

]
7→ Tx =

[
(Tεxε)ε

]
,

is well defined.

Definition 3.5. [11] A map T : X̃ → X̃ is called a contraction if only if
a) (xε)ε ∈ EsM(X), implies (Tεxε)ε ∈ EsM(X) for all ε ∈ (0, 1).
b) Tε is a contraction in (X, τε) endowedwith the familyMε = (Mε,i)i∈I and the corresponding
contraction constants are denoted by lε,i < 1.
c) For every i ∈ I and ε ∈ (0, 1],∃αε,i > 0 and βε,i > 0, such that

αε,i Ni ≤Mε,i ≤ βε,i Ni.

d) For each i ∈ I and ∀ε ∈ (0, 1], we have (
βε,i
αε,i

)ε, ( 1
1−lε,i )ε ∈ |E

s
M(R)|.

The essential result given in the next theorem which has been proven in [11]

Theorem 3.6. With the same previous notations, any contraction T : X̃ → X̃ has a fixed point in X̃ .



Asia Pac. J. Math. 2023 10:11 7 of 18

4. Generalized Semigroup

The generalized semigroup is introduced by M. Nedeljkov et Al [14]. Here, we liste its
definition and fundamental properties.

Definition 4.1. [14]
• SEM(R+ : Lc(X)) is the space of nets (Sε)ε of strongly continuous mappings
Sε : R+ −→ Lc(X), ε ∈ (0, 1) with the property that for every T > 0 there exists a ∈ R such
that

(4.1) sup
t∈[0,T )

‖Sε(t)‖ = Oε→0(ε
a).

• SN (R+ : Lc(X)) is the space of nets (Nε)ε of strongly continuous mappings
Nε : R+ −→ Lc(X), ε ∈ (0, 1).with the properties
For every b ∈ R and T > 0

(4.2) sup
t∈[0,T )

‖Nε(t)‖ = Oε→0(ε
b).

There exist t0 > 0 and a ∈ R such that

(4.3) sup
t<t0

‖Nε(t)

t
‖ = Oε→0(ε

a).

There exists a net (Hε)ε in Lc(X) and ε0 ∈ (0, 1) such that

(4.4) lim
t−→0

Nε(t)

t
= Hεx, x ∈ X, ε < ε0.

For every b > 0,

(4.5) ‖Hε‖ = Oε→0(ε
b).

M. Nedeljkov et Al introduce [14] a Colombeau type algebra as the factor algebra:

SG(R+ : L(X)) = SEM(R+ : L(X))/SN (R+ : L(X)).

Definition 4.2. [14]
S ∈ SG(R+ : L(X)) is called a Colombeau C0-Semigroup if it has a representative (Sε)ε such
that, for some ε0 > 0, Sε is a C0-Semigroup, for every ε < ε0.

M. Nedeljkov et Al introduce the infinitesimal generator of a Colombeau C0-semigroup S
and it’s denote by A the set of pairs ((Aε)ε, (D(Aε))ε) where Aε is a closed linear operator on
X with the dense domain D(Aε) ⊂ X , for every ε ∈ (0, 1).
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5. Main Result

In this section, the evolution problem for the fractional equations with initial data are
distributions is discussed, and various criteria on the existence and uniqueness of Colombeau
generalized solutions, one introduces the algebra of generalized functions suitable to this
context.

We define the simplified algebra of global generalized functions, which must be compatible
with the study of the fractional evolution equations, denoted Gs([0,∞)), by the quotient algebra

Gs([0,∞)) = EsM([0,∞))/N s([0,∞)),

where

EsM([0,∞)) =
{

(xε)ε ∈ (C∞(R+))(0,1)/∃m ∈ N,∀T > 0,

sup
t∈[0,T ]

|xε(t)| = Oε→0(ε
−m)

}
,

and

N s([0,∞)) =
{

(xε)ε ∈ (C∞(R+))(0,1)/∀m ∈ N, ∀T > 0,

sup
t∈[0,T ]

|xε(t)| = Oε→0(ε
m)
}
.

Now, we recall the problem (1.1) of the following form

(5.1)


cDαu(t) = Au(t) + f(t, u(t)), u ∈ Gs(R+), t ∈ R+

u(0) = x0 ∈ R̃.

where cDα is the Caputo fractional derivative of order 0 < α < 1, A is the infinitesimal
generator of a Colombeau C0-semigroup S = [(Sε)ε], x0 ∈ R̃ and f : [0,∞]× Gs([0,∞))→ R̃.

In the rest of the paper we will need some definitions and basic properties.

Definition 5.1. [23] The one-sided stable probability density is given by

Ψα(τ) =
1

π

∞∑
n=1

(−1)n−1(−τ)−αn−1
Γ(1 + αn)

n!
sin(nπα), τ ∈ (0,∞).(5.2)

and
hα(τ) =

1

α
τ−(1+

1
α
)Ψα(τ−

1
α
)

is the probability density function defined on (0,∞).
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According to [23], we have∫ ∞
0

τhα(τ)dτ =

∫ ∞
0

1

τα
Ψα(τ)dτ =

1

Γ(1 + α)
.(5.3)

The following Lemma plays a key role in the proof of our main results.

Lemma 5.2. (Holder Inequality) [23]. Assume that q, p ≥ 1, and 1
q

+ 1
q

= 1. If g ∈ Lq(J,R), h ∈
p(J,R), then for 1 ≤ p ≤ ∞ , gh ∈ L1(J,R) and

‖ gh ‖≤‖ g ‖lq(J)‖ h ‖lp(J) .

Lemma 5.3. [23] A function u is a solution of problem (5.1), if only if u satisfies the following integral

equation

u(t) =

∫ ∞
0

hα(τ)S(tατ)u0dτ

+ α

∫ t

0

∫ ∞
0

τ(t− s)α−1hα(τ)S((t− s)ατ)f(s, u(s))dτds.

We make the following hypotheses will be used in the sequel.
(H1) There exists a constantMε ≥ 0, such that

sup
t∈[0,∞)

‖Sε(t)‖ ≤Mε, ∀ε ∈ (0, 1).

(H2) For each xε ∈ C([0, T ],R), the function fε(·, xε) : [0, T ]→ R is strongly measurable and
for each t ∈ [0, T ], the function fε(t, ·) : R→ R is continuous.
(H3) There exist β ∈ [0, α),mε ∈ L

1
β ([0, T ],R+) such that

sup
t∈[0,T ]

|mβ
ε (s)| = M0ε ∀ε ∈ (0, 1),

and

|fε(t, xε(t))− fε(t, yε(t))| ≤ mε(t)|xε − yε|,

for xε, yε ∈ C([0, T ],R) and t ∈ [0, T ].

Theorem 5.4. Assume that the hypotheses (H1)-(H3) hold. then the problem (5.1) has a unique

solution.

Proof. Consider the operator Q : Gs([0,∞))→ Gs([0,∞)) such that

Q :

G
s(R+) −→ Gs(R+)

u 7→ Qu,
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where

Qu(t) =

∫ ∞
0

hα(τ)S(tατ)u0dτ

+ α

∫ t

0

∫ ∞
0

τ(t− s)α−1hα(τ)S((t− s)ατ)f(s, u(s))dτds.

In the following, we will prove thatQ has a unique fixed point on Gs(R+), and for this we have
to prove that the conditions of the definition3.5 is holds.
a) Firstly, we will prove that Q is will defined. For (uε)ε ∈ EsM

(
R+
), we have

Qεuε(t) =

∫ ∞
0

hα(τ)Sε(t
ατ)u0εdτ

+ α

∫ t

0

∫ ∞
0

τ(t− s)α−1hα(τ)Sε((t− s)ατ)fε(s, uε(s))dτds.

Then, Qε is defined from C∞(R+
) into C∞(R+

). Endowed with the topology τ given by the
family of norms (NT )T∈R+ , C∞(R+

) is a topological space, such that NT (uε) = sup
t∈[0,T ]

|uε(t)|.

Let (uε)ε ∈ EsM
(
R+
). By (5.3), we can obtain

|
∫ ∞
0

hα(τ)Sε(t
ατ)u0εdτ | ≤Mε|u0ε|

aand

|
∫ t

0

∫ ∞
0

τ(t− s)α−1hα(τ)Sε((t− s)ατ)fε(s, uε(s))dτds|

≤
∫ t

0

|
∫ ∞
0

τ(t− s)α−1hα(τ)Sε((t− s)ατ)fε(s, uε(s))dτ |ds

≤Mε

∫ t

0

∫ ∞
0

τ(t− s)α−1hα(τ)|fε(s, uε(s))|dτds

≤ Mε

Γ(1 + α)

∫ t

0

(t− s)α−1|fε(s, uε(s))|ds.

Then

|Qεuε(t)| ≤Mε|u0ε|+
αMε

Γ(1 + α)

∫ t

0

(t− s)α−1|fε(s, uε(s))|,

which implies

|Qεuε| ≤M |u0ε|+
αMε

Γ(1 + α)
NT (fε)

∫ t

0

(t− s)α−1ds.

On the other hand, direct calculation gives that

(t− s)α−1 ∈ L
1

1−q [0, T ], for q ∈ [0, α).
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Let

(5.4) b =
α− 1

1− q
∈]− 1, 0[, M1ε =‖ mε ‖

L
1
q
.

Using Lemma 5.2, we get

|Qεuε| ≤Mε|u0ε|+
αMε

Γ(1 + α)
NT (fε)

(∫ t

0

(t− s)
α−1
1−q ds

)1−q

T

≤Mε|u0ε|+
αMε

Γ(1 + α)
NT (fε)

T 1+(1+b)(1−q)

(1 + b)1−q

≤Mε|u0ε|+
αMε T

1+(1+b)(1−q)

Γ(1 + α)(1 + b)1−q
NT (fε).

It follows that (
Qεuε

)
ε
∈ EsM

(
R+
)
.

• Let (vε)ε ∈ N s
(
R+
). We have

Qε

(
uε(t) + vε(t)

)
−Qεuε(t) = α

∫ t

0

∫ ∞
0

τ(t− s)α−1hα(τ)Sε((t− s)ατ)[
fε(s, uε(s) + vε(s))− fε(s, uε(s))

]
dτds.

Therefore,

|Qε

(
uε(t) + vε(t)

)
−Qεuε(t)| ≤

αMε

Γ(1 + α)

∫ t

0

(t− s)α−1

|fε(s, uε(s) + vε(s))− fε(s, uε(s))|ds,

so,

|Qε

(
uε(t) + vε(t)

)
−Qεuε(t)| ≤

αMε

Γ(1 + α)

∫ t

0

(t− s)α−1m(s)|vε|ds

≤ αMε

Γ(1 + α)
NT (vε)

∫ t

0

(t− s)α−1mε(s)ds.

From Lemma 5.2 and (5.4), we obtain

|Qε

(
uε(t) + vε(t)

)
−Qεuε(t)|

≤ αMεT

Γ(1 + α)
NT (vε)

(∫ t

0

(t− s)
α−1
1−q ds

)1−q

‖ mε ‖
L

1
q
ds

≤ αMε M1ε T
(1+b)(1−q)

Γ(1 + α)(1 + b)1−q
NT (vε)

Since
(vε)ε ∈ N s

(
R+
)
.



Asia Pac. J. Math. 2023 10:11 12 of 18

So, (
Qε(uε + vε)−Qεuε

)
ε
∈ N s

(
R+
)
.

According to the definition 3.5, we get the map Q is well defined.
b) Second step, we will show that Qε is a contration. The regularization of problem (5.1),

defined as follows

(5.5)


cDαuε(t) = Aεuε(t) + fε(t, uε(t)), t ∈ R+

uε(0) = x0ε ∈ R.

Endowed with the topology τε given by the family of norms (MT,ε)T∈R+ , C∞(R+) is a topo-
logical space, such that for all uε ∈ C∞(R+).

MT,ε(yε) = sup
t∈[0,T ]

{e−t HT,ε |uε(t)|},

where
HT,ε =

α M0ε Mε T
(1+b)(1−q

Γ(1 + α) (1 + b)(1−q)
.

Let (uε)ε, (vε)ε ∈ EsM(R+), we have

Qεuε(t)−Qεvε(t) = α

∫ t

0

∫ ∞
0

τ(t− s)α−1hα(τ)Sε((t− s)ατ)[
fε(s, uε(s))− fε(s, vε(s))

]
dτds.

From (5.3), then

|Qεuε(t)−Qεvε(t)| ≤
αMε

Γ(1 + α)∫ t

0

(t− s)α−1|fε(s, uε(s))− fε(s, vε(s))|ds.

Hence,

|Qεuε(t)−Qεvε(t)| ≤
αMε

Γ(1 + α)

∫ t

0

(t− s)α−1mε(s)|uε(s)− vε(s)|ds.

By (5.4) and Lemma 5.2, we get

|Qεuε(t)−Qεvε(t)| ≤
αMε

Γ(1 + α)

(∫ t

0

(t− s)
α−1
1−q ds

)1−q

(∫ t

0

[
mε(s)|uε(s)− vε(s)|

] 1
q ds

)q
≤ α Mε T

(1+b)(1−q

Γ(1 + α) (1 + b)(1−q)
M0ε

(∫ t

0

|uε(s)− vε(s)|
1
q ds

)q
,
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which implies

|Qεuε(t)−Qεvε(t)| ≤ HT,ε

(∫ t

0

|uε(s)− vε(s)|
1
q ds

)q
.

Multipling the both sides of the inequality by exp{−t HT,ε}, we get

exp{−t HT,ε}|Qεuε(t)−Qεvε(t)| ≤ exp{−t HT,ε}HT,ε(∫ t

0

|uε(s)− vε(s)|
1
q ds

)q
.

Scince

e−t HT,εHT,ε

∫ t

0

|uε(s)− vε(s)|ds

= e−t HT,εHT,ε

(∫ t

0

|uε(s)− vε(s)|
1
q ds

)q
= e−t HT,εHT,ε(∫ t

0

[
es HT,εe−s HT,ε |uε(s)− vε(s)|

] 1
q ds

)q
= e−t HT,εHT,ε(∫ t

0

(es HT,ε)
1
q
[
e−s HT,ε |uε(s)− vε(s)|

] 1
q ds

)q
,

which gives

e−t HT,εHT,ε

∫ t

0

|uε(s)− vε(s)|ds

≤ sup
t∈(0,T ]

{e−t HT,ε |uε(s)− vε(s)|} e−t HT,εHT,ε

(∫ t

0

es HT,ε)
1
q ds

)q
≤ sup

t∈(0,T ]
{e−t HT,ε |uε(s)− vε(s)|} e−t HT,εHT,ε

(∫ t

0

es
HT,ε
q ds

)q
≤MT,ε(uε − vε) e−t HT,εHT,ε

([
es

HT,ε
q
]t
0

)q
≤MT,ε(uε − vε)

qq

Hq−1
T,ε

(
1− e−t

HT,ε
q

)q
.

Hence,

sup
t∈(0,T ]

{e−t HT,ε |Qεuε(t)−Qεvε(t)|} ≤MT,ε(uε − vε)
qq

Hq−1
T,ε

(
1− e−T

HT,ε
q

)q
,

that is
MT,ε(Qεuε −Qεvε) ≤

qq

Hq−1
T,ε

(
1− e−T

HT,ε
q

)q
MT,ε(uε − vε),
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but qq

Hq−1
T,ε

(
1− e−T

HT,ε
q

)q
< 1, we can conclude that Qε is a contraction in

(
C∞
(
R+), τε

)
.

c) For all T ∈ R+ and uε ∈ C∞
(
R+
)
,we have

e−T HT,ε sup
t∈[0,T ]

{|uε(t)|} ≤ sup
t∈[0,T ]

{|uε(t)|e−t HT,ε}

≤ sup
t∈[0,T ]

|uε(t)|,

then
e−T HT,εNT ≤MT,ε ≤ NT .

d) For each T ∈ R+, we have

eT HT,ε ∈ |EsM | and 1/(1− e−T HT,ε) ∈ |EsM |.

Finally, according to the definition 3.5 the map

Q :

G
s(R+) −→ Gs(R+)

u(t) =
[
(uε(t))ε

]
7−→ Qu(t) =

[
(Qεuε(t))ε

]
,

is a contraction. By using Theorem 3.6, the map Q has a fixed point u on Gs(R+). Hence u is a
solution of (5.1).

Uniqueness: Suppose that v = [vε] is another solution of the problem (5.1), we set

vε = Qε(vε) + nε,

where nε ∈ N s(R+). We have

uε(t)− vε(t) = α

∫ t

0

∫ ∞
0

τ(t− s)α−1hα(τ)Sε((t− s)ατ)[
fε(s, uε(s))− fε(s, vε(s))

]
dτds+ nε(t).

By (5.3), we get

|uε(t)− vε(t)| ≤
αMε

Γ(1 + α)

∫ t

0

(t− s)α−1|fε(s, uε(s))− fε(s, vε(s))|ds+ |nε(t)|.

and thus,

|uε(t)− vε(t)| ≤
αMε

Γ(1 + α)

∫ t

0

(t− s)α−1mε(s)|uε(s)− vε(s)|ds+ |nε(t)|.
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From (5.4) and Lemma 5.2, we get

|uε(t)− vε(t)| ≤ |nε(t)|+
αMε

Γ(1 + α)

(∫ t

0

(t− s)
α−1
1−q ds

)1−q

(∫ t

0

[
mε(s)|uε(s)− vε(s)|

] 1
q ds

)q
≤ |nε(t)|+

α Mε T
(1+b)(1−q

Γ(1 + α) (1 + b)(1−q)
M0ε(∫ t

0

|uε(s)− vε(s)|
1
q ds

)q
,

which implies

|uε(t)− vε(t)| ≤ |nε(t)|+HT,ε

(∫ t

0

|uε(s)− vε(s)|
1
q ds

)q
.

Then,

sup
t∈[0,T ]

{|uε(t)− vε(t)|} ≤ sup
t∈[0,T ]

|nε(t)|
1

(1−HT,ε T q)
,

and thus
NT (uε − vε) ≤

1

(1−HT,ε T q)
NT (nε).

Since (nε)ε ∈ N s
(
R+
), then (uε − vε)ε ∈ N s

(
R+
), it follows that

u = v,

which prove the uniqueness of solution.
�

6. Example

Let us consider the following fractional partial differential equations.

(6.1)


∂
1/2
t v(t, y) = ∂2yv(t, y) + t1/3 sin(v(t, y)), (t, y) ∈ R+ × [0, π],

v(t, o) = v(t, π) = 0,

v(0, y) = δ(y), y ∈ [0, π].

where δ = [(δε)ε] is the embedding of the Dirac measure in G(R) and

δε(y) = δ ∗ ψε(y) = ψε(y) =
1

ε
ψ(
y

ε
), y ∈ R, for all ε ∈ (0, 1),

where ψ is a test function such that ψ ∈ C∞(R), ∫R ψ(x)dx = 1, ψ(x) ≥ 0.
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We define an operator A by

Av = [(Aεvε)ε], where Aεvε = v
′′

ε ,

with the domain

D(Aε) = {vε ∈ C(R) / vε, ∂vε absolutely continuous,

∂2vε ∈ C(R), vε(0) = vε(π) = 0}.

Then A is the infinitesimal generator of a Colombeau C0-semigroup S = [(Sε)ε]. Moreover,
(H1) is satisfied.

The equations (6.1) can be reformulation as the following Cauchy problem in Gs

(6.2)


cDαu(t) = Au(t) + f(t, u(t)), u ∈ Gs(R+), t ∈ R+,

u(0) = x0 ∈ R̃;

where u(t) = v(t, .), that is u(t)y = v(t, y), t ∈ [0, T ], y ∈ [0, π], α = 1/2 and the function
f : R+ × Gs(R+) −→ R̃, such that

f :

R+ × Gs(R+) −→ R̃

(t, u) 7→ f(t, u(t)) = [(fε(t, uε(t)))ε],

where
fε(t, uε(t) = t1/3 sin(uε(t)).

Moreover, we have

|fε(t, uε(t))− fε(t, wε(t))| = |t1/3 sin(uε(t))− t1/3 sin(wε(t))|

= t1/3| sin(uε(t))− t1/3 sin(wε(t))|

≤ t1/3|uε(t)− wε(t)|.

We can takemε(t) = t1/3. It is clear

mε ∈ L
1

1/3 , β = 1/3 ∈ [0, 1/2),

and sup
t∈[0,T ]

|mε(t)| = T 1/3.

Then, (H2) and (H3) are satisfied.
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Finally, according to Theorem 5.4, equations (6.1) has a unique solution in Gs.
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