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Asstract. The notions of intuitionistic .4"-fuzzy subalgebras and intuitionistic .4"-fuzzy ideals
of Hilbert algebras are introduced, and several properties are investigated. Conditions for
intuitionistic .4'-fuzzy structures to be intuitionistic .4 -fuzzy subalgebras and intuitionistic
A -fuzzy ideals of Hilbert algebras are provided. It is also explored how intuitionistic .4 -fuzzy
subalgebras (intuitionistic .4 -fuzzy ideals) relate to their ¢-level subsets. Hilbert algebras are
also investigated in terms of the homomorphic pre-images of intuitionistic .#"-fuzzy subalgebras
(intuitionistic .4 -fuzzy ideals) and other related properties.
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1. INTRODUCTION

The concept of fuzzy sets was proposed by Zadeh [23]. The theory of fuzzy sets has
several applications in real-life situations, and many scholars have researched fuzzy set theory.

After the introduction of the concept of fuzzy sets, several research studies were conducted
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on the generalizations of fuzzy sets, one of which is the intuitionistic fuzzy set defined by
Atanassov [2]. The integration between fuzzy sets and some uncertainty approaches such
as soft sets and rough sets has been discussed in [1, 3,6, 19]. The idea of intuitionistic fuzzy
sets suggested by Atanassov [2] is one of the extensions of fuzzy sets with better applicability.
Applications of intuitionistic fuzzy sets appear in various fields, including medical diagnosis,
optimization problems, and multicriteria decision making [12-14]. The concept of Hilbert
algebras was introduced in early 50-ties by Henkin [ 15] for some investigations of implication
in intuitionistic and other non-classical logics. In 60-ties, these algebras were studied especially
by Diego [&] from algebraic point of view. Diego [&] proved that Hilbert algebras form a
variety which is locally finite. Hilbert algebras were treated by Busneag [4,5] and Jun [16] and
some of their filters forming deductive systems were recognized. Dudek [9-11] considered
the fuzzification of subalgebras/ideals and deductive systems in Hilbert algebras.

The study of ./'-fuzzy structures has continued, for example, in 2017, Smarandache et
al. [ 18] introduced neutrosophic .4 -structures over semigroups. In 2018, Songsaeng and
Iampan [22] studied .#"-fuzzy UP-subalgebras, .4 -fuzzy UP-filters, ./ '-fuzzy UP-ideals, and
A -fuzzy strong UP-ideals of UP-algebras. Rangsuk et al. [20] studied neutrosophic .4 -
structures over UP-algebras in 2019. In 2022, Simuen et al. [21] studied picture N-structures
over semigroups.

We presented the concepts of intuitionistic . /"-fuzzy subalgebras and intuitionistic ./'-fuzzy
ideals of Hilbert algebras in this work and looked into a variety of characteristics. Criteria
are given for intuitionistic .4'-fuzzy structures to be intuitionistic . #"-fuzzy subalgebras and
intuitionistic .#"-fuzzy ideals of Hilbert algebras. It is also explored how intuitionistic ./ -
fuzzy subalgebras (intuitionistic .4#"-fuzzy ideals) relate to their ¢-level subsets. Moreover,
the homomorphic pre-images of intuitionistic .#"-fuzzy subalgebras (intuitionistic ./ "-fuzzy

ideals) are studied, along with other related features, for Hilbert algebras.

2. PRELIMINARIES
Before we begin our study, we will give the definition of a Hilbert algebra.
Definition 2.1. [8] A Hilbert algebra is a triplet with the formula X = (X, -, 1), where X is a

nonempty set, - is a binary operation, and 1 is a fixed member of X that is true according to

the axioms stated below:

(1) (Va,y € X)(z-(y-z) =1),
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(2) (Vo,y,2 € X)((x-(y-2) - ((z-y) - (x-2)) =1),
3) Vr,ye X)(z-y=1Ly-z=1=z=y).

In [9], the following conclusion was established.

Lemma 2.2. Let X = (X, -, 1) be a Hilbert algebra. Then
(1) Ve e X)(z-z=1),
(2) Ve e X)(1 -z =ux),
3) VreX)(z-1=1)

(4) (Vo,y,z€ X)(z-(y-2) =y (x-2)).

In a Hilbert algebra X = (X, -, 1), the binary relation < is defined by
(Vrye X)(w<yew-y=1),
which is a partial order on X with 1 as the largest element.

Definition 2.3. [24] A nonempty subset D of a Hilbert algebra X = (X,-,1) is called a
subalgebra of X if x -y € D forall z,y € D.

Definition 2.4. [7] A nonempty subset D of a Hilbert algebra X = (X, -, 1) is called an ideal of
X if the following conditions hold:

(1) 1€ D,

(2) Ve,ye X)(ye D=2x-y€ D),

(3) (Va,y1,y2 € X)(y1, 2 € D= (y1- (y2- @) -z € D).

A fuzzy set [23] in a nonempty set X is defined to be a function x : X — [0, 1], where [0, 1] is

the unit closed interval of real numbers.

Definition 2.5. [19] A fuzzy set i in a Hilbert algebra X = (X, -, 1) is said to be a fuzzy
subalgebra of X if the following condition holds:

(Vo,y € X)(u(z - y) = min{u(z), u(y)})-

Definition 2.6. [11] A fuzzy set ;1 in a Hilbert algebra X = (X, -, 1) is said to be a fuzzy ideal
of X if the following conditions hold:

(1) (Vx € X)(u(1) > p(z)),
(2) (Vz,y € X)(u(z-y) > pu(y)),
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(3) (Vo,y1,y2 € X)(u((y1 - (y2 - @) - ) > min{pu(y1), u(y2)})-

Definition 2.7. [2] An intuitionistic fuzzy set on a nonempty set X is defined to be a structure

(2.1) A= {(z, p(x),v(2)) | © € X},

where o : X — [0,1] is a membership function and v : X — [0, 1] is a non-membership

membership function. The intuitionistic fuzzy set in (2.1) is simply denoted by A = (11, 7).

Definition 2.8. [18] We denote the family of all functions from a nonempty set X to the
closed interval [—1, 0] of the real line by .7 (X, [-1,0]). An element of .7 (X, [—1,0]) is called
a negative-valued function from X to [—1, 0] (briefly, .4 -function on X'). An ordered pair of a
nonempty set X and an .4'-function on X is called an .4'-fuzzy structure. An intuitionistic
N -fuzzy structure over a nonempty set X is defined to be the structure (X, p,v), where 1 and
7 are ./ -functions on X which are called the negative membership function and the negative

non-membership function on X, respectively.

For the sake of simplicity, we will use the notation X,, instead of the intuitionistic .4"-fuzzy

structure (X, p,y) [17].

Definition 2.9. [20] Let X,, be an intuitionistic .4 -fuzzy structure over a nonempty set X.

The intuitionistic .4 -fuzzy structure X,, = (X,7, 17) defined by

(1) = =1 — ()
fi(x) = -1 — p(x)

=2

(2.2) (Vz, € X)

is called the complement of X,, in X.

3. INTUITIONISTIC ./ -FUZZY SUBALGEBRAS AND INTUITIONISTIC ./ -FUZZY IDEALS

In this section, we introduce the notions of intuitionistic .#"-fuzzy subalgebras and intu-
itionistic .#"-fuzzy ideals of Hilbert algebras and provide some interesting properties.

In what follows, let X denote a Hilbert algebra (X, -, 1) unless otherwise specified.

Definition 3.1. An intuitionistic .4'-fuzzy structure X,, over X is called an intuitionistic .4 -

fuzzy subalgebra of X if the following condition holds:

p(x - y) < max{p(x), u(y)}

y v(z - y) > min{y(z),7(y)}
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Example 3.2. Let X = {1, z,y, 2,0} with the following Cayley table:

1l 2y 2 0
111 =z y 2 0
z|1 1 y 2 0
y|ll 1 2z =z
z|1 1 y 1 y
01 1 11

Then X is a Hilbert algebra. We define an intuitionistic .4"-fuzzy structure X,, over X as
follows:
X ‘ 1 x Yy z 0
-1 -08 —-08 —-0.7 —-0.4
-03 —0.5 —0.7 0.3 —0.6

1
~

Hence, X, is an intuitionistic .4'-fuzzy subalgebra of X.

Proposition 3.3. If X,, is an intuitionistic A -fuzzy subalgebra of X, then

(3.2) (Ve € X) ( p1) < pla) ) |
i

Proof. For any = € X, we have
u(1) = (e - ) < max{u(z), p(z)} = u(x),

7(1) = (2 - x) > min{y(z),y(2)} = v(2).

O

Definition 3.4. An intuitionistic .#-fuzzy structure X, over X is called an intuitionistic .4 -

fuzzy ideal of X if (3.2) and the following conditions hold:

(3.3) (Vz,y € X) (@ - y) < py)
Yz -y) = 7(y)
(3.4) (g € x) | M @) @) < maxtiyn). wlw)}
o Wy - (g2 - 2)) - 2) > min{y (1), 7 ()}
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Example 3.5. From Example 3.2, we define an intuitionistic .4'-fuzzy structure X,, over X as

follows:
X ‘ 1 T Y z 0
w| —1 —-08 —-08 —-0.7 —-04
v |1-03 —-05 —-0.7 —-0.3 —0.6

Hence, X, is an intuitionistic .#"-fuzzy ideal of X.

Proposition 3.6. If X,, is an intuitionistic A -fuzzy ideal of X, then
(3.5) (Va,y € X) (

Proof. Putting y; = y and y» = 1in (3.4), we have

p((y - x) - x) <max{p(y), u(1)} = p(y),

Y((y - x) - z) > min{y(y),v(1)} = v(y).

Lemma 3.7. If X,, is an intuitionistic A -fuzzy ideal of X, then

(3.6) Ve,ye X)| z<y= #@) 2 uly) :
V(@) <(y)

Proof. Let x,y € X be such thatz < y. Thenz -y =1 and so

v

nly) = p(l-y)

= p(((z-y)-(z-y)y)
max{u(z - y), p(x)}
max{y(1), u(x)}
p(z),

I IA

y) = v(1-y)
Y(((z-y)-(z-y)) - y)
min{y(z - y),v(x)}
min{vy(1),y(z)}
V().

| AV

O

Theorem 3.8. Every intuitionistic A -fuzzy ideal of X is an intuitionistic .V -fuzzy subalgebra of X.
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Proof. Let X,, be an intuitionistic .4'-fuzzy ideal of X. Let z,y € X. It follows from (3.3) that

(- y) < ply) < max{p(z), u(y)},

Y(z - y) > ~v(y) = min{y(x),v(y)}.

Hence, X, is an intuitionistic .4'-fuzzy subalgebra of X. O

Definition 3.9. Let {X! | i € A} be a family of intuitionistic .4 "-fuzzy structures over a

nonempty set X. We define the intuitionistic .#"-fuzzy structure /\ H! = (X, V i, N\ i) by
(V )(e) = sup{p(o)} and (A 3)fa) = i (o) orallee X
Proposition 3.10. If { X" | i € A} is a family of intuitionistic A -fuzzy ideals of X, then A X' is
an intuitionistic A -fuzzy ideal of X. <

Proof. Let {X! | i € A} be a family of intuitionistic .#"-fuzzy ideals of X. Let € X. Then

(V1)) = sup{p(1)} < supfyu(a)} = (V/ ez,

i€A €A
(A1) = imf {30} > inf ()} = (\ 7)),

Letz,y € X. Then

(V w)(@-y) = fgg{m(x Y} < fgg{m(y)} = (\/ m)(w),

1EA IEA
(/\ vi)(z - y) = Zlgg{%(f Y= ggg{%(y)} = (/\ Vi) (Y)-
[IS7AN €A
Let z,y;,y2 € X. Then
(V pa)((y1- (y2-2)-z) = sup{ui((y1 - (y2-2)) - 2)}

1EA €A

IA

Si}élf{min{,ui(yl)a pi(y2)}}

IN

max{sup p;(y1), sup ;i (y2)}
€A 1EA

max{(V 1:)(y1), (V pi)(y2)},

€A ieA
(AW (- 2)-0) = inf{((n - (- 2)) - 2)}
€A iea
> Zjéli{maX{vi(y1),7z‘(y2)}}
> min{liélg %(y1), Zlélg %(92)}
= min{( A 7)), (A 7))}
N ieA
Hence, A\ H! is an intuitionistic ./ -fuzzy ideal of X. U

[ISVAN
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Proposition 3.11. If { X}, | i € A} isa family of intuitionistic A -fuzzy subalgebras of X, then )\ X!
i€A
is an intuitionistic A -fuzzy subalgebra of X.

Proof. Let { X" | i € A} be a family of intuitionistic .#'-fuzzy subalgebras of X. Let z,y € X.
Then

(V pi)x-y) = SUP{Mi(Qf “y)}

€A €A

igg{min{m(x), 1i(y) }}
max{sup p;(z), ?élg i(y)

€A

= max{(V w)(x), (z;/A i) ()},

1€EA

IN

IN

(A %)@ -y)

[ISTAN

inf (e -9))

v

inf{max{(z),7(y)}}

v

min{inf v;(z), nf 7i(y)}

min{( A 7)), (A %))}

[ISTAN [ISTAN

Hence, A\ H! is an intuitionistic .#"-fuzzy subalgebra of X. 0
ieA
Definition 3.12. Let X, be an intuitionistic ./'-fuzzy structure over a nonempty set X. The

intuitionistic .#"-fuzzy structures ©.X,, and ®X,, are defined as ®X,, = (X, y, t) and ®X,, =
(X7 77 7) °

Theorem 3.13. An intuitionistic A -fuzzy structure X,, over X is an intuitionistic A -fuzzy sub-

algebra of X if and only if ®X,, and ®X,, are intuitionistic intuitionistic .V -fuzzy subalgebras of
X.

Proof. Assume that X, is an intuitionistic .4'-fuzzy subalgebra of X. Let z,y € X. Then

aMz-y) = —1—p(z-y)

> —1—max{u(x), u(y)}

= min{—1— u(z), -1 - p(y)}
min{z(z), 7(y)}-

Hence, X, is an intuitionistic .4'-fuzzy subalgebra of X.
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Letz,y € X. Then

Y(-y) = —l=n(z-y)
< —1—min{y(z),7(y)}
= max{—1—7(z), -1 —(y)}
= max{¥(x),7(y)}.
Hence, ® X, is an intuitionistic .4’-fuzzy subalgebra of X.
The converse of the theorem is true immediately in the order of ;x and v in ©.X,, and ®X,,

respectively. O

Theorem 3.14. If X, is an intuitionistic A -fuzzy subalgebra of X, then the sets X, := {z € X |
pwx) =p)}and X, :={x € X | v(z) = v(1)} are subalgebras of X.

Proof. Assume that X, is an intuitionistic .4#"-fuzzy subalgebra of X. Let z,y € X,. Then
p(z) = p(1) = p(y), so p(z-y) < max{u(x), u(y)} = pu(1). By (3.2), we have u(z-y) = p(1), that
is, x -y € X,,.. Hence, X, is a subalgebra of X. Again, let z,y € X,. Then vy(z) = v(1) = v(y),
so y(z-y) > min{vy(z),v(y)} = 7(1). Again, by (3.2), we have v(z -y) = (1), thatis, z-y € X,.
Hence, X, is a subalgebra of X. O

By proving Theorem 3.13, we get the following corollary:.

Corollary 3.15. If X,, is an intuitionistic A ~fuzzy ideal of X, then X,, is also an intuitionistic
N ~fuzzy ideal of X.

Theorem 3.16. An intuitionistic AN -fuzzy structure X,, over X is an intuitionistic A -fuzzy ideal of

X if and only if ©X,, and ®X,, are intuitionistic intuitionistic N -fuzzy ideals of X.

Proof. Assume that X, is an intuitionistic .4'-fuzzy ideal of X. Let z € X. Then 7i(1) =

—1—p(1) > —1—pu(x) > fi(x). Letz,y € X. Thenfi(z - y) = -1 —p(z-y) > —1—p(y) > ay).
Let z, 41,92 € X. Then

Al Gae ) 0) = —1=pllon - (- 2) )

> —1 —max{u(yr), u(y2)}

= min{—1—p(y1), =1 — p(y2)}
min{7i(y1), #(y2) }-

Hence, X, is an intuitionistic .4#"-fuzzy ideal of X.
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Letz € X. Then7(1) = -1 —~v(1) < =1 —y(z) < 7(z). Letz,y € X. Then7(z - y) =
—1 =7 -y) <—-1—7(y) <F(y). Letz,y1,y> € X. Then

Y- (y2-x))-2) = —1=7((y1- (42 2))- )
< —1-—min{y(y1),7(y2)}
= max{—1—7(y), =1 —7(y2)}
= max{7(y1), 7(y2)}.
Hence, ®X,, is an intuitionistic .#"-fuzzy ideal of X.
The converse of the theorem is true immediately in the order of ;x and v in ©.X,, and ®X,,

respectively. O
Theorem 3.17. If X, is an intuitionistic A -fuzzy ideal of X, then the sets X, and X, are ideals of X.

Proof. Assume that X, is an intuitionistic .4#-fuzzy ideal of X. Clearly, 1 € X, N X,,. Let
z,y € X be such that y € X,,. Then p(y) = p(1). By (3.3), we have u(z - y) < u(y) = p(1),
whence p(x - y) = p(1), by (3.2). This means that x - y € X,,. Let z, 41,2 € X be such that
y1,y2 € Xy Then u(y1) = p(1) and p(y2) = p(1). By (3.4), we have u((y1 - (y2 - @) - x) <
max{u(y1), u(y2)} = p(1), whence p((y1 - (y2 - x)) - ) = p(1), by (3.2). This means that
(y1- (y2-2)) -z € X,. Hence, X, is an ideal of X.

Let z,y € X besuch thaty € X,. Then~(y) = v(1). By (3.3), wehave y(z-y) > v(y) = v(1),
whence y(z - y) = v(1), by (3.2). This means that z - y € X.,. Let z,y;,y» € X be such that
y1,y2 € X,. Then v(y:) = (1) and y(y2) = 7(1). By (3.4), we have v((y1 - (y2 - 2)) - ) =
min{y(y1),v(y2)} = (1), whence v((y1 - (y2 - z)) - ) = ~(1), by (3.2). This means that
(y1- (y2- 7)) - x € X,. Hence, X, is an ideal of X. O

By proving Theorem 3.16, we get the following corollary.

Corollary 3.18. If X,, is an intuitionistic A -fuzzy ideal of X, then X,, is also an intuitionistic
N -fuzzy ideal of X.

Definition 3.19. Let f € .# (X, [—1,0]). Forany t € [-1,0], thesets U(f : t) ={x € X | f(z) >
t} is called an upper t-level subset of f, L(f : t) = {x € X | f(z) < t} is called a lower t-level
subset of f,and E(f :t) = {x € X | f(x) = t} is called an equal t-level subset of f.

Theorem 3.20. An intuitionistic A -fuzzy structure X,, over X is an intuitionistic A -fuzzy sub-
algebra of X if and only if for all a,b € [—1,0]|, the sets L(y : a) and U(y : b) are either empty or
subalgebras of X.
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Proof. Assume that X, is an intuitionistic .#'-fuzzy subalgebra of X. Let a,b € [—1, 0] be such
that L(y : @) and U(y : b) are nonempty. Let x,y € L(i : a). Then p(z) < a and pu(y) < a, so
a is an upper bound of {u(z), 1(y)}. By (3.1), we have p(z - y) < max{u(z), u(y)} < a. Thus
z-y € L(p : a). Letx,y € U(y : b). Then v(x) > band ~(y) > b, so bis a lower bound of
{v(z),7(y)}. By (3.1), we have y(z - y) > min{vy(x),v(y)} > b. Thus z -y € U(vy : b). Hence,
L(p : a) and U(7 : b) are subalgebras of X.

Conversely, assume that for all a,b € [—1,0], the sets L(x : a) and U(7 : b) are either empty
or subalgebras of X. Let z,y € X. Then p(z) < max{u(z), u(y)} and p(y) < max{p(z), u(y)}.
Thus z,y € L(p : max{u(z), u(y)}) # 0. By assumption, we have L(p : max{u(z), nu(y)}) is
a subalgebra of X. Then x -y € L(p : max{u(x), u(y)}). Thus pu(z - y) < max{u(z),u(y)}.
Let z,y € X. Then v(x) > min{~v(z),v(y)} and v(y) > min{y(z),v(y)}. Thus z,y € U(~ :
min{vy(z),v(y)}) # 0. By assumption, we have U(y : min{v(z),v(y)}) is a subalgebra of
X. Thenz -y € U(y : min{y(z),y(y)}. Thus v(x -y) > max{vy(z),v(y)}. Hence, X,, is an
intuitionistic .4’-fuzzy subalgebra of X. O

Theorem 3.21. An intuitionistic AN -fuzzy structure X,, over X is an intuitionistic A -fuzzy ideal of

X ifand only if for all a,b € [—1,0], the sets Ly : a) and U(~y : b) are either empty or ideals of X.

Proof. Assume that X, is an intuitionistic .4 "-fuzzy ideal of X. Let a,b € [—1,0] be such
that L(p : a) and U(y : b) are nonempty. Letx € L(p : @) and y € U(y : b). By (3.2), we
have (1) < u(z) < aand (1) > vy(z) > b. Thus1 € L(p : a) NU(y : b). Letz,y € X
be such that y € L(p : a). Then u(y) < a. By (3.3), we have u(z - y) < p(y) < a. Thus
z-y € L(p : a). Letx,y € X besuch thaty € U(y : b). Then v(y) > b. By (3.3), we have
Y(x-y) > y(y) >b. Thusxz -y € U(y : b). Let x,y1,yo € X be such that y;,y2 € L(p : a).
Then u(y1) < a and p(y2) < a, so a is an upper bound of {x(y1), u(y2)}. By (3.4), we have
(1 - (y2-2)) - ) < max{u(y1), p(y2)} < a. Thus (y1- (y2-2)) -2 € L(p : ). Letz, y1,y2 € X be
such that y;,yo € U(7y : b). Theny(y;) > band v(y2) > b, so bis a lower bound of {v(y1),7(y2) }-
By (3.4), we have v((y1 - (y2 - )) - ©) = min{y(y1), ¥(y2)} = b. Thus (y1 - (2~ 2)) -2 € U(y : b).
Hence, L(p : a) and U(+y : b) are ideals of X.

Conversely, assume that for all a,b € [—1,0], the sets L(x : a) and U(y : b) are either
empty or ideals of X. Let 2 € X. Then u(z) € [—1,0]. Choose a = p(z). Then u(x) < q,
sox € L(p : a) # 0. By assumption, we have L(x : a) is an ideal of X andso 1 € L(u : a).
Thus u(1) < a = p(z). Letz € X. Then v(z) € [—1,0]. Choose b = ~(z). Then v(z) > b,
sox € U(y : b) # 0. By assumption, we have U(y : b) is an ideal of X andso 1 € U(y : b).
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Thus (1) > b = y(x). Let z,y € X. Then u(y) € [—1,0]. Choose a = u(y). Then u(y) < a, so
y € L(p - a) # 0. By assumption, we have L(y : a) is anideal of X andsoz -y € L( : a). Thus
p(z-y) < a=py). Letz,y € X. Then v(y) € [—1,0]. Choose b = v(y). Then ~(y) > b, so
y € U(y:b) # 0. By assumption, we have U(~ : b) is an ideal of X andsoz -y € U(~ : b). Thus
v(z-y) = b=(y). Letz, y1,y2 € X. Then pu(y1), u(y2) € [—1,0]. Choose a = max{s(y1), u(y2)}-

(
Thus p(y1) < aand u(y2) < a,s0 y1,y2 € L(p : a) # 0. By assumption, we have L(u : a) is an
ideal of X and so (y; - (y2 - 7)) -2 € L(p : a). Thus pu((y1 - (y2 - 7)) - ) < a = max{u(y1), p(y2)}.
Let z,y1,y2 € X. Then v(y1),7v(y2) € [—1,0]. Choose b = min{y(y1),7(y2)}. Thus v(y1) > b
and v(y2) > b, 80 y1,y2 € U(7 : b) # (). By assumption, we have U( : b) is an ideal of X and so
(1 (g2 ) -2 € UGy : b). Thus 5((ys - (3 2)) - ) = b = min{x(y), 7()}. Hence, X, is an

intuitionistic .#"-fuzzy ideal of X. O

Definition 3.22. Let X,, = (X, px,vx) and Y,, = (Y, puy, 7y) be intuitionistic .4'-fuzzy struc-
tures over nonempty sets X and Y/, respectively. The Cartesian product X,, xY,, = (X xY, @, T)
defined by ®(z,y) = max{ux(z), uy(y)} and Y(z,y) = min{yx(z),7v(y)}, where ® : X xY —
[—1,0)and T: X xY — [-1,0]forallz € X and y € Y.

Remark 3.23. Let (X, -, 1x) and (Y, «, 1y) be Hilbert algebras. Then (X x Y, ¢,(1x,1y)) is a
Hilbert algebra defined by (z,y) ¢ (u,v) = (z - u,y *v) for every z,u € X and y,v € Y.

Proposition 3.24. If X,, = (X, ux,vx) and Y,, = (Y, uy, yy) are intuitionistic A -fuzzy subalgebras
of Hilbert algebras X and Y, respectively, then the Cartesian product X,, x Y,, is also an intuitionistic

N -fuzzy subalgebra of X x Y.

Proof. Assume that X,, = (X, ux,vx) and Y,, = (Y, py,7y) are intuitionistic ./'-fuzzy subalge-
bras of Hilbert algebras X and Y/, respectively. Let (z1,41), (22,72) € X x Y. Then

D((z1,91) © (72,12))
= O((z1-22), (Y1 *12))
= max{ux(x1 - T2), py (y1 *y2) }
< max{max{px (1), px(x2)}, max{py (v1), py (y2) } }
= max{max{ux(x1), uy (v1)}, max{px(x2), py (y2)}}
= max{®(z1,y1), P(xa,vy2)},
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T((z1,91) © (72,92))

AV |

min{min{yx(x),

T((z1 - w2), (Y1 % 42))
min{yx(z; - x2), 7 (y1 * y2)}

min{min{7yy(x1),

Yx (2) }, min{yy (1), 7y (y2) } }
Yy (Y1) b, min{yx (w2), v (y2) } }

= min{Y(x1,y1), Y (z2,y2)}

Hence, X,, x Y,, is an intuitionistic .4'-fuzzy subalgebra of X x Y.

O

Theorem 3.25. If X,, = (X, ux,vx) and Y, = (Y, py, vy ) are intuitionistic A -fuzzy subalgebras of

Hilbert algebras X and Y, respectively, then &(X,, x Y,,) is an intuitionistic A -fuzzy subalgebra of

X xY.

Proof. It follows from Theorem 3.13 and Proposition 3.24.

O

Proposition 3.26. If X,, = (X, ux,vx) and Y,, = (Y, uy,yy) are intuitionistic .V -fuzzy ideals of

Hilbert algebras X and Y, respectively, then the Cartesian product X,, x Y, is also an intuitionistic

N -fuzzy ideal of X x Y.

Proof. Assume that X,, = (X, px,vx) and Y,, = (Y, py,yy) are intuitionistic ./'-fuzzy ideals

of Hilbert algebras X and Y/, respectively. Let (z,y) € X x Y. Then

O(ly,1ly) =
<

T(lx,1ly) =

IN

Let (z1,%2), (v1,72) € X x Y. Then

O((w1,22) 0 (y1,22)) =

max{px(lx), uy(1y)}
max{px(x), uy (y)}
®(z,y),

min{yx(1x), v (1ly)}
min{yx (z), v (y)} }
T(z,y).

O((z1 - 11), (w2 % 42))
max{px (1 - y1), py (T2 % y2)}
max{ftx (Y1), ty (Y2)}
D(y1,92),
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T((z1,72) © (y1,92)) = Y((z1-y1), (T2 xy2))
= min{yx(z1-y1), 7 (T2 *x ¥2)}
> min{yx(y1), v (y2)}

= T(y1,92)-
Let (z1,v1), (T2, y2), (x3,y3) € X x Y. Then

O(((z2,y2) © ((3,93) © (1,91))) © (21, 91))
= ®((z2- (x5 21)) -1, (Y2 * (Y3 x Y1) * Y1)
= max{px((z2 - (23 - 21)) - 21), py (Y2 % (Y3 x y1)) x y1) }
max{max{/x (2), px (3)}, max{py (y2), py (ys)} }
(2), py (y2) }, max{pix (z3), oy (y3) }
max{®(x2,y2), P(x3,93)},

IN

max{max{ jx

T(((w2,y2) © ((3,93) © (21, 91))) © (21, 91))
= T((w2- (v3- 1)) - 21, (Y2 % (Y3 % y1)) * Y1)
= min{yx((z2 - (23~ 21)) 21), W (2 - (Y3 - v1)) - y1)}
> min{min{yx(z2), 7x(23)}, min{yy (y2), 7 (y3)} }
= min{min{yx(z2), 7y (y2) }, min{vx (23), 7y (v3)}}

min{T<x27 3/2>7 T('xi’n y3)}
Hence, X,, x Y, is an intuitionistic .4"-fuzzy ideal of X x Y. O

Theorem 3.27. If X,, = (X, ux,vx) and Y,, = (Y, py,7y) are intuitionistic A -fuzzy ideals of
Hilbert algebras X and Y, respectively, then &(X,, x Y,,) is an intuitionistic A -fuzzy ideal of X x Y.

Proof. It follows from Theorem 3.16 and Proposition 3.26. O

A mapping f : (X, -, 1x) — (Y, %, 1y) of Hilbert algebras is called a homomorphism if f(z-y) =
f(x)~ f(y) forall z,y € X. Note thatif f : X — Y is a homomorphism of Hilbert algebras,
then f(lx) = 1y.

Definition 3.28. Let f be a function from a nonempty set X to a nonempty set Y. If ¥,, =
(Y, i1, v) is an intuitionistic . #'-fuzzy structure over Y, then the intuitionistic . #"-fuzzy structure

f7YY,) = (uo f,yo f)over X is called the pre-image of Y,, under f.

Theorem 3.29. Let f : (X,-,1x) — (Y, *, 1y) be a homomorphism of Hilbert algebras. If Y, =
(Y, p, ) is an intuitionistic N -fuzzy subalgebra of Y, then f~(Y,,) is an intuitionistic N -fuzzy
subalgebra of X.
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Proof. Assume thatY,, = (Y, i, 7) is an intuitionistic .#"-fuzzy subalgebra of Y. Let z,y € X.

Then

(o f)(x-y)

(Yo f)(z-y)

>

n(f(@-y))

u(f (@) * f(y))
max{u(f(z)), u(f(y))}
max{ (o f)(z), (o f)(y)},

(f(x-y))

v(f (@) * f(y))
min{y(f(z)), v(f(¥))}
min{(y o f)(z), (vo f)(y)}.

Hence, f~1(Y,,) is an intuitionistic ./ -fuzzy subalgebra of X.

Theorem 3.30. Let f : (X,-,1x) —

O

(Y, x, 1y ) be a homomorphism of Hilbert algebras. If Y, =

(Y, p, ) is an intuitionistic N -fuzzy ideal of Y, then f~1(Y,) is an intuitionistic . -fuzzy ideal of X.

Proof. Assume thatY,, =

x € X. Letz,y € X. Then
(wo f)(x-y) = pulf(z-y))

(Yo f)(z-y)=~(f(z-y))

Let x, 41,12 € X. Then

(o )y (y2-2)) - )

(Yo Ny~ (y2-2)) - x)

= p(f(x)* f(y) < pu(f(y) = (o fy),

=v(f(x)*x f(y) =v(f(y) = (vo [)(y)-

p(f (1 - (y2 - 7)) - )

u((f (1) * (f (g2) * f(2))) > f ()
max{(f(y1)); n(f(y2))}
max{(p o f)(y1), (1o f)(y2)},

IN

V(Y- (y2 - @) - @)

Y (1) * (f (y2) = f(2))) * f(z))
min{y(f(y1)), v(f(y2))}

min{(y o f)(y1), (v o f)(y2)}-

v

Hence, f~!(Y,,) is an intuitionistic .#"-fuzzy ideal of X.

n(f(1x)) = p(ly) < p(f(x))
= (yo f)(z) for every

(Y, p1,y) is an intuitionistic .4 "-fuzzy ideal of Y. Since f is a homomor-
phism of X into Y, we have f(1x) = 1y. Thus (uo f)(1x) =

(wo f)(z) for z € X. Also, (v o f)(1x) = 7(f(1x)) = v(1y) = 7(f())
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4. CONCLUSION

In this paper, we have introduced the notions of intuitionistic .4'-fuzzy subalgebras and
intuitionistic .#"-fuzzy ideals of Hilbert algebras and investigated some of their important
properties. We have given certain requirements for intuitionistic .4'-fuzzy structures to be
intuitionistic .#"-fuzzy subalgebras and intuitionistic .#"-fuzzy ideals of Hilbert algebras. The
relationship between .4"-fuzzy subalgebras (intuitionistic .#"-fuzzy ideals) and their ¢-level
subsets is also examined. The homomorphic pre-images of intuitionistic . #’-fuzzy subalgebras
(intuitionistic .#"-fuzzy ideals) and other associated features are also examined in relation to

Hilbert algebras.
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