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Abstract. The main crux of this paper is to investigate the existence of solutions for anti-periodic nonlinear
ϕ-Caputo fractional differential equations with p-Laplacian operators. Ourmain results are proved through
the application of topological degree methods of condensing maps and several properties of ϕ-Caputo
fractional calculus paired with measures of noncompactness. To show the practical significance of our
theoretical results, we provide an nontrivial example at the end.
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1. Introduction

The development of fractional calculus has given rise to a new branch of applied mathematics
known as fractional differential equations theory. This theory has been widely applied in many fields,
such as biophysics, control theory, and biology, among others. Several types of fractional derivatives,
including Riemann-Liouville, Caputo, Hadamard, and Hilfer, have been studied extensively in the
literature. In a prior publication, Almeida [2] examined the existence and uniqueness of solutions to
nonlinear fractional differential equations utilizing Caputo fractional derivatives. He introduced the
ϕ-Caputo fractional derivative, a generalized fractional derivative, which has been applied in a variety
of contexts, depending on the selection of the function ϕ. Meanwhile, other researchers have employed
different fixed point theorems and measures of noncompactness to establish the existence of solutions
to fractional differential equations involving Caputo-type fractional derivatives with respect to other
functions, including anti-periodic and integral boundary conditions, see [6,8]. The use of ϕ-Caputo
fractional differential equations that feature p-Laplacian operators has garnered significant interest in
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recent times due to their wide range of practical applications. Numerous studies have been conducted
to investigate the existence and uniqueness of solutions for such equations. Readers interested in
learning more about this topic can refer to the following articles [3–5,10–12].
Taking inspiration from the studies mentioned above, our current research endeavors to investigate the
existence of solutions to a particular type of fractional differential equation with p-Laplacian operator,
specifically in the context of the ϕ-Caputo formulation. We consider the following fractional problem

CDα,ϕ
0+

Φp

(
CDβ,ϕ

0+
U(x)

)
= G(x, U(x)), x ∈ I = [0, X],

U(0) = −U(X).

(1)

Where CDα,ϕ
0+

and CDβ,ϕ
0+

are the ϕ−Caputo fractional derivatives of orders α and β in (0, 1) such
that 1 < α + β < 2 respectively, G is a continuous function and Φp is the p-Laplacian operator, i.e
Φp(U) = |U |p−2U such that p > 1.
To provide a comprehensive understanding of our research, we have structured the remaining work
as follows. Firstly, in Section 2, we present fundamental concepts related to ϕ-fractional integral and
ϕ-Caputo fractional derivative, which are essential for our subsequent analysis. In Section 3, we
employ topological degree theory for condensing maps to establish the existence of solutions to the
anti-periodic problem (1). In Section 4, we provide a practical example to demonstrate the applicability
of our approach, and finally, we summarize our study in Section 5.

2. Preliminaries

This section is devoted to introducing and defining the notations, concepts, and properties related to
ϕ-fractional derivatives and ϕ-fractional integrals. Interested readers can find further details in the
following references [1, 7].
Notations

• Let E be a Banach space, and let �E denote the collection of all non-empty and bounded subsets
of E .
• Let ∆ a non-empty subset of �E . We use ∆ to denote the the closure of ∆ and conv(∆) for the
convex hull of ∆ .
• Let Bη be a closed ball centered at 0 with a radius of η > 0.
• The set of continuous functions mapping I to R is represented by C(I,R) and is furnished
with the norm.

‖ U ‖= sup
x∈[0,X]

| U(x) | .

• The set of Lebesgue integrable functions mapping I to R is represented by L1(I,R) and is
furnished with the norm.
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‖ U ‖L1=

∫ X

0
| U(x) | dx.

Definition 2.1. [2] Given α > 0, G ∈ L1(I,R) and ϕ(x) : I −→ R such that ϕ′(x) > 0 , the ϕ-Riemann-

Liouville fractional integral of order α of G at x is defined as:

Iα,ϕ
0+

G(x) =
1

Γ(α)

∫ x

0
ϕ′(t)(ϕ(x)− ϕ(t))α−1G(t)dt,

where Γ(.) is the Gamma function.

Definition 2.2. [2]Let α > 0,G ∈ Cn(I,R) and ϕ(x) : I −→ R such that ϕ′(x) > 0, the ϕ-Caputo fractional

derivative of order α of G at x is defined by

CDα,ϕ
0+
G(x) =

1

Γ(n− α)

∫ x

0
ϕ′(t)(ϕ(x)− ϕ(t))n−α−1G[n]

ϕ (t)dt,

where

G[n]
ϕ (t) =

(
1

ϕ′(t)

d

dt

)n
G(t),

and n = [α] + 1, where [α] is the integer part of α.

Remark 2.3. If α ∈ (0, 1), then we have the following expressions for the ϕ-Caputo fractional derivative at order

α of a function G at x
CDα,ϕ

0+
G(x) =

1

Γ(α)

∫ x

0
(ϕ(x)− ϕ(t))α−1G′(t)dt,

Proposition 2.4. [2] If α > 0 and G ∈ Cn(I,R), then we have the following properties for the ϕ-Caputo

fractional derivative and the ϕ-Riemann-Liouville fractional integral

(1) CDα,ϕ
0+
Iα,ϕ

0+
G(x) = G(x).

(2) Iα,ϕ
0+

CDα,ϕ
0+
G(x) = G(x)−

n−1∑
i=0

G
[i]
ϕ (0)

i!
(ϕ(x)− ϕ(0))i.

(3) Iα,ϕ
0+

is a linear and bounded operator defined from C(I,R) into C(I,R).

Proposition 2.5. [2] Let α ≥ 0, θ > 0, and x > 0. Then, the following statements hold:

(1) Iα,ϕ
0+

(ϕ(x)− ϕ(0))θ−1 =
Γ(θ)

Γ(θ + α)
(ϕ(x)− ϕ(0))α+θ−1.

(2) Dα,ϕ
0+

(ϕ(x)− ϕ(0))θ−1 =
Γ(θ)

Γ(θ − α)
(ϕ(x)− ϕ(0))α−θ−1.

(3) Dα,ϕ
0+

(ϕ(x)− ϕ(0))m = 0, for allm ∈ N such thatm < n.

Lemma 2.6. [11] The p−Laplacian operator Φp verifies the following properties

(1) If 1 < p < 2, FG > 0 and |F|, |G| > m > 0, then

|Φp(F)− Φp(G)| 6 (p− 1)mp−2|F − G|.
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(2) If p > 2,FG > 0 and |F|, |G| 6M , then

|Φp(F)− Φp(G)| 6 (p− 1)Mp−2|F − G|.

(3) Φp is invertible with Φ−1
p (F) = Φp′(F), where 1

p + 1
p′ = 1.

Definition 2.7. [9] The Kuratowski measure of non-compactness ρ is a map defined on �E by :

ρ(∆) = inf{ % > 0 : ∆ accepts a finite cover by sets of diameter 6 %}.

Proposition 2.8. [9] The Kuratowski measure of noncompactness ρ satisfies the following properties

(1) ∀µ ∈ R, ρ(µ∆) = |µ|ρ(∆).

(2) ρ(∆1 + ∆2) 6 ρ(∆1) + ρ(∆2).

(3) If ∆1 ⊂ ∆2, then ρ(∆1) 6 ρ(∆2).

(4) ρ(∆) = ρ(∆) = ρ(conv∆)

(5) ∆ relatively compact ⇔ ρ(∆) = 0.

Definition 2.9. [9] A continuous bounded map ξ : ∆ ⊂ E → E is said to be ρ-Lipschitz if a value of λ > 0

exists that satisfies the condition

ρ(ξ(D)) 6 λρ(D), for all D ⊂ ∆.

If λ < 1, we refer to the function ξ as a strict ρ-contraction.

Definition 2.10. [9] The map ξ is said to be ρ-condensing if ξ(ρ(D)) < ξ(D), for all bounded subset D of ∆

with ρ(D) > 0. In other words,

ρ(ξ(B)) > ρ(D)⇒ ρ(D) = 0.

Lemma 2.11. [9] Let ξ and ζ be two ρ-Lipschitz operators with constants λ1 and λ2, respectively. Then, the

operator ξ + ζ is ρ-Lipschitz with constant λ1 + λ2.

Lemma 2.12. [9] If ξ : ∆→ E is a compact operator, then it is ρ-Lipschitz with constant λ = 0.

Lemma 2.13. [9] If ξ : ∆→ E is Lipschitz with constant of λ, then it is also ρ-Lipschitz with the constant λ.

Theorem 2.14. [13] Suppose ξ : ∆→ E is a ρ-condensing function and let

Sε = {U ∈ E : U = εξU, for some ε ∈ [0, 1]}.

If Sε is bounded in E , then there exists a positive number η such that Sε is a subset of the ball Bη, then

deg(I− ε ξ,Bη, 0) = 1, ∀ε ∈ [0, 1].

As a result, the operator ξ has at least one fixed point, and the set of all fixed points of ξ is contained in Bη.
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3. Main results

In order to establish the existence result for problem (1), it is necessary to demonstrate the following
crucial lemma.

Lemma 3.1. A function U ∈ C(I,R) is a solution to the p-Laplacian problem (1) if and only if it satisfies the

following fractional integral equation

U(x) =

∫ x

0

ϕ′(t)(ϕ(x)− ϕ(t))β−1

Γ(β)
Φp′

(∫ t

0

ϕ′(r)(ϕ(t)− ϕ(r))α−1

Γ(α)
G(r, U(r))dr

)
dt (2)

−
∫ X

0

ϕ′(t)(ϕ(X)− ϕ(t))β−1

2Γ(β)
Φp′

(∫ t

0

ϕ′(r)(ϕ(t)− ϕ(r))α−1

Γ(α)
G(r, U(r))dr

)
dt. (3)

Proof. Suppose that U ∈ C(I,R) is a solution of the problem (1). By applying the ϕ-fractional integral
Iα,ϕ

0+
to both sides of the fractional differential equation (1) and utilizing Proposition 2.4, we obtain the

following result:
Φp

(
CDβ,ϕ

0+
U(x)

)
= d0 + Iα,ϕ

0+
G(x, U(x)),

Such that d0 ∈ R, it follows that

Φp

(
CDβ,ϕ

0+
U(x)

)
= d0 +

∫ x

0

ϕ′(t)(ϕ(x)− ϕ(t))α−1

Γ(α)
G(t, U(t))dt, (4)

When x = 0,we get : Φp

(
CDβ,ϕ

0+
U(0)

)
= d0

In other hand CDβ,ϕ
0+
U(0) = 0 then d0 := 0. By applying the operator Φp′ on the equation (4) we get

CDβ,ϕ
0+
U(x) = Φp′

(
Iα,ϕ

0+
G(x, U(x))

)
, (5)

After using the ϕ-fractional integral Iβ,ϕ
0+

on both sides of equation (5), we obtain

U(x) = d1 + Iβ,ϕ
0+

Φp′
(
Iα,ϕ

0+
G(x, U(x))

)
,

Such that d1 ∈ R, then

U(x) = d1 +

∫ x

0

ϕ′(t)(ϕ(x)− ϕ(t))β−1

Γ(β)
Φp′
(
Iα,ϕ

0+
G(t, U(t)

)
dt. (6)

since U(0) = −U(X), we can find that

d1 = −
∫ X

0

ϕ′(t)(ϕ(X)− ϕ(t))β−1

2Γ(β)
Φp′

(
Iα,ϕ

0+
G(t, U(t))

)
dt,

with
Iα,ϕ

0+
G(t, U(t)) =

∫ t

0

ϕ′(r)(ϕ(t)− ϕ(r))α−1

Γ(α)
G(r, U(r))dr.

Substituting d1 in (6), we get the fractional integral equation (2).
The proof of the converse can be finalized by carrying out a straightforward computation.

�
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Our primary result, which pertains to the existence of solutions for problem (1), will be presented
next. For this purpose, we introduce the following assumptions:
Let U, V ∈ C(I,R) and x ∈ I
(A1) The function G fulfills the following condition, for some positive constant Π:

|G(x, U)−G(x, V )| 6 Π | U − V | .

(A2) The function G satisfies the following condition, for some positive constantsK and J :

|G(x, U)| 6 K | U |γ +J.

We define two operators T2 and T1 as mappings fromC(I,R) toC(I,R) by the following expressions:

T1U(x) =

∫ x

0

−ϕ′(t)(ϕ(T )− ϕ(t))β−1

2Γ(β)
Φp′

(∫ t

0

ϕ′(r)(ϕ(t)− ϕ(r))α−1

Γ(α)
G(r, U(r))dr

)
dt, (7)

and
T2U(x) =

∫ x

0

ϕ′(t)(ϕ(x)− ϕ(t))β−1

Γ(β)
Φp′

(∫ t

0

ϕ′(r)(ϕ(t)− ϕ(r))α−1

Γ(α)
G(r, U(r))dr

)
dt. (8)

We can express the fractional integral equation (3.1) as an operator equation by defining the operator
T from C(I,R) to C(I,R) as

T U(x) = T1U(x) + T2U(x), x ∈ I. (9)

Lemma 3.2. The Lipschitz constant of the operator T1 is bounded by Πω. Furthermore, the operator T1 satisfies

the following inequality:

‖T1U‖ 6 K‖U‖γ + J, for all U ∈ C(I, R). (10)

Proof. Let U, V ∈ C(I,R), then we have

|T1U(x)− T1V (x)| 6
∫ x

0

ϕ′(t)(ϕ(T )− ϕ(t))β−1

2Γ(β)

∣∣∣Φp′(

∫ t

0

ϕ′(r)(ϕ(t)− ϕ(r))α−1

Γ(α)
×

G(r, U(r))dr − Φp′(

∫ t

0

ϕ′(r)(ϕ(t)− ϕ(r))α−1

Γ(α)
G(r, V (r))ds)

∣∣∣dt.
by using Lemma 2.6 and the the hypothesis (A1) we get

|T1U(x)− T1V (x)| 6
∫ x

0

(p′ − 1)Mp′−2Π‖U − V ‖ϕ′(t)(ϕ(X)− ϕ(t))β−1

2Γ(β)
×

(∫ t

0

ϕ′(r)(ϕ(t)− ϕ(r))α−1

Γ(α)
dr
)
dt.

then

|T1U(x)− T1V (x)| 6 (p′ − 1)Mp′−2Π‖U − V ‖(ϕ(X)− ϕ(0))α+β

2Γ(α+ β + 1)
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taking supremum over x, we obtain

‖T1U − T1V ‖ 6 Πω‖U − V ‖, with ω =
(p′ − 1)Mp′−2(ϕ(X)− ϕ(0))α+β

2Γ(α+ β + 1)

We can conclude that T1 is a Lipschitz operator with constant Πω

We can establish the inequality (10) by assuming that U belongs to C(I,R) and utilizing Lemma (2.6)
along with the condition (A2).

|T1U(x)| 6 (p′ − 1)Mp′−2(K‖U‖γ + J)

∫ X

0

ϕ′(t)(ϕ(X)− ϕ(t))α−1

2Γ(α)
×

(∫ t

0

ϕ′(r)(ϕ(t)− ϕ(r))β−1

Γ(β)
dr
)
dt.

Then finally we get
‖T1U‖ 6 ω(K‖U‖γ + J).

�

Lemma 3.3. The operator T2 is continuous and fulfills the ensuing inequality:

‖T2U‖ 6 2ω(K‖U‖γ + J), for all U ∈ C(I, R). (11)

Proof. Consider a sequence UN ∈ C(I,R) −→ U ∈ C(I,R), i.e., ∃δ > 0 such that ∀N > 0, ‖UN‖ ≤ δ,
and ‖U‖ 6 δ. By the continuity of the function G, we can obtain:

lim
n→∞

G(x, UN (x)) = G(x, U(x)).

Furthermore, from assumption (A1), we have:

ϕ′(t)(ϕ(x)− ϕ(t))β−1(ϕ(t)− ϕ(0))α

Γ(β)Γ(α+ 1)
‖G(t, Un(t))−G(t, U(t))‖

6 (Kδγ + J)
ϕ′(t)(ϕ(x)− ϕ(t))β−1(ϕ(t)− ϕ(0))α

Γ(β)Γ(α+ 1)
,

We observe that the function t 7→ ϕ′(t)(ϕ(x)− ϕ(t))β−1(ϕ(t)− ϕ(0))α

Γ(β)Γ(α+ 1)
is integrable over [0, x]. There-

fore, by applying the Lebesgue dominated convergence theorem, we obtain:

lim
n7→+∞

∫ x

0

ϕ′(t)(ϕ(x)− ϕ(t))β−1(ϕ(t)− ϕ(0))α

Γ(β)Γ(α+ 1)
‖G(t, UN (t))−G(t, U(t))‖ dt = 0,

it follows that
lim

N 7→+∞
‖ T2UN − T2U ‖= 0.

This demonstrates that T2 is a continuous operator on C(I,R).
To establish the inequality (11), let U ∈ C(I,R). We have the following.
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|T2U(x)| 6
∫ x

0

ϕ′(t)(ϕ(x)− ϕ(t))β−1

Γ(β)

∣∣∣∣Φp′

(∫ t

0

ϕ′(r)(ϕ(t)− ϕ(r))α−1

Γ(α)
G(r, U(r))dr

)∣∣∣∣ dt
By utilizing Lemma 2.6 and the assumption (A2), we can obtain the following.

|T2U(x)| 6 (p′ − 1)Mp′−2(K‖U‖γ + J)

Γ(β)Γ(α+ 1)

∫ x

0
ϕ′(t)(ϕ(x)− ϕ(t))β−1(ϕ(t)− ϕ(0))αdt,

That follows that
‖ T2U ‖6 2ω(K‖U‖γ + J).

�

Lemma 3.4. The operator T2 mapping from C(I,R) to C(I,R) is a compact operator.

Proof. To demonstrate the compactness of T2, we must establish that T2(Bη) is relatively compact in
C(I,R). To that end, suppose U ∈ Bη. Using the inequality (11), we obtain:

‖ T2U ‖6 2ω(Kηγ + J) := Θ.

Therefore, we can conclude that T2(Bη) is uniformly bounded as it is contained in BΘ.
Let us now demonstrate that T2(Bη) is equicontinuous on I.

Let U ∈ T2(Bη) and x1, x2 ∈ I such that x1 < x2, then we have

T2U(x2)− T2U(x1) =

∫ x2

0

ϕ′(t)(ϕ(x2)− ϕ(t))β−1

Γ(β)
Φp′I

α,ϕ
0+

G(t, U(t))dt

−
∫ x1

0

ϕ′(t)(ϕ(x1)− ϕ(t))β−1

Γ(β)
Φp′I

α,ϕ
0+

G(t, U(t))dt

=

∫ x1

0

ϕ′(t)
[
(ϕ(x2)− ϕ(t))β−1 − (ϕ(x1)− ϕ(t))β−1

]
Γ(β)

Φp′I
α,ϕ
0+

G(t, U(t))dt

+

∫ x2

x1

ϕ′(t)(ϕ(x2)− ϕ(t))β−1

Γ(β)
Φp′I

α,ϕ
0+

G(t, U(t))dt.

By utilizing Lemma 2.6 and the assumption (A2), we can obtain the following.

|T2U(x2)− T2U(x1)| 6 (p′ − 1)Mp′−2(K | U |γ +J)
(ϕ(X)− ϕ(0))α

Γ(α+ 1)
×

( ∣∣∣∣∣∣
∫ x1

0

ϕ′(t)
[
(ϕ(x2)− ϕ(t))β−1 − (ϕ(x1)− ϕ(t))β−1

]
Γ(β)

∣∣∣∣∣∣+∣∣∣∣∫ x2

x1

ϕ′(t)(ϕ(x2)− ϕ(t))β−1

Γ(β)

∣∣∣∣ )
6

(p′ − 1)Mp′−2(Kηγ + J)(ϕ(X)− ϕ(0))α

Γ(α+ 1)Γ(β + 1)

×
(

(ϕ(x2)− ϕ(0))β − (ϕ(x1)− ϕ(0))β
)
.
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Since ϕ is a continuous function, lim
x1→x2

|T2U(x1)− T2U(x2)| = 0. which shows that T2(Bη) is
equicontinuous.

As a result of applying the Arzela-Ascoli Theorem [14], it can be inferred that the set T2(Bη) is both
uniformly bounded and equicontinuous. Therefore, we can conclude that T2(Bη) is relatively compact,
which in turn indicates that the operator T2 is compact.

�

Corollary 3.5. The operator T2 from C(I,R) to C(I,R) is ρ-Lipschitz with a constant of zero.

Proof. By leveraging the compactness of T2 and Lemma 2.12, it can be concluded that the operator T2 is
ρ-Lipschitz with a constant of zero. �

Theorem 3.6. If the conditions (A1) − (A2) are verified and Πω < 1, then there exists at least one solution

U ∈ C(I,R) of (1) and the set of all its solutions is bounded in U ∈ C(I,R).

Proof. The operators T1, T2, T are all continuous and bounded. In other hand according to Lemma 3.2,
T1 is ρ-Lipschitz with the constant Πω, while Corollary 3.5 indicates that T2 is ρ-Lipschitz with a zero
constant. By applying Lemma 2.11, we can conclude that T is a strict ρ-contraction with the constant
Πω < 1. Let us consider the set:

Sε = {U ∈ C(I, R) : U = εT U for some ε ∈ [0, 1]}.

We aim to show that Sε is bounded in C(I,R). To prove this, suppose U ∈ Sε, then U = εT U =

ε(T1U + T2U), which implies that

‖U‖ = ε‖T U‖ 6 ε(‖T1U‖+ ‖T2U‖),

by using Lemmas 3.2 and 3.3 we have

‖U‖ 6 3ω(K‖U‖γ + J). (12)

From (12) the set Sε is bounded in C(I,R) and by using theorem (2.14)
we conclude that the operator T possesses at least one fixed point, which is the solution to the

p−Laplacian problem (1) and the solutions set of T is bounded in C(I,R) . �

4. An illustrative example

To demonstrate our main result, we will provide an example in this section. Let’s examine the
following anti-periodic fractional boundary value problem:
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
CD

1
2
,x

0+

(
Φ 3

2

(
CD

3
4
,x

0+
U(x)

))
=

e−x

9 + ex
× |U(x)|

1 + |U(x)|
, x ∈ I = [0, 1],

U(0) = −U(1).

(13)

We have
α =

1

2
, β =

3

4
, X = 1, ϕ(x) = x, p =

3

2
, p′ = 3, M =

1

10

And the function G is given by

G(x, U) = (
e−x

9 + ex
)
|U |

1 + |U |
It is evident that G is continuous, and we can observe that: :

| G(x, U)| =
e−x

9 + ex

∣∣∣∣ |U |
1 + |U |

∣∣∣∣ 6 1

10
|U |

Therefore, withK =
1

10
, J = 0, and γ = 1, condition (A2) is satisfied. On the other hand, we have:

| G(x, U)−G(x, V )| 6 1

10
| U − V |

Hence the condition (A1) holds with Π =
1

10
.

On other hand
ωΠ =

1

10
(3− 1)(

1

10
)3−2 (1− 0)

1
2

+ 3
4

Γ(1
2 + 3

4 + 1)
< 1.

By utilizing Theorem 3.6, we can deduce that there is at least one solution U ∈ C(I,R) to problem (13).
Additionally, the set of all solutions to the problem is bounded in C(I,R).

5. Conclusion

In this paper, we have established the existence of solutions for fractional differential equations with
anti-periodic conditions, where the fractional derivative is defined in terms of the ϕ-Caputo operator.
The proof of our main result is based on a fixed point theorem by Isaia 2.14, which was derived using
coincidence degree theory for condensing maps. Additionally, we provide an example to illustrate the
application of our theoretical results.
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