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Abstract. In the present paper, in view of the topological degree methods and the theory of the variable
exponent Sobolev spaces, we discuss some quasilinear problems for elliptic and parabolic equations
involving the (p(x), q(x))-Laplacian operator. Under certain assumptions, we establish the existence of at
least one weak solution to these problems. Our results extends some recent work in the literature.
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1. Introduction and motivation

The study of differential equations with with nonstandard p(x)-Laplacian operator ((p(x), q(x))-
Laplacian operator) is an attractive topic and has been the object of considerable attention in recent
years (see [33]). Perhaps the impulse for this comes from the new search field that reflects a new type
of physical phenomenon is a class of nonlinear problems with variable exponents. In the subject of
fluid mechanics, for example, Rajagopal and Růžička recently developed a very interesting model for
these fluids in [32]. Other applications relate to image processing [1, 11], elasticity problems [35], the
flow in porous media [4], and problems in the calculus of variations involving variational integrals
with nonstandard growth [2,10, 16–19].

Here and in the sequel, we will assume that Ω is a bounded domain in RN (N > 1), with a Lipschitz
boundary denoted by ∂Ω, T > 0 is a fixing time, p(x), ξ(x) ∈ C+(Ω), ω, υ and σ are three real parameters.

DOI: 10.28924/APJM/10-14

©2023 Asia Pacific Journal of Mathematics

1

https://doi.org/10.28924/APJM/10-14


Asia Pac. J. Math. 2023 10:14 2 of 21

In this paper, we study the existence of the weak solution to the following quasilinear problems:

∂u
∂t −∆p(x)u−∆q(x)u = φ(x, t) in ΩT := Ω× (0, T ),

u(x, t) = 0 in Γ := ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(1.1)

and 
−∆p(x)u−∆q(x)u+ ω|u|ξ(x)−2u = υA(x, u) + σ B(x, u,∇u) in Ω,

u = 0 on ∂Ω,

(1.2)

where φ ∈ W∗(that will be defined in Section 2), u0 ∈ L2(Ω),A : Ω×R→ R andB : Ω×R×RN → R are
Carathéodory functions that satisfy the assumption of growth, and the variables exponents p, q ∈ C+(Ω)

satisfy the assumption (2.1) in Section 2.
Studying this type of problems is both significant and relevant. On the one hand, we have the

physical motivation; since the double phase operator has been used to model the steady-state solutions
of reaction diffusion problems, that arise in biophysics, plasma-physics and in the study of chemical
reactions. On the other hand, these operators provide a useful paradigm for describing the behaviour
of strongly anisotropic materials, whose hardening properties are linked to the exponent governing the
growth of the gradient change radically with the point, see [5,12, 13, 20–22] and the references given
there.

Several scholars have discussed problems that are similar to problem (1.1), proving independently
the existence of at least a weak solution for these problems (see, for example, [6, 28]).

Let us recall some known results on problem (1.2). For example, Fan and Zhang [27], based on the
theory of the spaces Lp(x)(Ω) andW 1,p(x)

0 (Ω), present several sufficient conditions for the existence of
solution for the problem (1.2) with ξ(x) = p(x), υ = 1 and σ = ω = 0 and without the term −∆q(x)u

(see alsoo [12,13, 25]).
R. Alsaedi [3] establishes sufficient conditions for the existence of nontrivial weak solution for the

problem (1.2) without the term −∆q(x)u, when σ = 0 and A(x, u) = |u|p(x)−2u (see alsoo [23,24]).
In this work, by using the topological degree methods for operators of the type T + S , where T is a

linear densely defined maximal monotone map and S is a bounded demicontinuous map of type (S+)

with respect to a domain of T , we prove the existence of weak solution for the problem (1.1), and we
will employ a topological degree for a type of demicontinuous operators of generalized (S+) type to
show the existence of weak solution for the problem (1.2).

The remainder of the paper is organized as follows. In Section 2, we review some fundamental
preliminaries about the functional framework where we will treat our problems. In Section 3, we
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introduce some classes of operators, as well as the topological degree methods for operators of the type
T + S and topological degree for a type of demicontinuous operators of generalized (S+). In Section
4, we will prove the existence of weak solution of the Problem (1.1). Finally, Section 4 is devoted to
discussing the existence of weak solution to (1.2).

2. Preliminaries

In this section, we present some results on the basic properties on Lp(x)(Ω) andW 1,p(x)
0 (Ω), which we

need in the proof of our results. For more details on these spaces, we refer the reader to [14,15,26,30,31].
Let Ω ⊂ RN (N > 1) be an open with a Lipschitz boundary denoted by ∂Ω. Denote

C+(Ω) =
{
p : Ω −→ [1,+∞[ continous such that p(x) > 1

}
.

We define

p+ := max
{
p(x), x ∈ Ω

}
and p− := min

{
p(x), x ∈ Ω

}
for every p ∈ C+(Ω).

The variable exponents p, q ∈ C+(Ω) are assumed to satisfy the following assumption:

1 < q− ≤ q ≤ q+ < p− ≤ p ≤ p+ < +∞. (2.1)

We define the Lebesgue space with a variable exponent p ∈ C+(Ω) by

Lp(x)(Ω) =
{
f : Ω→ R is measurable such that

∫
Ω
|f(x)|p(x)dx < +∞

}
.

Lp(x)(Ω) is endowed with the following Luxembourg-type norm

|f |p(x) = inf
{
λ > 0 : %p(x)

(f
λ

)
≤ 1
}
,

with
%p(x)(f) =

∫
Ω
|f(x)|p(x)dx for all f ∈ Lp(x)(Ω).

Proposition 2.1. [30] For any sequence (fn) and all f ∈ Lp(x)(Ω), we have

|f |p(x) < 1(resp. = 1;> 1) ⇔ %p(x)(f) < 1(resp. = 1;> 1), (2.2)

|f |p(x) > 1 ⇒ |f |p
−

p(x) ≤ %p(x)(f) ≤ |f |p
+

p(x), (2.3)

|f |p(x) < 1 ⇒ |f |p
+

p(x) ≤ %p(x)(f) ≤ |u|p
−

p(x), (2.4)

lim
n→∞

|fn − f |p(x) = 0 ⇔ lim
n→∞

%p(x)(fn − f) = 0. (2.5)

Remark 2.2. From (2.3) and (2.4), we can infer that

|f |p(x) ≤ %p(x)(f) + 1, (2.6)

%p(x)(f) ≤ |f |p
−

p(x) + |f |p
+

p(x). (2.7)
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Proposition 2.3. [30] The space
(
Lp(x)(Ω), | · |p(x)

)
is a separable and reflexive Banach space.

Proposition 2.4. [30] Let f ∈ Lp(x)(Ω) and g ∈ Lp′(x)(Ω). Then, we have the following Hölder-type inequality

∣∣∣ ∫
Ω
fg dx

∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|f |p(x)|g|p′(x) ≤ 2|f |p(x)|g|p′(x). (2.8)

Remark 2.5. If p, q ∈ C+(Ω) with p(x) ≤ q(x) then Lq(x)(Ω) ↪→ Lp(x)(Ω).

Now, we define the Sobolev space with a variable exponent p ∈ C+(Ω) by

W 1,p(x)(Ω) =
{
f ∈ Lp(x)(Ω) : |∇f | ∈ (Lp(x)(Ω))N

}
,

and it is a Banach space under the norm

||f || = |f |p(x) + |∇f |p(x).

We also defineW 1,p(x)
0 (Ω) as the subspace ofW 1,p(x)(Ω) which is the closure of C∞0 (Ω) with respect to

the norm || · ||.

Proposition 2.6. [30] If the exponent p(x) satisfy the log-Hölder continuity condition, i.e. there is a constant

a > 0 such that for every x, y ∈ Ω, x 6= y with |x− y| ≤ 1

2
one has

|p(x)− p(y)| ≤ a

− log |x− y|
, (2.9)

then, there exists C > 0 depending only on Ω and the function p such that

|u|p(x) ≤ C|∇u|p(x) for all u ∈W 1,p(x)
0 (Ω). (2.10)

In this article, we shall use the equivalent norm onW 1,p(x)
0 (Ω)

|u|1,p(x) = |∇u|p(x).

Proposition 2.7. [30] The spaces (W 1,p(x)(Ω), || · ||) and (W
1,p(x)
0 (Ω), | · |1,p(x)) are separable and reflexive

Banach spaces.

Remark 2.8. The dual space ofW 1,p(x)(Ω) is the spaceW−1,p′(x)(Ω) defined by

W−1,p′(x)(Ω) :=

{
u = u0 −

N∑
i=1

Diui with (u0, u1, . . . , uN ) ∈ (Lp
′(x)(Ω))N

}
,

equipped with the norm

|u|−1,p′(x) = inf
{
|u0|p′(x) +

N∑
i=1

|ui|p′(x)

}
.
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We may also consider the generalized Lebesgue space

Lp(x)(ΩT ) =
{
u : ΩT → R is measurable with

∫ T

0

∫
Ω
|u(x, t)|p(x)dxdt <∞

}
,

endowed with the norm

|u|Lp(x)(ΩT ) = inf
{
λ > 0 :

∫ T

0
%p(x)

(u
λ

)
dt ≤ 1

}
,

which, of course, shares the same type of properties as Lp(x)(Ω).
As in [6], we introduce the functional space

W :=
{
u ∈ Lp−(0, T ;W

1,p(x)
0 (Ω)) : |∇u| ∈ Lp(x)(ΩT )N

}
,

which is a separable and reflexive Banach space endowed with the norm

|u|W := |u|
Lp− (0,T ;W

1,p(x)
0 (Ω))

+ |∇u|Lp(x)(ΩT ).

Thanks to poincaré inequality (2.10), the expression

|v|W := |∇u|Lp(x)(ΩT ),

is a norm defined onW and is equivalent to the norm |v|W .
Some interesting properties of the spaceW are stated in the following lemma.

Lemma 2.9. [6] LetW be the space defined as above andW∗ denote its dual space, then:

(1) We have the following continuous dense embedding

Lp
+

(0, T ;W
1,p(x)
0 (Ω)) ↪→W ↪→ Lp

−
(0, T ;W

1,p(x)
0 (Ω)) (2.11)

(2) In particular, since C∞0 (ΩT ) is dense in Lp+(0, T ;W
1,p(x)
0 (Ω)), it is dense inW and for the correspond-

ing dual spaces we have

L(p−)′(0, T ;W−1,p′(·)(Ω)) ↪→W∗ ↪→ L(p+)′(0, T ;W−1,p′(·)(Ω)). (2.12)

(3) Under the assumption (2.1), we have

|u|q
−

Lq(·)(ΩT )
− 1 ≤

∫
ΩT

|u|q(x)dxdt ≤ |u|q
+

Lq(·)(ΩT )
+ 1 ≤ |u|p

−

Lp(x)(ΩT )
− 1

≤
∫

ΩT

|u|p(x)dxdt ≤ |u|p
+

Lp(x)(ΩT )
+ 1.

(2.13)

3. Topological degree theory

Now, we give some results and properties from the theory of topological degree. The readers can
find more information about the history of this theory in [8, 9, 29]. In the rest of this paper, strong
(weak) convergence is represented by the symbol→ (⇀).
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3.1. Topological degree theory for operators of the type T + S.

In what follows, let Y is a real reflexive and separable Banach space with dual Y ∗ and continuous
pairing 〈.,.〉, and given a nonempty subset Ω of Y , ∂Ω and Ω represent the boundary and the closure of
Ω in Y , respectively.

Definition 3.1. We consider a mapping T defined from Y to Y ∗ and its graph is given by

G(T ) = {(u, v) ∈ Y × Y ∗ : v ∈ T (u)}.

(1) T is said to be monotone if for all (u1, v1), (u2, v2) in G(T ), we get that 〈v1 − v2, u1 − u2〉 ≥ 0.

(2) T is said to be maximal monotone if it is monotone and maximal in the sense of graph inclusion
amongmonotonemappings fromY toY ∗, or for any (u0, v0) ∈ Y×Y ∗ forwhich 〈v0−v, u0−u〉 ≥

0, for all (u, v) ∈ G(T ), we have (u0, v0) ∈ G(T ).

Definition 3.2. Let Z be a real Banach space. A operator T : Ω ⊂ Y → Z is said to be

(1) bounded, if it takes any bounded set into a bounded set.
(2) demicontinuous, if for any sequence (un) ⊂ Ω, un → u implies that T (un) ⇀ T (u).
(3) compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 3.3. A mapping S : D(S) ⊂ Y → Y ∗ is said to be

(1) of type (S+), if for any (un) ⊂ D(S) with un ⇀ u and lim sup
n→∞

〈Sun, un − u〉 ≤ 0, it follows that
un → u.

(2) quasimonotone, if for any sequence (un) ⊂ D(S) with un ⇀ u, we have lim sup
n→∞

〈Sun, un−u〉 ≥

0.

In the sequel, let L be a linear maximal monotone map from D(L) ⊂ Y to Y ∗, and we consider the
following classes of operators for each open and bounded subset G on Y :

FG := {L+ S : G ∩D(L)→ Y ∗ : S is bounded, demicontinuous

map of type (S+) with respect to D(L) from G to Y ∗},

HG := {L+ S(t) : G ∩D(L)→ Y ∗ : S(t) is a bounded homotopy of type

map of type (S+) with respect to D(L) from G to Y ∗}.

Definition 3.4. Let E be a bounded open subset of a real reflexive Banach space Y , T ∈ F1(E) be
continuous and let F,S ∈ FT (E). The affine homotopy Π : [0, 1]× E → Y defined by

Π(t, u) := (1− t)Fu+ tSu, for all (t, u) ∈ [0, 1]× E

is called an admissible affine homotopy with the common continuous essential inner map T .
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Remark 3.5. Note that the classHG includes all affine homotopies

L+ (1− t)S1 + tS2, with (L+ Si) ∈ FG, i = 1, 2.

Now, we introduce the Berkovits and Mustonen topological degree for the class FG, and see [8, 9]
for more informations.

Theorem 3.6. Let L a linear maximal monotone densely defined map from D(L) ⊂ Y to Y ∗, and let

E =
{

(F,G, φ) : F ∈ FG, G an open bounded subset in Y, φ 6∈ F (∂G ∩D(L))
}
.

Then, there exists a topological degree function d : E → Z satisfying the following properties:

(1) (Existence) if d(F,G, φ) 6= 0, then the equation Fu = φ has a solution in G ∩D(L).

(2) (Additivity) IfG1 andG2 are two disjoint open subsets ofG such that φ 6∈ F [(G\(G1 ∪G2))∩D(L)],

then we have

d(F,G, φ) = d(F,G1, φ) + d(F,G2, φ).

(3) (Homotopy invariance) If F (t) ∈ HG and f(t) 6∈ F (t)(∂G ∩D(L)) for all t ∈ [0, 1], where f(t) is a

continuous curve in Y ∗, then

d(F (t), G, f(t)) = C, ∀t ∈ [0, 1].

(4) (Normalization) L+ J is a normalising map, where J is the duality mapping of Y into Y ∗, that is,

d(L+ J , G, φ) = 1, for all φ ∈ (L+ J )(G ∩D(L)).

The following theorem plays an important role in the proof of the existence result of Problem 1.1.

Theorem 3.7. Let L+ S ∈ FY and φ ∈ Y ∗ and assume that there exists a radius r > 0 such that

〈Lu+ Su− φ, u〉 > 0, (3.1)

for all u ∈ ∂Br(0) ∩D(L). Then the equation Lu+ Su = φ has a solution u in D(L).

Proof. To show this theorem, it suffices to prove that (L+ S)(D(L)) = Y ∗.
Let Fω(t, u) = Lu+ (1− t)J u+ t(Su+ ωJ u− φ), for all ω > 0 and t ∈ [0, 1].

From (3.1) and since 0 ∈ L(0), we obtain

〈Fω(t, u), u〉 = 〈t(Lu+ Su− φ, u〉+ 〈(1− t)Lu+ (1− t+ ω)J u, u〉

≥ 〈(1− t)Lu+ (1− t+ ω)J u, u〉

= (1− t)〈Lu, u〉+ (1− t+ ω)〈J u, u〉

≥ (1− t+ ω)|u|2

= (1− t+ ω)r2 > 0.
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Which implies that 0 6∈ Fω(t, u).
Since J and S + ωJ are continuous, bounded and of type (S+), then {Fω(t, ·)}t∈[0,1] is an admissible
homotopy. Therefore, applying the homotopy invariance and normalisation property of the degree d
stated in Theorem 3.6, we obtain

d(Fω(t, ·), Br(0), 0) = d(L+ J , Br(0), 0) = 1 6= 0.

Consequently, by existence property of the degree d there exists a point uω ∈ D(L) such that 0 ∈ Fω(t, ·).
In particular, by setting ω → 0+ and t = 1, we get φ ∈ (L+ S)(D(L)) for some u ∈ D(L) and that for
all φ ∈ Y ∗(φ is arbitrary). Which implies that (L+ S)(D(L)) = Y ∗. �

3.2. Topological degree theory for a class of demicontinuous operators of generalized (S+).

We start by defining some classes of mappings. In what follows, let X be a real separable reflexive
Banach space and X∗ be its dual space with dual pairing 〈 · , · 〉.

Definition 3.8. Let Y be another real Banach space. A operator F : Ω ⊂ X → Y is said to be

(1) bounded, if it takes any bounded set into a bounded set.
(2) demicontinuous, if for any sequence (un) ⊂ Ω, un → u implies

F (un) ⇀ F (u).
(3) compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 3.9. A mapping F : Ω ⊂ X → X∗ is said to be

(1) of type (S+), if for any sequence (un) ⊂ Ω with un ⇀ u and lim sup
n→∞

〈Fun, un − u〉 ≤ 0, we have
un → u.

(2) quasimonotone, if for any sequence (un) ⊂ Ω with un ⇀ u, we have lim sup
n→∞

〈Fun, un − u〉 ≥ 0.

Definition 3.10. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω ⊂ Ω1. For any operator F :
Ω ⊂ X → X , we say that

(1) F of type (S+)T , if for any sequence (un) ⊂ Ω with un ⇀ u,

yn := Tun ⇀ y and lim sup
n→∞

〈Fun, yn − y〉 ≤ 0,we have un → u.
(2) F has the property (QM)T , if for any sequence (un) ⊂ Ω with

un ⇀ u, yn := Tun ⇀ y, we have lim sup
n→∞

〈Fun, y − yn〉 ≥ 0.

Consider the different types of operators as follows:

F1(Ω) :=
{
F : Ω→ X∗ : F is bounded, demicontinuous and of type (S+)

}
,

FT (Ω) :=
{
F : Ω→ X : F is demicontinuous and of type (S+)T

}
,

FT,B(Ω) :=
{
F ∈ FT (Ω) : F is bounded

}
,
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for any Ω ⊂ D(F ), where D(F ) denotes the domain of F , and any T ∈ F1(Ω).
Now, let O be the collection of all bounded open sets in X and we define

F(X) :=
{
F ∈ FT (E) : E ∈ O, T ∈ F1(E)

}
,

where, T ∈ F1(E) is called an essential inner map to F .

Lemma 3.11. [29, Lemma 2.3] Let T ∈ F1(E) be continuous and S : D(S) ⊂ X∗ → X be demicontinuous

such that T (E) ⊂ D(S), where E is a bounded open set in a real reflexive Banach space X . Then the following

statements are true :

(1) If S is quasimonotone, then I + S ◦ T ∈ FT (E), where I denotes the identity operator.

(2) If S is of type (S+), then S ◦ T ∈ FT (E).

Definition 3.12. Suppose that E is bounded open subset of a real reflexive Banach spaceX , T ∈ F1(E)

is continuous and F, S ∈ FT (E). Then the affine homotopy Λ : [0, 1]× E → X defined by

Λ(t, u) := (1− t)Fu+ tSu, for (t, u) ∈ [0, 1]× E

is called an admissible affine homotopy with the common continuous essential inner map T .

Remark 3.13. [29, Lemma 2.5] The above affine homotopy is of type (S+)T .

Now, we give the topological degree for the class F(X) (see [29]).

Theorem 3.14. Let

M =
{

(F,E, h) : E ∈ O, T ∈ F1(E), F ∈ FT,B(E), h 6∈ F (∂E)
}
.

Then, there exists a unique degree function d : M −→ Z that satisfy the following properties:

(1) (Normalization) For any h ∈ E, we have

d(I, E, h) = 1.

(2) (Additivity) Let F ∈ FT,B(E). If E1 and E2 are two disjoint open subsets of E such that h 6∈

F (E\(E1 ∪ E2)), then we have

d(F,E, h) = d(F,E1, h) + d(F,E2, h).

(3) (Homotopy invariance) If Λ : [0, 1]×E → X is a bounded admissible affine homotopy with a common

continuous essential inner map and h: [0, 1]→ X is a continuous path inX such that h(t) 6∈ Λ(t, ∂E)

for all t ∈ [0, 1], then

d(Λ(t, ·), E, h(t)) = C for all t ∈ [0, 1].

(4) (Existence) If d(F,E, h) 6= 0, then the equation Fu = h has a solution in E.
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(5) ( Boundary dependence) If F, S ∈ FT(E) coincide on ∂E and h 6∈ F (∂E), then

d(F,E, h) = d(S,E, h)

Definition 3.15. [29, Definition 3.3] The above degree is defined as follows:

d(F,E, h) := dB(F |E0
, E0, h),

where dB is the Berkovits degree [7] and E0 is any open subset of E with F−1(h) ⊂ E0 and F is bounded

on E0.

4. Quasilinear parabolic problem involving the (p(x), q(x))-Laplacian operator

In this section, we will prove the existence of weak solution of the Problem (1.1). First we will state
a lemma that will be used later.

Lemma 4.1. The operator S := −∆p(x)u−∆q(x)u defined fromW intoW∗ by

〈Su, v〉W∗,W =

∫
ΩT

(
|∇u|p(x)−2∇u∇v + |∇u|q(x)−2∇u∇v

)
dxdt,

is bounded, continuous and of type (S+).

Proof. Let t ∈] 0, T [ and denote by A the operator defined fromW
1,p(x)
0 (Ω) intoW−1,p′(x)(Ω) by

〈Au(x, t), v(x, t)〉 := 〈A1u(x, t), v(x, t)〉+ 〈A2u(x, t), v(x, t)〉,

where
〈A1u(x, t), v(x, t)〉 :=

∫
Ω

(
|∇u(x, t)|p(x)−2∇u(x, t)∇v(x, t)

)
dx,

and
〈A2u(x, t), v(x, t)〉 :=

∫
Ω

(
|∇u(x, t)|q(x)−2∇u(x, t)∇v(x, t)

)
dx,

for all u(·, t), v(·, t) ∈W 1,p(x)
0 (Ω), with 〈·, ·〉 is the duality pairing betweenW−1,p′(x)(Ω) andW 1,p(x)

0 (Ω).
Then, we obtain

〈Su, v〉W∗,W =

∫ T

0
〈Au(x, t), v(x, t)〉dt, for all u, v ∈ W,

with 〈·, ·〉W∗,W is the duality pairing betweenW∗ andW .
Next, it follows from [27, Lemma 3.1] that A1 and A2 are bounded, continuous and of type (S+); so
the operator A := A1 +A2 is bounded, continuous and of type (S+) and consequently the operator S
is bounded, continuous and of type (S+). �

We are now in the position to get existence result of weak solution for (1.1).

Theorem 4.2. Let φ ∈ W∗ and u0 ∈ L2(Ω), then the problem (1.1) admits at least one weak solution u ∈ D(L),

where D(L) = {u ∈ W : dudt ∈ W
∗ and u(0) = 0}.
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Proof. First, let us define the operator L :=
d

dt
with domain D(L) given by

D(L) = {u ∈ W :
du

dt
∈ W∗ and u(0) = 0},

where the time derivative du
dt

is understood in the sense of vector-valued distributions, i.e.,

〈Lu, v〉W∗,W =

∫ T

0
〈u′(t), v(t)〉dt, ∀ v ∈ W,

with 〈·, ·〉W∗,W the duality pairing between W∗ and W , and 〈·, ·〉 the duality pairing between
W−1,p′(Ω) andW 1,p

0 (Ω).
Second, we define the operator S :W →W∗ as defined in Lemma 4.1

〈Su, v〉W∗,W =

∫
ΩT

(
|∇u|p(x)−2∇u∇v + |∇u|q(x)−2∇u∇v

)
dxdt.

Consequently, the weak formulation of the problem (1.1) is given by the operator equation

u ∈ D(L) : Lu+ Su = φ.

Next, it follows from lemma 4.1 that S is bounded, continuous and of type (S+), and the operator L is
well known to be closed, densely defined, and maximal monotone [34, Theorem 32.L, pp.897-899].
Let u ∈ W . Using the monotonicity of L and the inequality (2.13), we obtain

〈Lu+ Su, u〉 ≥ 〈Su, u〉

=

∫
ΩT

(|∇u|p(x) + |∇u|q(x))dxdt

≥ 2(|∇u|p
−

Lp(x)(ΩT )
− 1)

≥ 2(|u|p
−

W − 1).

Because the right-hand side of the previous inequality approximates to∞when |u|W →∞, then the
operator L+ S is coercive. Thus for each φ ∈ W∗ there is a radius r = r(φ) > 0 such that

〈Lu+ Su− φ, u〉 > 0, for each u ∈ Br(0) ∩D(L).

So all the conditions of Theorem 3.7 are satisfied. Consequently, Theorem 3.7 leads us to the conclusion
that the equation Lu+ Su = φ has a weak solution in D(L), which implies that the problem (1.1) has
a weak solution in u ∈ D(L). This completes the proof. �

5. Quasilinear elliptic problem involving the (p(x), q(x))-Laplacian operator

In this section, we will discuss the existence of weak solution of (1.2). In the beginning, let us assume
that p ∈ C+(Ω) satisfy the log-Hölder continuity condition (2.9), ξ ∈ C+(Ω) with 2 ≤ ξ− ≤ ξ(x) ≤

ξ+ < p− ≤ p(x) ≤ p+ <∞, A : Ω× R→ R and B : Ω× R× RN → R are functions such that:
(A1): B is a Carathéodory function.
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(A2): There exists α1 > 0 and f ∈ Lp′(x)(Ω) such that

|B(x, y, z)| ≤ α1(f(x) + |y|k(x)−1 + |z|k(x)−1).

(A3): A is a Carathéodory function.
(A4): There are α2 > 0 and g ∈ Lp′(x)(Ω) such that

|A(x, y)| ≤ α2(g(x) + |y|s(x)−1),

for a.e. x ∈ Ω and all (y, z) ∈ R× RN , where q, s ∈ C+(Ω) with
2 ≤ k− ≤ k(x) ≤ k+ < p− and 2 ≤ s− ≤ s(x) ≤ s+ < p−.

• Let ϑ ∈W 1,p(x)
0 (Ω), then∫

Ω

(
|∇u|p(x)−2∇u∇ϑ+ |∇u|q(x)−2∇u∇ϑ

)
dx

is well defined (see [27]).
• Let u ∈ W

1,p(x)
0 (Ω), then we have ω|u|ξ(x)−2u ∈ Lp

′(x)(Ω), υA(x, u) ∈ Lp
′(x)(Ω) and

σ B(x, u,∇u) ∈ Lp′(x)(Ω) under the assumptions (A2) and (A4) and the given hypotheses about
the exponents p, ξ, q and s because: f ∈ Lp′(x)(Ω), g ∈ Lp′(x)(Ω), r(x) = (k(x)−1)p′(x) ∈ C+(Ω)

with r(x) < p(x), and β(x) = (ξ(x)− 1)p′(x) ∈ C+(Ω) with β(x) < p(x) and
κ(x) = (s(x)− 1)p′(x) ∈ C+(Ω) with κ(x) < p(x).
Then, using Remark 2.5, we conclude that Lp(x) ↪→ Lr(x), Lp(x) ↪→ Lβ(x) and Lp(x) ↪→ Lκ(x).
Therefore, with ϑ ∈ Lp(x)(Ω), we have(

− ω|u|ξ(x)−2u+ υA(x, u) + σ B(x, u,∇u)
)
ϑ ∈ L1(Ω).

This means that∫
Ω

(
− ω|u|ξ(x)−2u+ υA(x, u) + σ B(x, u,∇u)

)
ϑdx <∞.

Then, let us introduce the definition of a weak solution for (1.2).

Definition 5.1. We say that a function u ∈ W
1,p(x)
0 (Ω) is a weak solution of (1.2), if for any ϑ ∈

W
1,p(x)
0 (Ω), it satisfy the following:∫

Ω

(
|∇u|p(x)−2∇u∇ϑ+ |∇u|q(x)−2∇u∇ϑ

)
dx

=

∫
Ω

(
− ω|u|ξ(x)−2u+ υA(x, u) + σ B(x, u,∇u)

)
ϑdx.

Let us now give some lemmas that will be used later. First, let us consider the following functional:

C(u) :=

∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
Ω

1

q(x)
|∇u|q(x)dx.
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From [27], it is clear that the derivative operator of the functional C in the weak sense at the point
u ∈W 1,p(x)

0 (Ω) is the functional G(u) := C′(u) ∈W−1,p′(x)(Ω), given by

〈Gu, ϑ〉 =

∫
Ω

(
|∇u|p(x)−2∇u∇ϑ+ |∇u|q(x)−2∇u∇ϑ

)
dx,

for all u, ϑ ∈ W 1,p(x)
0 (Ω) where 〈·, ·〉means the duality pairing betweenW−1,p′(x)(Ω) andW 1,p(x)

0 (Ω).
Furthermore, we have the following properties of the operator G.

Lemma 5.2. [27, Theorem 3.1.]The mapping

G : W
1,p(x)
0 (Ω) −→W−1,p′(x)(Ω)

〈Gu, ϑ〉 =

∫
Ω

(
|∇u|p(x)−2∇u∇ϑ+ |∇u|q(x)−2∇u∇ϑ

)
dx,

(5.1)

is a continuous, bounded, strictly monotone operator and is of type (S+).

Lemma 5.3. If (A1)− (A2) hold, then the operator

N : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω)

〈Nu, ϑ〉 = −
∫

Ω

(
− ω|u|ξ(x)−2u+ υA(x, u) + σ B(x, u,∇u)

)
ϑdx,

(5.2)

is compact.

Proof. We follow four steps to prove this lemma.
Step 1 : Let Ψ1 : W 1,p(x)

0 (Ω)→ Lp
′(x)(Ω) be an operator defined by

Ψ1u(x) := −υA(x, u).

We wiil prove that the operator Ψ1 is bounded and continuous. Let u ∈ W 1,p(x)
0 (Ω), bearing (A4) in

mind and using (2.6) and (2.7), we infer

|Ψ1u|p′(x) ≤ %p′(x)(Ψ1u) + 1

=

∫
Ω
|υA(x, u(x))|p′(x)dx+ 1

=

∫
Ω
|υ|p′(x)|A(x, u(x)|p′(x)dx+ 1

≤
(
|υ|p′− + |υ|p′+

)∫
Ω
|α2

(
g(x) + |u|s(x)−1

)
|p′(x)dx+ 1

≤ C
(
|υ|p′− + |υ|p′+

)∫
Ω

(
|g(x)|p′(x) + |u|κ(x)

)
dx+ 1

≤ C
(
|υ|p′− + |υ|p′+

)(
%p′(x)(g) + %κ(x)(u)

)
+ 1

≤ C
(
|g|p

′+

p(x) + |u|κ+κ(x) + |u|κ−κ(x)

)
+ 1.

Then, we deduce from (2.10) and Lp(x) ↪→ Lκ(x), that

|Ψ1u|p′(x) ≤ C
(
|g|p

′+

p(x) + |u|κ+1,p(x) + |u|κ−1,p(x)

)
+ 1,
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that means Ψ1 is bounded onW 1,p(x)
0 (Ω).

Second, we show that the operator Ψ1 is continuous. To this purpose let un → u inW 1,p(x)
0 (Ω). We

need to show that Ψ1un → Ψ1u in Lp′(x)(Ω). We will apply the Lebesgue’s theorem.
Note that if un → u inW 1,p(x)

0 (Ω), then un → u in Lp(x)(Ω). Hence there exist a subsequence (um) of
(un) and φ in Lp(x)(Ω) such that

um(x)→ u(x) and |um(x)| ≤ φ(x), (5.3)

for a.e. x ∈ Ω and all k ∈ N.
Hence, from (A2) and (5.3), we have

|A(x, um(x))| ≤ α2(g(x) + |φ(x)|s(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
On the other hand, thanks to (A3) and (5.3), we get, as k −→∞

A(x, um(x))→ A(x, u(x)) a.e. x ∈ Ω.

Seeing that

g + |φ|s(x)−1 ∈ Lp′(x)(Ω) and %p′(x)(Ψ1um −Ψ1u) =

∫
Ω
|A(x, um(x))−A(x, u(x))|p′(x)dx,

then, from the Lebesgue’s theorem and the equivalence (2.5), we have

Ψ1um → Ψ1u in Lp
′(x)(Ω),

and consequently
Ψ1un → Ψ1u in Lp

′(x)(Ω),

that is, Ψ1 is continuous.
Step 2 : We define the operator Ψ2 : W 1,p(x)

0 (Ω)→ Lp
′(x)(Ω) by

Ψ2u(x) := ω|u(x)|ξ(x)−2u(x).

We will prove that Ψ2 is bounded and continuous.
It is clear that Ψ2 is continuous. Next we show that Ψ2 is bounded.
Let u ∈W 1,p(x)

0 (Ω) and using (2.6) and (2.7), we obtain

|Ψ2u|p′(x) ≤ %p′(x)(Ψ2u) + 1

=

∫
Ω
|ω|u|ξ(x)−2u|p′(x)dx+ 1

=

∫
Ω
|ω|p′(x)|u|(ξ(x)−1)p′(x)dx+ 1

≤
(
|ω|p′− + |ω|p′+

)∫
Ω
|u|β(x)dx+ 1
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=
(
|ω|p′− + |ω|p′+

)
%β(x)(u) + 1

≤
(
|ω|p′− + |ω|p′+

)(
|u|β

−

β(x) + |u|β
+

β(x)

)
+ 1.

Hence, we deduce from Lp(x) ↪→ Lβ(x) and (2.10) that

|Ψ2u|p′(x) ≤ C
(
|u|β

−

1,p(x) + |u|β
+

1,p(x)

)
+ 1,

and consequently, Ψ2 is bounded onW 1,p(x)
0 (Ω).

Step 3 : Let us define the operator Ψ3 : W 1,p(x)
0 (Ω)→ Lp

′(x)(Ω) by

Ψ3u(x) := −σB(x, u(x),∇u(x)).

We will show that Ψ3 is bounded and continuous.
Let u ∈W 1,p(x)

0 (Ω). According to (A2) and the inequalities (2.6) and (2.7), we obtain

|Ψ3u|p′(x) ≤ %p′(x)(Ψ3u) + 1

=

∫
Ω
|σB(x, u(x),∇u(x))|p′(x)dx+ 1

=

∫
Ω
|σ|p′(x)|B(x, u(x),∇u(x))|p′(x)dx+ 1

≤
(
|σ|p′− + |σ|p′+

)∫
Ω
|α1

(
f(x) + |u|k(x)−1 + |∇u|k(x)−1

)
|p′(x)dx+ 1

≤ C
(
|σ|p′− + |σ|p′+

)∫
Ω

(
|f(x)|p′(x) + |u|r(x) + |∇u|r(x)

)
dx+ 1

≤ C
(
|σ|p′− + |σ|p′+

)(
%p′(x)(f) + %r(x)(u) + %r(x)(∇u)

)
+ 1

≤ C
(
|f |p

′+

p(x) + |u|r+r(x) + |u|r−r(x) + |∇u|r+r(x) + |∇u|r−r(x)

)
+ 1.

Taking into account that Lp(x) ↪→ Lr(x) and (2.10), we have then

|Ψ3u|p′(x) ≤ C
(
|f |p

′+

p(x) + |u|r+1,p(x) + |u|r−1,p(x)

)
+ 1,

and consequently Ψ3 is bounded onW 1,p(x)
0 (Ω).

It remains to show that Ψ3 is continuous. Let un → u inW 1,p(x)
0 (Ω), we need to show that Ψ3un → Ψ3u

in Lp′(x)(Ω). We will apply the Lebesgue’s theorem.
Note that if un → u in W 1,p(x)

0 (Ω), then un → u in Lp(x)(Ω) and ∇un → ∇u in (Lp(x)(Ω))N . Hence,
there exist a subsequence (um) and Ψ3 in Lp(x)(Ω) and ψ in (Lp(x)(Ω))N such that

um(x)→ u(x) and ∇um(x)→ ∇u(x), (5.4)

|um(x)| ≤ φ(x) and |∇um(x)| ≤ |ψ(x)|, (5.5)

for a.e. x ∈ Ω and all k ∈ N.
Hence, thanks to (A1) and (5.4), we get, as k −→∞

B(x, um(x),∇um(x))→ B(x, u(x),∇u(x)) a.e. x ∈ Ω.



Asia Pac. J. Math. 2023 10:14 16 of 21

On the other hand, from (A2) and (5.5), we can deduce the estimate

|B(x, um(x),∇um(x))| ≤ α1(f(x) + |φ(x)|k(x)−1 + |ψ(x)|k(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
Seeing that

f + |φ|k(x)−1 + |ψ(x)|k(x)−1 ∈ Lp′(x)(Ω),

and taking into account the equality

%p′(x)(Ψ3um −Ψ3u) =

∫
Ω
|B(x, um(x),∇um(x))− B(x, u(x),∇u(x))|p′(x)dx,

then, we conclude from the Lebesgue’s theorem and (2.5) that

Ψ3um → Ψ3u in Lp
′(x)(Ω)

and consequently

Ψ3un → Ψ3u in Lp
′(x)(Ω),

and then Ψ3 is continuous.
Step 4: Let I∗ : Lp′(x)(Ω) → W−1,p′(x)(Ω) be the adjoint operator of the operator I : W

1,p(x)
0 (Ω) →

Lp(x)(Ω).
We then define

I∗ ◦Ψ1 : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω),

I∗ ◦Ψ2 : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω),

and

I∗ ◦Ψ3 : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω).

On another side, taking into account that I is compact, then I∗ is compact. Thus, the compositions
I∗ ◦Ψ1, I∗ ◦Ψ2 and I∗ ◦Ψ3 are compact, that meansN = I∗ ◦Ψ1 + I∗ ◦Ψ2 + I∗ ◦Ψ3 is compact. With
this last step the proof of Lemma 5.3 is completed. �

We are now in the position to get the existence result of weak solution for (1.2).

Theorem 5.4. Assume that the assumptions (A1)− (A4) hold, then the problem (1.2) possesses at least one
weak solution u inW 1,p(x)

0 (Ω).

Proof. The basic idea of our proof is to reduce the problem (1.2) to a new one governed by a Hammer-
stein equation, and apply the theory of topological degree introduced in Subsection 3.2 to show the
existence of a weak solution to the state problem.
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First, for all u, ϑ ∈ W
1,p(x)
0 (Ω), we define the operators G and N , as defined in (5.1) and (5.2)

respectively,

G : W
1,p(x)
0 (Ω) −→W−1,p′(x)(Ω)

〈Gu, ϑ〉 =

∫
Ω

(
|∇u|p(x)−2∇u∇ϑ+ |∇u|q(x)−2∇u∇ϑ

)
dx,

N : W
1,p(x)
0 (Ω) −→W−1,p′(x)(Ω)

〈Nu, ϑ〉 = −
∫

Ω

(
− ω|u|ξ(x)−2u+ υA(x, u) + σB(x, u,∇u)

)
ϑdx.

Consequently, the problem (1.2) is equivalent to the equation

Gu = −Nu, u ∈W 1,p(x)
0 (Ω). (5.6)

Taking into account that, by Lemma 5.2, the operator G is a continuous, bounded, strictly monotone
and of type (S+), then, by [34, Theorem 26 A], the inverse operator

M := G−1 : W−1,p′(x)(Ω)→W
1,p(x)
0 (Ω),

is also bounded, continuous, strictly monotone and of type (S+).
On another side, according to Lemma 5.3, we have that the operator N is bounded, continuous and
quasimonotone.
Consequently, following Zeidler’s terminology [34], the equation (5.6) is equivalent to the following
abstract Hammerstein equation

u =Mϑ and ϑ+N ◦Mϑ = 0, u ∈W 1,p(x)
0 (Ω) and ϑ ∈W−1,p′(x)(Ω). (5.7)

Seeing that (5.6) is equivalent to (5.7), then to solve (5.6) it is thus enough to solve (5.7). In order to
solve (5.7), we will apply the Berkovits topological degree introduced in Section 3.
First, let us set

R :=
{
ϑ ∈W−1,p′(x)(Ω) such that there exists t ∈ [0, 1] such that ϑ+ tN ◦Mϑ = 0

}
.

Next, we show thatR is bounded inW−1,p′(x)(Ω).
Let us put u := Mϑ for all ϑ ∈ R. Taking into account that |Mϑ|1,p(x) = |∇u|p(x), then we have the
following two cases:
First case : If |∇u|p(x) ≤ 1.
Then |Mϑ|1,p(x) ≤ 1, that means

{
Mϑ : ϑ ∈ R

}
is bounded.

Second case : If |∇u|p(x) > 1.
Then, we deduce from (2.3), (A2) and (A4), the inequalities (2.8) and (2.7) and the Young’s inequality
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that

|Mϑ|p
−

1,p(x) = |∇u|p−p(x)

≤ %p(x)(∇u)

≤ 〈Gu, u〉

= 〈ϑ, Mϑ〉

= −t〈N ◦Mϑ, Mϑ〉

= t

∫
Ω

(
− ω|u|ξ(x)−2u+ υA(x, u) + σ B(x, u,∇u)

)
udx

≤ tmax(|ω|, α2|υ|, α1|σ|)
(∫

Ω
|u|ξ(x)dx+

∫
Ω
|g(x)u(x)|dx+

∫
Ω
|u(x)|s(x)dx

+

∫
Ω
|f(x)u(x)|dx+

∫
Ω
|u(x)|k(x)dx+

∫
Ω
|∇u|k(x)−1|u|dx

)
= tmax(|ω|, α2|υ|, α1|σ|)

(
%ξ(x)(u) +

∫
Ω
|g(x)u(x)|dx+

∫
Ω
|f(x)u(x)|dx

+ %s(x)(u) + %k(x)(u) +

∫
Ω
|∇u|k(x)−1|u|dx

)
≤ C

(
|u|ξ

−

ξ(x) + |u|ξ
+

ξ(x) + |g|p′(x)|u|p(x) + |f |p′(x)|u|p(x) + |u|s+s(x) + |u|s−s(x)

+ |u|k+k(x) + |u|k−k(x) +
1

k′−
%k(x)(∇u) +

1

k−
%k(x)(u)

)
≤ C

(
|u|ξ

−

ξ(x) + |u|ξ
+

ξ(x) + |u|p(x) + |u|s+s(x) + |u|s−s(x) + |u|k+k(x) + |u|k−k(x) + |∇u|k+k(x)

)
.

Then, according to Lp(x) ↪→ Lξ(x), Lp(x) ↪→ Ls(x) and Lp(x) ↪→ Lk(x), we get

|Mϑ|p
−

1,p(x) ≤ C
(
|Mϑ|ξ

+

1,p(x) + |Mϑ|1,p(x) + |Mϑ|s+1,p(x) + |Mϑ|k+1,p(x)

)
,

what implies that
{
Mϑ : ϑ ∈ R

}
is bounded.

On the other hand, we have that the operator is N is bounded, then N ◦Mϑ is bounded. Thus, thanks
to (5.7), we have thatR is bounded inW−1,p′(x)(Ω).
However, there exists r > 0 such that

|ϑ|−1,p′(x) < r for all ϑ ∈ R,

which leads to

ϑ+ tN ◦Mϑ 6= 0, ϑ ∈ ∂Rr(0) and t ∈ [0, 1],

whereRr(0) is the ball of center 0 and radius r inW−1,p′(x)(Ω).
Moreover, by Lemma 3.11, we conclude that

I +N ◦M ∈ FM(Rr(0)) and I = G ◦M ∈ FM(Rr(0)).
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On another side, taking into account that I ,N andM are bounded, then I+N ◦M is bounded. Hence,
we infer that

I +N ◦M ∈ FM,B(Rr(0)) and I = G ◦M ∈ FM,B(Rr(0)).

Next, we define the homotopy

H : [0, 1]×Rr(0)→W−1,p′(x)(Ω)

(t, ϑ) 7→ H(t, ϑ) := ϑ+ tN ◦Mϑ.

Hence, thanks to the properties of the degree d seen in Theorem 3.14, we obtain

d(I +N ◦M,Rr(0), 0) = d(I,Rr(0), 0) = 1 6= 0,

what implies that there exists ϑ ∈ Rr(0) which verifies

ϑ+N ◦Mϑ = 0.

Finally, we infer that u =Mϑ is a weak solution of (1.2). The proof is completed. �
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