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Abstract. In the present paper, we obtain the inclusion relations of the harmonic class TH(ε, ξ) with the
classes KH and S∗

H, T ΨH (σ) and T ΦH (σ) associated with the operator Ξ defined by by applying certain
convolution operator involving Poisson distribution series. Several corollaries and consequences of the
main results are also obtained.
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1. Introduction and definitions

Let H be the family of all harmonic functions of the form f = $ + κ, where

$(ζ) = ζ +
∞∑
j=2

cjζ
j , κ(ζ) =

∞∑
j=1

djζ
j , |d1| < 1. (1)

are analytic in the open unit disk E= {ζ : |ζ| < 1} for which f(0) = fζ(0)− 1 = 0.Furthermore, let SH
denote the family of functions f = $ + κ that are harmonic univalent and sense preserving in E.

Note that the family SH reduces to the class S of normalized analytic univalent functions if the
co-analytic part of its member is zero.

In 1984 Clunie and Sheil-Small [9] investigated the class SH as well as its geometric subclasses
and obtained some coefficient bounds. For more results on harmonic functions one may refer to
[4, 11, 12, 18, 19, 24, 25, 32, 33].

We also let the subclass S0H of SH as

S0H =
{
f = $ + κ ∈ SH : κ′ (0) = d1 = 0

}
.

The classes S0H and SH were first studied in [9].
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A sense-preserving harmonic mapping f ∈ S0H is in the class S∗ if the range f(E) is starlike with
respect to the origin. A function f ∈ S∗H is called a harmonic starlike mapping in E. Also a function f
defined in E belongs to the class KH if f ∈ S0H and if f(E) is a convex domain. A function f ∈ KH is
called harmonic convex in E. Analytically, we have

f ∈ S∗H iff arg
(
∂

∂θ
f
(
reiθ

))
≥ 0,

and

f ∈ KH iff ∂

∂θ

{
arg

(
arg

(
∂

∂θ
f
(
reiθ

)))}
≥ 0,

ζ = reiθ ∈ E, 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1.

For definitions and properties of these classes, one may refer to [4].

Let TH be the class of functions in SH that may be expressed as f = $+ κ, where

$ (ζ) = ζ −
∞∑
j=2

|cj | ζj ‚ κ (ζ) =

∞∑
j=1

|dj | ζj ‚ |d1| < 1. (2)

For 0 ≤ σ < 1, let
ΨH (σ) =

{
f ∈ H : Re

(
f ′ (ζ)

ζ ′

)
≥ σ, ζ = reiθ ∈ E

}
,

and
ΦH (σ) =

{
f ∈ H : Re

(
f ′′ (ζ)

ζ ′′

)
≥ σ, ζ = reiθ ∈ E

}
where

ζ ′ =
∂

∂θ

(
ζ = reiθ

)
, ζ ′′ =

∂

∂θ

(
ζ ′
)
, f ′ (ζ) =

∂

∂θ
f
(
reiθ

)
, f ′′ =

∂

∂θ

(
f ′ (ζ)

)
.

Define
T ΨH (σ) = ΨH (σ) ∩ TH and T ΦH (σ) = ΦH (σ) ∩ TH.

The classes TH , ΨH (σ) , T ΨH (σ) , ΦH (σ) and T ΦH (σ) were introduced and studied in [3] and [32].
Aini and Suzeini [5] introduced and studied the class TH(ε, ξ) of functions of the form (2) that satisfy

the condition
Re
{
f ′(ζ) + εζf ′′ (ζ)

}
> 1− |ξ| ,

for some ε ≥ 0 and ξ ∈ C. In particular for ε = 0, we get the class TH(ξ) which satisfy the condition

Re f ′(ζ) > 1− |ξ| .

It is well known that the special functions play an important role in geometric function theory, espe-
cially in the solution by de Branges of the famous Bieberbach conjecture. Recently several researchers
have studied the geometric properties of analytic functions associating with hypergeometric functions



Asia Pac. J. Math. 2023 10:17 3 of 11

(see [7,15,20,34]), Bessel functions (see [8,15]), Struve functions (see [16,35]), Poisson distribution
series (see [6, 21, 24]) and Pascal distribution series (see [10,14]).

Very recently, Porwal [27](see also, [17, 23]) introduced a Poisson distribution series as

K (t, ζ) = ζ +

∞∑
j=2

tj−1

(j − 1)!
e−tζj .

Now, for t1, t2 > 0, Porwal and Srivastava [26] introduced the operator Ξ(t1, t2) for f(ζ) ∈ SH as

Ξ(f) = Ξ(t1, t2)f(ζ) = K(t1, ζ) ∗$(ζ) +K(t2, ζ) ∗ κ(ζ) = $(ζ) + κ(ζ), (3)

where
$(ζ) = ζ +

∞∑
j=2

tj−11

(j − 1)!
e−t1cjζ

j ,κ(ζ) = d1ζ +
∞∑
j=2

tj−12

(j − 1)!
e−t2djζ

j . (4)

for any function f = $ + κ in H.

Motivated the work of Porwal and Srivastava [26] (see also, [1], [13], [28]- [31], [36]), and by
applying the convolution operator Ξ, we establish a number of connections between the classes TH(ε, ξ),

KH, ΨH(σ) and ΦH(σ).

2. Preliminary lemmas

To establish our main results, we need the following Lemmas.

Lemma 1. [5] Let f = $ + κ where $ and κ are given by (2) and suppose that ε ≥ 0 and ξ ∈ C. Then

f ∈ TH(ε, ξ) if
∞∑
j=2

j (1− ε+ jε) |cj |+
∞∑
j=1

j (1− ε+ jε) |dj | ≤ |ξ| . (5)

Moreover, if f ∈ H(ε, ξ), then

|cj | ≤
|ξ|

j (1− ε+ jε)
, j ≥ 2, (6)

and

|dj | ≤
|ξ|

j (1− ε+ jε)
, j ≥ 1. (7)

Lemma 2. [4] Let f = $+κ where$ and κ are given by (2) and suppose that 0 ≤ σ < 1. Then f ∈ T ΨH(σ)

if and only if
∞∑
j=2

j|cj |+
∞∑
j=1

j|dj | ≤ 1− σ. (8)

Moreover, if f ∈ T ΨH(σ), then

|cj | ≤
1− σ
j

, j ≥ 2, (9)

and

|dj | ≤
1− σ
j

, j ≥ 1. (10)
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Lemma 3. [3] Let f = $+κ where$ and κ are given by (2), and suppose that 0 ≤ σ < 1. Then f ∈ T ΦH(σ)

if
∞∑
j=2

j2|cj |+
∞∑
j=1

j2|dj | ≤ 1− σ. (11)

Moreover, if f ∈ T ΦH(σ), then

|cj | ≤
1− σ
j2

, j ≥ 2 (12)

and

|dj | ≤
1− σ
j2

, j ≥ 1. (13)

Lemma 4. [9] If f = $ + κ ∈ S∗H where $ and κ are given by (1) with d1 = 0,then

|cj | ≤
(2j + 1)(j + 1)

6
and |dj | ≤

(2j − 1)(j − 1)

6
. (14)

Lemma 5. [9] If f = $ + κ ∈ KH where $ and κ are given by (1) with d1 = 0, then

|cj | ≤
j + 1

2
and |dj | ≤

j − 1

2
. (15)

For convenience throughout in the sequel, we use the following notations:
∞∑
j=2

tj−1

(j − 1)!
= et − 1

and
∞∑
j=j

tj−1

(j − j)!
= tj−1et, j ≥ 2.

3. Inclusion relations of the class TH(ε, ξ)

In this section we will prove the inclusion relations of the harmonic class TH(ε, ξ) with the classes
KH and S∗H associated of the operator Ξ defined by (3).

Theorem 6. Let t1, t2 > 0, ε ≥ 0, σ ∈ [0, 1) and ξ ∈ C. If[
2ε
(
t41 + t42

)
+ (21ε+ 2)t31 + (54ε+ 15) t21 + (30ε+ 24) t1 + 6

(
1− e−t1

)
+(2− 3ε)t32 + (24ε− 11) t22 + (6ε+ 6) t2

]
≤ 6 |ξ| , (16)

then

Ξ(S∗H) ⊂ TH(ε, ξ).

Proof. Let f = $ + κ ∈ S∗H where $ and κ are of the form (2) with d1 = 0. We need to show that
Ξ(f) = $ + κ ∈ TH(ε, ξ), where $ and κ defined by (4) with d1 = 0 are analytic functions in E. In
view of Lemma 1, we need to prove that

Q(t1, t2, ε) ≤ |ξ| ,
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where
Q(t1, t2, ε) =

∞∑
j=2

j (1− ε+ jε)

∣∣∣∣∣e−t1tj−11

(j − 1)!
cj

∣∣∣∣∣+
∞∑
j=2

j (1− ε+ jε)

∣∣∣∣∣e−t2tj−12

(j − 1)!
dj

∣∣∣∣∣ . (17)

Using the inequalities (14) of Lemma 4, we get

Q(t1, t2, ε)

≤ 1

6

 ∞∑
j=2

(2j + 1)(j + 1) (j (1− ε+ jε))
e−t1tj−11

(j − 1)!

+

∞∑
j=2

(2j − 1)(j − 1) (j (1− ε+ jε))
e−t2tj−12

(j − 1)!


=

1

6

 ∞∑
j=2

[
2εj4 + (2 + ε)j3 + (3− 2ε)j2 + (1− ε)j

] e−t1tj−11

(j − 1)!

+
∞∑
j=2

[
2εj4 + (2− 5ε) j3 + (4ε− 3)j2 + (1− ε)j

] e−t2tj−12

(j − 1)!

 (18)

Writing
j = (j − 1) + 1, (19)

j2 = (j − 1)(j − 2) + 3(j − 1) + 1, (20)

and
j3 = (j − 1)(j − 2)(j − 3) + 6(j − 1)(j − 2) + 7(j − 1) + 1, (21)

j4 = (j − 1)(j − 2)(j − 3)(j − 4) + 10(j − 1)(j − 2)(j − 3) + 25(j − 1)(j − 2) + 15(j − 1) + 1, (22)

in (18), we have

Q(t1, t2, ε)

≤ 1

6

 ∞∑
j=2

[2ε(j − 1)(j − 2)(j − 3)(j − 4) + (21ε+ 2) (j − 1) (j − 2) (j − 3)

+ (54ε+ 15) (j − 1) (j − 2) + (30ε+ 24) (j − 1) + 6]
e−t1tj−11

(j − 1)!

+

∞∑
j=2

[2ε(j − 1)(j − 2)(j − 3)(j − 4) + (2− 3ε) (j − 1) (j − 2) (j − 3)

+(24ε− 11) (j − 1) (j − 2) + (6ε+ 6) (j − 1)]
e−t2tj−12

(j − 1)!

]
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=
1

6

2ε

∞∑
j=5

e−t1tj−11

(j − 5)!
+ (21ε+ 2)

∞∑
j=4

e−t1tj−11

(j − 4)!
+ (54ε+ 15)

∞∑
j=3

e−t1tj−11

(j − 3)!

+ (30ε+ 24)
∞∑
j=2

e−t1tj−11

(j − 2)!
+ 6

∞∑
j=2

e−t1tj−11

(j − 1)!
+ 2ε

∞∑
j=5

e−t2tj−12

(j − 5)!
+ (2− 3ε)

∞∑
j=4

e−t2tj−12

(j − 4)!

+ (24ε− 11)

∞∑
j=3

e−t2tj−12

(j − 3)!
+ (6ε+ 6)

∞∑
j=2

e−t2tj−12

(j − 2)!


=

1

6

[
2εt41 + (21ε+ 2)t31 + (54ε+ 15) t21 + (30ε+ 24) t1 + 6

(
1− e−t1

)
+2εt42 + (2− 3ε)t32 + (24ε− 11) t22 + (6ε+ 6) t2

]
.

But this last expression is bounded above by |ξ| if (16) holds. �

Theorem 7. Let t1, t2 > 0, ε ≥ 0, σ ∈ [0, 1) and ξ ∈ C. If

[
ε
(
t31 + t32

)
+ (6ε+ 1) t21 + (6ε+ 4) t1 + 2

(
1− e−t1

)
+ (4ε+ 1) t22 + (2ε+ 2) t2

]
≤ 2 |ξ| , (23)

then

Ξ(KH) ⊂ TH(ε, ξ).

Proof. Let f = $ + κ ∈ KH where $ and κ are of the form (2) with d1 = 0.We need to show that
Ξ(f) = $ + κ ∈ TH(ε, ξ), where $ and κ defined by (4) with d1 = 0 are analytic functions in E. In
view of Lemma 1, we need to prove that

Q(t1, t2, ε) ≤ |ξ| ,

where Q(t1, t2, ε) as given in(17). Using the inequalities (15) of Lemma 5, we get

Q(t1, t2, ε)

≤ 1

2

 ∞∑
j=2

(j + 1) (j (1− ε+ jε))
e−t1tj−11

(j − 1)!
+
∞∑
j=2

(j − 1) (j (1− ε+ jε))
e−t2tj−12

(j − 1)!


=

1

2

 ∞∑
j=2

[
εj3 + j2 + (1− ε)j

] e−t1tj−11

(j − 1)!

+

∞∑
j=2

[
εj3 + (1− 2ε)j2 − (1− ε)j

] e−t2tj−12

(j − 1)!

 . (24)
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Using the equations (19)-(21) in (24), we have

Q(t1, t2, ε)

≤ 1

2

 ∞∑
j=2

[ε (j − 1) (j − 2) (j − 3) + (6ε+ 1) (j − 1) (j − 2) + (6ε+ 4) (j − 1) + 2]
e−t1tj−11

(j − 1)!

+
∞∑
j=2

[ε (j − 1) (j − 2) (j − 3) + (4ε+ 1) (j − 1) (j − 2) + (2ε+ 2) (j − 1)]
e−t2tj−12

(j − 1)!


=

1

2

ε ∞∑
j=4

e−t1tj−11

(j − 4)!
+ (6ε+ 1)

∞∑
j=3

e−t1tj−11

(j − 3)!
+ (6ε+ 4)

∞∑
j=2

e−t1tj−11

(j − 2)!
+ 2

∞∑
j=2

e−t1tj−11

(j − 1)!

+ε

∞∑
j=4

e−t2tj−12

(j − 4)!
+ (4ε+ 1)

∞∑
j=3

e−t2tj−12

(j − 3)!
+ (2ε+ 2)

∞∑
j=2

e−t2tj−12

(j − 2)!


=

1

2

[
εt31 + (6ε+ 1) t21 + (6ε+ 4) t1 + 2

(
1− e−t1

)
+ εt32 + (4ε+ 1) t22 + (2ε+ 2) t2

]
.

But this last expression is bounded above by |ξ| if (23) holds. �

Next we determine connection between T jH(σ) and TH(ε, ξ).

Theorem 8. Let t1, t2 > 0, ε ≥ 0, σ ∈ [0, 1) and ξ ∈ C. If

(1− σ)[ε (t1 + t2) + (2− e−t1 − e−t2)] ≤ |ξ| − |d1| ,

then

Ξ(T ΨH(σ)) ⊂ TH(ε, ξ).

Proof. Let f = $ + κ ∈ T ΨH(σ) where $ and κ are given by (2). In view of Lemma 1, it is enough to
show that L(t1, t2, ε) ≤ |ξ|, where

L(t1, t2, ε) =

∞∑
j=2

j (1− ε+ jε)

∣∣∣∣∣e−t1tj−11

(j − 1)!
cj

∣∣∣∣∣+ |d1|+
∞∑
j=2

j (1− ε+ jε)

∣∣∣∣∣e−t2ttj−12

(j − 1)!
dj

∣∣∣∣∣ . (25)

Using the inequalities (9) and (10) of Lemma 2, it follows that

L(t1, t2, ε) ≤ (1− σ)

 ∞∑
j=2

(1− ε+ jε)
e−t1tj−11

(j − 1)!
+

∞∑
j=2

(1− ε+ jε)
e−t2tj−12

(j − 1)!

+ |d1|

= (1− σ)

 ∞∑
j=2

(ε (j − 1) + 1)
e−t1tj−11

(j − 1)!
+

∞∑
j=2

(ε (j − 1) + 1)
e−t2tj−12

(j − 1)!

+ |d1|

= (1− σ)
[
εt1 +

(
1− e−t1

)
+ εt2 +

(
1− e−t2

)]
+ |d1|

≤ |ξ| ,

by the given hypothesis, this completes the proof of Theorem 8. �
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Next we find the relationship between the classes T ΦH(σ) and TH(ε, ξ).

Theorem 9. Let t1, t2 > 0, ε ≥ 0, σ ∈ [0, 1) and ξ ∈ C. If

(1− σ)

[
ε(2− e−t1 − e−t2) +

1− ε
t1

(1− e−t1 − t1e−t1)

+
1− ε
t2

(1− e−t2 − t2e−t2)

]
≤ |ξ| − |d1|,

then

Ξ(T ΦH(σ)) ⊂ TH(ε, ξ).

Proof. Making use of Lemma 1, we need only to prove that L(t1, t2, ε) ≤ |ξ|, where L(t1, t2, ε) as given
in (25). Using the inequalities (12) and (13) of Lemma 3, it follows that

L(t1, t2, ε) =
∞∑
j=2

j (1− ε+ jε)

∣∣∣∣∣e−t1tj−11

(j − 1)!
cj

∣∣∣∣∣
+ |d1|+

∞∑
j=2

j (1− ε+ jε)

∣∣∣∣∣e−t2tj−12

(j − 1)!
dj

∣∣∣∣∣
≤ (1− σ)

 ∞∑
j=2

(1− ε+ jε)

j

e−t1tj−11

(j − 1)!

+
∞∑
j=2

(1− ε+ jε)

j

e−t2tj−12

(j − 1)!

+ |d1|

= (1− σ)

 ∞∑
j=0

(
ε+

1− ε
j + 2

)
e−t1tj+1

1

(j + 1)!

+
∞∑
j=0

(
ε+

1− ε
j + 2

)
e−t2tj+1

2

(j + 1)!

+ |d1|

= (1− σ)

[
ε(1− e−t1) +

1− ε
t1

(1− e−t1 − t1e−t1 )

+ε(1− e−t2) +
1− ε
t2

(1− e−t2 − t2e−t2)

]
+ |d1|

≤ |ξ| ,

by given hypothesis. �

Theorem 10. Let t1, t2 > 0, ε ≥ 0 and ξ ∈ C. If

e−t1 + e−t2 ≥ 1 +
|d1|
|ξ|
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then

Ξ(TH(ε, ξ)) ⊂ TH(ε, ξ).

Proof. Using the same technique as in the proof of Theorem 3.2.6, Lemma 1 and the inequalities (6)
and (7) of Lemma 1, we obtain

L(t1, t2, ε) ≤ |ξ|

 ∞∑
j=2

e−t1tj−11

(j − 1)!
+

∞∑
j=2

e−t2tj−12

(j − 1)!

+ |d1|

= |ξ|

 ∞∑
j=0

e−t1tj+1
1

(j + 1)!
+

∞∑
j=0

e−t2tj+1
2

(j + 1)!

+ |d1|

= |ξ|
[
e−t1(et1 − 1) + e−t2(et2 − 1)

]
+ |d1|

= |ξ| [2− e−t1 − e−t2 ] + |d1|

≤ |ξ| ,

by the given condition and this completes the proof of the theorem. �

4. Corollaries and Consequences

In this section, we apply our main results in order to deduce each of the following new corollaries
and consequences.

Corollary 11. Let t1, t2 > 0 and ξ ∈ C. If

2t31 + 15t21 + 24t1 + 6
(
1− e−t1

)
+ 2t32 − 11t22 + 6t2 ≤ 6 |ξ| ,

then

Ξ(S∗H) ⊂ TH(ξ).

Corollary 12. Let t1, t2 > 0 and ξ ∈ C. If

t21 + 4t1 + 2
(
1− e−t1

)
+ t22 + 2t2 ≤ 2 |ξ| ,

then

Ξ(KH) ⊂ TH(ξ).

Corollary 13. Let t1, t2 > 0, σ ∈ [0, 1) and ξ ∈ C. If

(1− σ)
(
2− e−t1 − e−t2

)
≤ |ξ| − |d1|,

then

Ξ(T ΨH(σ)) ⊂ TH(ξ).
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Corollary 14. Let t1, t2 > 0, σ ∈ [0, 1) and ξ ∈ C. If

(1− σ)

(
1

t1
(1− e−t1 − t1e−t1) +

1

t2
(1− e−t2 − t2e−t2)

)
≤ |ξ| − |d1|,

then

Ξ(T ΦH(σ)) ⊂ TH(ξ).

5. Conclusions

The main purpose of this article is to find some inclusion relations of the harmonic class TH(ε, ξ)

with the classes S∗H of harmonic starlike functions and KH of harmonic convex functions, also for the
harmonic classes T ΨH (σ) and T ΦH (σ) associated with the operator Ξ defined by Poisson distribution
series. Making use of the operator Ξ could inspire researchers to find new inclusion relations for new
harmonic classes of analytic functions with the classes S∗H, KH, T ΨH (σ) and T ΦH (σ) .
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