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Abstract. This study presents a non-linear mathematical model to analyze the impact of corruption on
a society where honest individuals are exposed to corrupt practices. The model considers key factors
such as the level of corruption, the behavior of honest individuals, and the dynamics of corruption. We
estimate the basic reproduction number of the model, accounting for constant recruitment and death-based
demographic factors. The equilibria of the model have been analyzed in depth, and their stability has been
comprehensively investigated and discussed. We carried out a sensitivity analysis on the proposed model
in order to determine the primary parameters that are responsible for the model’s basic reproduction
number and conducted the bifurcation analysis. We present numerical simulations in order to highlight
the outcomes of our analytical work. Our findings suggest that λ, ρ and β2 have a significant impact on the
corrupted and honest compartments.
2020 Mathematics Subject Classification. 92D30.
Key words and phrases. corruption dynamics; basic reproduction number; stability analysis; sensitivity
analysis; bifurcation analysis; numerical simulation.

1. Introduction

Corruption has been a widespread problem in societies all over the world, and it has a negative
impact on economic growth, political equilibrium, and social cohesion. There has been a significant
amount of research conducted on the effects of corruption; however, the influence that corruption
has on the actions of honest indivuduals has received comparatively little attention. In this sense, a
mathematical model can serve as a helpful instrument for the purpose of conducting an analysis of the
dynamics of corruption in a society.
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Mathematical modeling is one method that can be used to gain an understanding of corruption
because it can provide insights into the dynamics of corruption as well as its impact on society and
this has been employed in recent years to examine corruption’s prevalence in society and find ways to
combat it. The compartmental model, traditionally employed in the study of infectious diseases [1]- [4],
has been adapted for investigating dynamics of compartmental corruption. [5] proposed amathematical
model for corruption that accounts for jail anti-corruption awareness and counseling. They determined
the basic reproduction number and examines corruption-free and endemic equilibrium points and
analysis on the basic reproduction number. Simulations match analytical findings. [6] used media
coverage tomodel corruption spread and control.The basic reproduction number and positive, bounded
model are determined. The model’s corruption-free, endemic, and corrupted equilibria are examined
for local and global stability. MATLAB’s ode45 numerical simulations confirm the study’s findings. A
nonlinear deterministic model was proposed by [7] to analyze the dynamics of corruption utilizing
stability theory of differential equations. The next-generation matrix method was used to calculate
the basic reproduction number, and conditions for both local and global asymptotic stability of the
corruption-free and endemic equilibria were established. The model showed forward bifurcation.
The model was then expanded to an optimal control problem with two time-dependent controls to
evaluate the impact of corruption on the human population. Using Pontryagin’s maximum principle,
the optimal control of corruption transmission was derived. Numerical simulations indicated that
an integrated control strategy was necessary to combat corruption. Using age-appropriate sexual
information and guidance/counseling, [8] proposed amathematicalmodel to examinemoral corruption.
Sexual knowledge divided the population into three groups. The next-generation matrix technique was
employed to estimate the basic reproduction number in thewell-posedmodel. A globally asymptotically
stable morally corrupt-free equilibrium was established. Forward bifurcation showed that moral
corruption could be eliminated. Numerical simulations revealed that an integrated control technique
was best for moral corruption transmission and the article also discussed moral corruption-fighting
factors.

To effectively address corruption and corrupt practices, it is essential to have a deep understanding
of the corrupt process, as well as prevention and disengagement programs. Mathematical models
can serve as an initial step in achieving this goal. Differential equations have been employed to
describe issues in the social sciences since the work of [9], who was a trailblazer in the application of
mathematical techniques. A deterministic SCHRS mathematical model and an extended stochastic
model were developed by [10] to analyze corruption transmission dynamics. Themodels covered topics
such as equilibrium points, reproduction numbers, and stabilities. Next-generation matrix method
and twice Ito’s differentiable formula were used to calculate basic reproduction numbers. Sensitivity
analyses and numerical simulations were performed. Results suggested that the number of corrupted
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individuals in the community increased with the rate of interaction between corrupted and susceptible
populations, and decreased with recovery through education or punishment. [11] addressed the issue
of corruption on a global scale and formulated a mathematical model for its dynamics under control
measures. The analysis of the model identified the existence of both corruption free equilibrium and
corruption endemic equilibrium, and the effective reproduction number was calculated using the
next-generation matrix method. The study concluded that mass education and religious teaching
were the most effective parameters for controlling corruption, and combining both strategies yields
better results in reducing corruption in a shorter time frame than using them separately. The study
recommended the simultaneous application of both mass education and religious teaching to control
corruption. [12] developed and evaluated an epidemiological model that incorporates an immunity
clause to examine corruption. The simulation results suggested that it would be difficult to successfully
combat corruption if the immunity clause remained in place. We conducted a literature review on the
spread and transmission of corruption as if it were an infectious disease. We looked at the work of
other scholars who have used mathematical modelling approaches to study the dynamics of corruption
and some of these are as cited in references [13]- [18].

The aim of this study is to present a model for the spread of corruption, incorporating honest and
corrupted compartments, using the framework of epidemiology to describe the dynamic transmission
process. The remainder of this study is organized as follows: Section 2 outlines the formulation of the
mathematical model. In section 3, we estimate the basic reproduction number, analysis of solution
positivity and boundedness, and investigation of local and global stabilities of the corruption-free
equilibrium. We conduct sensitivity and bifurcation analyses. Section 4 presents the results of numerical
simulations. Finally, Section 5 provides the concluding remarks.

2. Model Problem

We provide a deterministic model that is comprised of five ordinary differential equations as a
means of illustrating the dynamic nature of corruption through the use of a mathematical model. The
framework of the model is divided into five unique compartments, each of which is meant to reflect the
whole human population N(t) at any given point in time (t). These compartments include susceptible
individuals (S(t)), exposed individuals (E(t)), corrupted individuals (C(t)), honest individuals (H(t)),

and individuals who have recovered from corruption (R(t)) such that

N(t) = S(t) + E(t) + C(t) +H(t) +R(t).

Susceptible individuals (S(t) are those who are not involved in corrupt activities but are vulnerable to
corruption, exposed individuals (E(t), those who are exposed to corruption but who do not participate
in corrupt practices, corrupt individuals (C(t)) are individuals who are involved in corrupt practises,
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honest individuals (H(t)) are those who are truthful and are incapable of engaging in corrupt practices
while recovered individuals (R(t)) are individuals who stopped to do or practise corrupt activities.
We assume positive recruitment rate to both susceptible and honest compartments Ψ while π is the
proportion of the recruitment joining susceptible and (1 − π) is the proportion of the recruitment
joinning honest. The susceptible individuals can join exposed compartment by contact rate β1 with
corrupt individuals and honest individuals can move to exposed compartment by contact rate β2

with corrupt individuals. Here, we assume that β2 > β1. The exposed individuals can fully become
corrupted individual with rate ρτ while exposed individuals may leave to honest compartment with
rate τ(1− ρ). The corrupt individuals can join the recover individuals with rate θ or go to prison with
rate λ. The recovered individuals are joined to susceptible individuals and honest individuals with rate
αε and α(1− ε) respectively. We incorporate natural death in each of the compartments. Fig.1 below
shows the transmission dynamics of the model.

Figure 1. Schematic diagram depicting the transmission dynamics of model

dS(t)

dt
= πΨ− β1C(t)S(t) + αεR(t)− µS(t),

dE(t)

dt
= (β1S(t) + β2H(t))C(t)− (τ + µ)E(t),

dC(t)

dt
= ρτE(t)− (λ+ θ + µ)C(t),

dR(t)

dt
= θC(t)− (α+ µ)R(t),

dH(t)

dt
= (1− π)Ψ + (1− ρ)τE(t) + (1− ε)αR(t)− β2C(t)H(t)− µH(t),

(1)

with initial conditions

S(0) = S0, E(0) = E0, C(0) = C0, R(0) = R0, H(0) = H0

where
N(t) = S(t) + E(t) + C(t) +R(t) +H(t).
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Variables & Parameters Description

S(t) Susceptible
E(t) Exposed individual
C(t) Corrupt individual
R(t) Recovered individual
H(t) Honest individual

Ψ Recruitment rate of susceptible and honest individuals
π proportion of recruitment that susceptible
β1 Contact rate of corrupted human with susceptible
β2 Contact rate of corrupted human with honest individuals
ε Proportion of recovered that becomes susceptible
α Conversion rate of recovered to honest or susceptible
τ Rate of exposed showing honesty or becoming corrupt
ρ Proportion of exposed that becomes corrupt
θ Conversion rate of corrupt to recover
µ Natural death rate
λ Rate of imprisonment due to corruption

Table 1. Description of variables and parameters

3. The Model basic properties

3.1. The basic reproduction number.

F =


(β1S + β2H)C

0

0

0

 , V =


(τ + µ)E

−ρτE + (λ+ θ + µ)C

−θC + (α+ µ)R(t)

−(1− π)Ψ− (1− ρ)τE − (1− ε)αR+ β2CH + µH(t)



Equation (1) has corrupt free equilibrium E0 = (Ψ
µ , 0, 0, 0,

(1−π)Ψ
µ ). The Jacobian of F and V at E0 are

F =


0 β2(1−π)Ψ

µ + β1Ψ
µ 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 V =


µ+ τ 0 0 0

−ρτ µ+ θ + λ 0 0

0 −θ α+ µ 0

− (1− ρ) τ β2(1−π)Ψ
µ − (1− ε)α µ
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and the inverse of V is

V −1 =


1

µ+τ 0 0 0

ρτ
(µ+θ+λ)(µ+τ)

1
µ+θ+λ 0 0

θρτ
(µ+θ+λ)(µ+τ)(α+µ)

θ
(µ+θ+λ)(α+µ)

1
α+µ 0

AA Ψαπβ2+Ψµπβ2−αθµε−Ψαβ2−Ψµβ2+αθµ
µ2(µ+θ+λ)(α+µ)

− (−1+ε)α
(α+µ)µ

1
µ

 ,

where

AA =
τ
(
(Ψ (π − 1) (α+ µ)β2 − µαθε) ρ− (α+ θ + λ) (ρ− 1)µ2 −

(
((ρ− 1)λ− θ)α+ (ρ− 1)µ2

)
µ
)

(τ + µ) (θ + λ+ µ) (α+ µ)µ2
.

FV −1 =



(
β2(1−π)Ψ

µ
+
β1Ψ
µ

)
ρτ

(τ+µ)(θ+λ+µ)

β2(1−π)Ψ
µ

+
β1Ψ
µ

θ+λ+µ 0 0

0 0 0 0

0 0 0 0

0 0 0 0


The matrix, FV −1, which is non-negative, is the next generation matrix of equations (1). The basic
reproduction number that corresponds to this is

R0 =
Ψρτβ1

µ (µ+ θ + λ) (µ+ τ)
− Ψρτβ2 (π − 1)

µ (µ+ θ + λ) (µ+ τ)
(2)

3.2. Analysis of the Positivity and Boundedness of the Solution to the Model. To establish the
positivity and boundedness of equation (1), we employ the following theorem

Theorem 3.1. Taking into account each compartment, which represents the human population, let the
initial value for each compartment be {S(t) ≥ 0, E(t) ≥ 0, C(t) ≥ 0, H(t) ≥ 0, R(t) ≥ 0} ∈ Ω,

and

Ω =
{

(S(t), E(t), C(t), H(t), R(t)) ∈ R5
+ : 0 ≤ S(t) + E(t) + C(t) +H(t) +R(t) ≤ Ψ

µ

}
.

Therefore,the solution set {S(t), E(t), C(t), H(t), R(t)} for model (1) is positive for all values of time t.

Proof. Let
q = sup{t > 0 : S(t) > 0, E(t) > 0, C(t) > 0, H(t) > 0, R(t) > 0} ∈ [0, t]

When t > 0, the following inequality holds
dS(t)

dt
= πΨ− β1C(t)S(t) + αεR(t)− µS(t) ≥ πΨ− (β1C(t)− µ)S(t),

i.e
dS(t)

dt
+ (β1C(t)− µ)S(t) ≥ πΨ (3)

This is first order non-homogeneous ordinary differential equation and is not exact. Therefore, the
integrating factor is given as

IF = eµt+β1

∫ t
0 C(t)dt (4)
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by applying (4) on (3), we have
d

dt

[
S(t)eµt+β1

∫ t
0 C(n)dn

]
≥ πΨeµt+β1

∫ t
0 C(n)dn

Solve and integrate from 0 to q, we obtain

S(q) = e−{µq+β1

∫ q
0 C(n)dn} ×

(
S(0) + πΨ

∫ q

0
eµt+β1

∫ t
0 C(n)dn

)
> 0. (5)

Because all of the state variables are positive in the range [0, q], hence the value of S(t) > 0.Utilizing the
same thought process, we can show that E(t), C(t), H(t) and R(t) are all greater or equal to zero. �

Theorem 3.2. Assume that none of the model’s initial conditions have a negative value in the R6, all the
solutions of the model (1) has an upper and lower limit if limt→∞ supN(t) ≤ Ψ

µ , then

N(t) = S(t) + E(t) + C(t) +H(t) +R(t)

Proof.
dN(t)

dt
=
dS(t)

dt
+
dE(t)

dt
+
C(t)

dt
+
dH(t)

dt
+
dR(t)

dt

dN(t)

dt
= Ψ− µ(S(t) + E(t) + C(t) +H(t) +R(t))− λC = Ψ− µN(t)− λC(t)

dN(t)

dt
≤ Ψ− µN(t) (6)

Solving equation (6), we obtain

N(t) ≤ Ψ

µ
−
(Ψ

µ
−N(0)

)
e−µt (7)

Taking the limit of equation (7) as t goes to infinity, we have

lim
t→∞

supN(t) ≤ Ψ

µ
(8)

Equation (8) demonstrated that the model (1) is bounded. �

3.3. Corruption Free Equilibrium Local Asymptotic Stability. If R0 < 1, the Corruption Free Equilib-
rium (CFE) is locally asymptotically stable and unstable ifR0 > 1. To determine the local stability of the
CFE, one can analyze the real parts of the eigenvalues of the Jacobiam matrix formed from the model
(1) with respect to the state variables S(t), E(t), C(t), H(t) and R(t). If all eigenvalues are negative,
then the equilibrium point is stable; otherwise, it is unstable.
Evaluate the Jocobian matrix of model (1) at corruption free equilibrium E0,we obtain

J(E0) =



−µ 0 −β1Ψ
µ αε 0

0 −τ − µ β2(1−π)Ψ
µ + β1Ψ

µ 0 0

0 ρτ −λ− θ − µ 0 0

0 0 θ −α− µ 0

0 (1− ρ) τ −β2(1−π)Ψ
µ (1− ε)α −µ
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The eigenvalues of the matrix J(E0) are given as:

λ1 = −(τ + µ), λ2 = −(α+ µ), λ4 = −µ, λ5 = −µ

λ3 = −(β2 (−1 + π)− β1) ρτΨ + µ (µ+ θ + λ) (τ + µ)

(τ + µ)µ

Sice all the eigenvalues are negative, this indicates that the CFE is locally stable in an asymptotic sense.

3.4. Corruption Free Equilibrium Global Stability. Here we adopt the LaSalle’s invariance principle
to determine the global stability of corruption free equilibrium (CFE). Suppose K = C2

2 , therefore
dK
dC = C. From second equation in model(1),we have

dC(t)

dt
= ρτE(t)− (λ+ θ + µ)C(t)

Using chain’s rule
dK

dt
=
dK

dC
× dC

dt

= C
(
ρτE(t)− (λ+ θ + µ)C

)
= C2

(ρτ(β1S(t) + β2H(t))

τ + µ
− (λ+ θ + µ)

)
,

using E(t) at corrupt free equilibrium and the basic reproduction number, we have τ + µ =

Ψρτ(β1−β2(π−1))
R0µ(λ+θ+µ)

dK

dt
= C2(λ+ θ + µ)

[
µ(β1S(t) + β2H(t))

β1 − β2(π − 1)
R0 − 1

]
but µ(β1S(t)+β2H(t))

β1−β2(π−1) < 1 This implies that

dK

dt
≤ C2(λ+ θ + µ)

[
R0 − 1

]
Therefore

dK

dt
≤ C2(λ+ θ + µ)

[
R0 − 1

]
≤ 0 if R0 ≤ 1 (9)

The corruption free equilibrium (CFE) is globally stable for R0 < 1 in this situation.

3.5. Analytical interpretation and sensitivity analysis of the Basic ReproductionNumber. Sensitivity
is the process of evaluating the impact of individual parameters on the basic reproduction number. This
is done to determine the extent to which each parameter influences the value of the basic reproduction
number. This approach is useful when selecting a corruption control strategy that addresses the most
significant factors in a sensitive manner. In this context, we calculate the sensitivity indices for the basic
reproduction number, R0.

Proposition 3.1. An increase in both parameters Ψ, ρ, τ, β1 and β2 leads to an increase in the basic reproduction

number.
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Proof.
∂R0

∂Ψ
=

ρτ (β1 − β2 (π − 1))

µ (θ + λ+ µ) (τ + µ)
> 0,

∂R0

∂ρ
=

Ψτ (β1 − β2 (π − 1))

µ (θ + λ+ µ) (τ + µ)
> 0

∂R0

∂τ
> 0,

∂R0

∂β1
=

Ψρτ

µ (θ + λ+ µ) (τ + µ)
> 0,

∂R0

∂β2
=

Ψρτ (−π + 1)

µ (θ + λ+ µ) (τ + µ)
> 0

�

Proposition 3.2. An increase in both parameters θ, λ, π and µ leads to an decrease in the basic reproduction

number.

Proof.
∂R0

∂θ
= −Ψρτ (β1 − β2 (π − 1))

µ (θ + λ+ µ)2 (τ + µ)
< 0,

∂R0

∂λ
= −Ψρτ (β1 − β2 (π − 1))

µ (θ + λ+ µ)2 (τ + µ)
< 0

∂R0

∂π
= − Ψρτβ2

µ (θ + λ+ µ) (τ + µ)
< 0,

∂R0

∂µ
< 0

�

Utilising [19]- [20], we define the normalized forward sensitivity index of a variable, L, that depends
differentiably on a parameter, ω is defined as

ZL
ω =

∂L
∂ω
× ω

|L|

A positive normalized forward sensitivity index indicates that an increase in the corresponding in-
dependent variable will lead to an increase in the dependent variable, while a negative normalized
forward sensitivity index indicates that an increase in the independent variable will lead to a decrease
in the dependent variable. The magnitude of the normalized forward sensitivity index can also provide
information on the sensitivity of the dependent variable to changes in the independent variable. A
larger magnitude of normalized forward sensitivity index indicates a stronger influence of the inde-
pendent variable on the dependent variable.
The sensitivity indices of R0 to the model’s parameters are evaluated at the parameter baseline and are
displayed in the table below.
The sensitivity index table reveals that Ψ and ρ are the parameters that exert the most significant
influence on the outcome of the analysis. Based on the value of ZL

ω = +1 for both Ψ and ρ, a 10%
decrease in Ψ and ρwill lead to a 10% reduction in R0 respectively, while a 10% increase in Ψ and ρ
will correspondingly result in a 10% increase in R0 respectively.
In Figure 2, the normalized forward sensitivity indices for the basic reproduction number are showcased,
highlighting how each of the baseline parameter values impact the basic reproduction number.
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S/N Parameter Sensitivity index Comment
1 Ψ +1 Enhanced the spread of corruption
2 τ +0.0211132 Enhanced the spread of corruption
3 β1 +0.7250982 Enhanced the spread of corruption
4 β2 +0.2749018 Enhanced the spread of corruption
5 π −0.0921233 Eradicate the spread of corruption
6 µ −1.0559212 Eradicate the spread of corruption
7 θ −0.9651303 Eradicate the spread of corruption
8 λ −0.0000617 Eradicate the spread of corruption
9 ρ +1 Enhanced the spread of corruption

Table 2. Sensitivity index.

Figure 2. Sensitivity indices graph
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3.6. Bifurcation of dynamical system. Here, we utilize the bifurcation analysis method developed
by [21] to analyze the model (1). Specifying

S(t) = x1, E(t) = x2 C(t) = x3 R(t) = x4 H(t) = x5

The model (q1) undergoes a transformation and becomes
dx1

dt
= πΨ− β1x1x3 + αεx4 − µx1 := f1,

dx2

dt
= (β1x1 + β2x5)x3 − (τ + µ)x2 := f2,

dx3

dt
= ρτx2 − (λ+ θ + µ)x3 := f3,

dx4

dt
= θx3 − (α+ µ)x4 := f4,

dx5

dt
= (1− π)Ψ + (1− ρ)τx2 + (1− ε)αx4 − β2x3x5 − µx5 := f5,

(10)

Given that the value of the bifurcation parameter is assumed to be τ, the fact that R0 = 1 inevitably
leads to the conclusion that

τ = − µ2 (θ + λ+ µ)

πΨρβ2 −Ψρβ1 −Ψρβ2 + λµ+ µ2 + θµ
:= τ ∗ .

We describe the system of ordinary differential equations as

x′(t) = f(x, τ∗)

such that the function f is f : Rn×R→ Rn and is of Cn. The system of differential equations described
earlier is assumed to have an equilibrium point at zero for all parameter values τ∗, i.e f(0, τ∗) = 0, ∀τ∗

The eigenvalues of the characteristic polynomial of the equatin (10), J(E0, τ∗) are written as

λ1 = −(τ + µ), λ2 = −(α+ µ), λ4 = −µ, λ5 = −µ λ3 = 0

Hence, the matrix J(E0, τ
∗), has a simple zero eigenvalue at λ3 = 0 while the remaining eigenvalues

are real and negative.
w = (w1, w2, w3, w4, w5)T denotes the right eigenvector corresponding to the zero eigenvalue λ3 = 0. It
is obtained by the following procedure:

−µ 0 −β1Ψ
µ αε 0

0 −(τ∗ + µ) β2Ψ(1−π)
µ + β1Ψ

µ 0 0

0 ρτ∗ −(λ+ θ + µ) 0 0

0 0 θ −(α+ µ) 0

0 (1− ρ)τ∗ −β2Ψ(1−π)
µ α(1− ε) −µ





w1

w2

w3

w4

w5


=



0

0

0

0

0


Hence

w1 =
ρτ ((π − 1)β2 − β1) (α+ µ) Ψ + αεθµ

µ2 (α+ µ)
w2 = θ + λ+ µ, w3 = ρτ∗
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w4 =
θρτ∗

α+ µ
, w5 =

τ∗(Lρ− µ
(
µ2 + (α+ θ + λ)µ+ αλ

)
ρ+ µ (λ+ θ + µ) (α+ µ))

µ2 (α+ µ)

where

L = Ψ (π − 1) (α+ µ)β2 − αεθµ

As a result, the right eigenvectors is w = (w1, w2, w3, w4, w5)T . Furthermore, the left eigenvector must
fulfill the condition v ·w = 1,which can be expressed as v = (v1, v2, v3, v4, v5, v6) is given by

[
v1, v2, v3, v4, v5

]


−µ 0 −β1Ψ
µ αε 0

0 −(τ∗ + µ) β2Ψ(1−π)
µ + β1Ψ

µ 0 0

0 ρτ∗ −(λ+ θ + µ) 0 0

0 0 θ −(α+ µ) 0

0 (1− ρ)τ∗ −β2Ψ(1−π)
µ α(1− ε) −µ


=



0

0

0

0

0




−µv1 = 0

−(τ∗ + µ)v2 + ρτ∗v3 + (1− ρ)τ∗v4 = 0

−β1Ψ
µ v1 +

(
β2Ψ(1−π)

µ + β1Ψ
µ

)
v2 − (λ+ θ + µ)v3 + θv4 − β2Ψ(1−π)

µ v5 = 0

αεv1 − (α+ µ)v4 + α(1− ε)v5v5 = 0

−µv5 = 0

By solving these equations, we can have

v1 = v4 = v5 = 0, v2 =
1

λ+ 2µ+ τ∗ + θ
, v3 =

τ∗ + µ

ρτ∗ (λ+ 2µ+ τ∗ + θ)

Upon estimating second order partial derivatives at the corrup-free-equilibrium of equation (10), we
obtain the following:

∂2f1

∂x1∂x3
=

∂2f1

∂x3∂x1
= −β1,

∂2f2

∂x1∂x3
=

∂2f2

∂x3∂x1
= β1,

∂2f2

∂x3∂x5
=

∂2f2

∂x5∂x3
= β2,

∂2f5

∂x3∂x5
=

∂2f5

∂x5∂x3
= −β2,

∂2f2

∂x2∂τ
=

∂2f2

∂τ∂x2
= −1,

∂2f3

∂x2∂τ
=

∂2f3

∂τ∂x2
= ρ

and
∂2f5

∂x2∂τ
=

∂2f5

∂τ∂x2
= (1− ρ).

On the other hand, the values of all of the other second-order derivatives return back to zero.
To determine the coefficients of a and b in accordance with [21], we assume that fq represents the qth
component of f and then proceed as follows:

a =

5∑
q,i,j=1

vqwiwj
∂2fq
∂xi∂xj

(E0, τ
∗) (12)
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b =

5∑
q,i,j=1

vqwi
∂2fq
∂xi∂τ

(E0, τ
∗) (13)

The values of coefficients a and b hold significant importance in determining the local behavior of
equation (1) at the point where x equals zero. These are evaluated and completely determined.
Taking into consideration the equation (10) in the estimation of the coefficients of a andb, the derivatives
of the second order that are not zero for the terms for the terms ∂2fq

∂xi∂xj
(E0, τ) and ∂2fq

∂xi∂τ
(E0, τ) are given

as follows:

a = 2v1w1w3
∂2f1

∂x1∂x3
(E0, τ

∗) + 2v2w1w3
∂2f2

∂x1∂x3
(E0, τ

∗)

+ 2v2w3w5
∂2f2

∂x3∂x5
(E0, τ

∗) + 2v5w3w5
∂2f5

∂x3∂x5
(E0, τ

∗)

and
b = v2w2

∂2f2

∂x2∂τ
(E0, τ

∗) + v3w2
∂2f3

∂x2∂τ
(E0, τ

∗) + v5w2
∂2f5

∂x2∂τ
(E0, τ

∗)

This implies
a = 2v2w1w3β1 + 2v2w3w5β2

and
b = −v2w2 + v3w2ρ

a =
2 (ρτ ((π − 1)β2 − β1) (α+ µ) Ψ + αεθµ) ρτβ1

(λ+ 2µ+ τ + θ)µ2 (α+ µ)

+
2ρ τ2

(
n1ρ− µ

(
µ2 + (α+ θ + λ)µ+ αλ

)
ρ+ µ (λ+ θ + µ) (α+ µ)

)
β2

(λ+ 2µ+ τ + θ)µ2 (α+ µ)
> 0

where
n1 = Ψ (π − 1) (α+ µ)β2 − αεθµ

b =
(θ + λ+ µ)µ

τ (λ+ 2µ+ τ + θ)
> 0

We have found that both the coefficients a and b have values that are strictly larger than zero. In
other words, neither a nor b can be zero or negative in the context of the situation being discussed.
Follow [21], since both a and b are positive, the behavior of the equilibrium point depends on the value
of the parameter τ∗.

When τ∗ is negative and its absolute value is very small, then the equilibrium point x = 0 is locally
asymptotically stable, meaning that nearby solutions to the differential equation approach x = 0 over
time. Additionally, there is a positive unstable equilibrium point, indicating that there is another
equilibrium point towards which nearby solutions move away over time.

On the other hand, when τ∗ is positive, the equilibrium point x = 0 is unstable, meaning that nearby
solutions move away from x = 0 over time. Instead, there exists a negative locally asymptotically stable
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equilibrium point, indicating that there is another equilibrium point towards which nearby solutions
approach over time.

Parameter Values Sources
Ψ 0.026 Asummed
β21 0.081, 0.31,0.51 Varied
β2 0.041, 0.31,0.51 Varied
ε 0.077 Assumed
α 0.072 Assumed
τ 0.510 Assumed
ρ 0.67,0.77,0.97 Varied
θ 0.305,0.5,0.7 Varied
µ 0.011 [5]
λ 0.195× 10−4,0.05,0.1 Varied
π 0.251 Assumed

Table 3. Estimated model parameters [5], [22]- [23]

4. Numerical Simulation and Results

To ensure the completion of the analytical study, it is crucial to validate the data through nu-
merical simulation. In this section, we have included various numerical simulations to track the
dynamics of system (1) under different initial compartmental variable of susceptible individu-
als, exposed individuals, corrupted individuals, recovered individuals, and honest individual as
S(0) = 0.4, E(0) = 0.3, C(0) = 0.2.R(0) = 0 and H(0) = 01 respectively together with specified
parameters given in Table 3.

The overall dynamics of the compartmental models are presented in Figure 3. The number of
susceptible individuals decreases at the beginning, and then gradually starts to increase after a few
years. Meanwhile, the number of exposed individuals decreases until it reaches zero, while the number
of corrupted individuals initially increases and then starts to decline after a few years. The number
of recovered individuals increases until it reaches its peak after 10 years and then begins to decline.
Additionally, the number of honest individuals increases rapidly for the first four years, after which the
rate of increase slows down.
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Figure 3. Behaviour of total population

The effects of λ, ρ, θ.β1 and β2 on the corrupted individuals are shown in Figs [4-8]. It is noted in
fig.4 that as λ is increasing, the number of corrupted individuals decreases. This implies that more
corrupt individuals are being punished and sent to prison, which act as a deterrent to others who may
be considering engaging in corrupt activities, as they may fear facing the same consequences if caught.
Figure 5 depicts as the ρis increasing, the number of corrupt individuals surges. This shows that more
people are giving in to corruption. Because of this, the number of corrupted people in society would
go up. This could lead to a cycle of corruption where the more people get corrupted, the easier it is for
others to justify doing corrupt things, which leads to even more corruption.

Figure 6 illustrates that increasing θ lead to decrease in the corrupt individuals populaton. As the
rate of corrupted individuals turning into recovered individuals goes up, this means that more people
are recovering from corruption. Because of this, the number of corrupted people in society would
go down. This could start a positive cycle in which the more people who get out of corruption, the
more others are encouraged to do the same, which would lead to less corruption overall. The effects of
increasing β1 and β2 are shown in figures 7 and 8. When corrupted individuals come into contact with
susceptible/honest individuals, there is a risk that the corrupt behavior will spread from the corrupted
to the susceptible/honesty individuals. This can occur through various means that influence the
susceptible/honest individual to engage in similar practices. As the number of corrupted individuals
increases through these contacts, it becomes more likely that even more susceptible/honest individuals
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will be influenced and become corrupted themselves. Over time, this can lead to a widespread culture
of corruption within a society, which can have detrimental effects on social and economic development.

Figure 4. Behaviour of corrupted individual as λ increases

Figure 5. Behaviour of corrupted individual as ρ increases
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Figure 6. Behaviour of corrupted individual as θ increases

Figure 7. Behaviour of corrupted individual as β1 increases
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Figure 8. Behaviour of corrupted individual as β2 increases

The effects of λ, ρ and β1 on the honest individuals are illustrated in figures [9-11]. Fig. 9 presents
the influence of increasing λ on the honest individuals. Increasing rate of imprisonment serves as a
deterrent for individuals who might be tempted to engage in corrupt practices. When individuals
witness the consequences that corrupt behavior can have on their lives and the lives of others, they may
be more inclined to choose honest behavior instead, thereby increasing honest individuals population.
As rho is increasing, the number of honest individuals decline as shown in Fig.10. This may be
attributed to the corruption can spread and harm a society’s ethical standards. It fosters dishonesty
and encourages unethical behavior, making it difficult for honest individuals to behave ethically. The
prevalence of corruption can cause honest individuals to feel discouraged, leading to an increase in
corrupt individuals and a decrease in honest individuals. This trend can continue until corruption
dominates the population, leading to a decline in honest population. The effect of β2 on honest
individuals population is presented in Fig.11. An increase in β2 decrases the population of honest
individuals. When an honest individual interacts with a corrupt individual, there is a risk that the
corrupt individual’s behavior and values will influence the honest individual. This is especially true
if the corrupt individual has a position of power or influence over the honest individual. Over time,
repeated contact between corrupt individuals and honest individuals can erode the ethical values and
standards of the latter. The honest individuals may become desensitized to corruption, or they may feel
pressured to conform to the norms of the corrupt individuals in order to avoid negative consequences.
This can lead to a decline in the number of honest individuals in the population as a whole
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Figure 9. Behaviour of honest individual as λ increases

Figure 10. Behaviour of honest individual as ρ increases
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Figure 11. Behaviour of honest individual as β2 increases

5. Conclusion

This paper presents a compartmental mathematical model that examines the dynamics of corruption.
The model was analyzed to determine the local and global stability of the corruption-free equilibrium,
and the basic reproduction number was calculated using the next generation operator method. The
analysis showed that the corruption-free equilibrium is locally asymptotically stable for R0 < 1.

Additionally, sensitivity and bifurcation analyses were conducted, and numerical simulations were
used to demonstrate the impact of parameters on the corrupt and honest compartments. The results of
our simulation indicate that:

(1) An increase in the rate of imprisonment due to corruption leads to a reduction in overall
corruption and promotes greater numbers of honest individuals within the population.

(2) To facilitate an increase in the number of honest individuals, it is crucial to significantly decrease
the proportion of exposed individuals who become corrupted.

(3) Additionally, in order to limit the spread of corruption, it is necessary to minimize, or even
eliminate, contact between corrupted and honest individuals.
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