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AsstrRACT. In this work, we study the existence and uniqueness of solution to the Sine-Gordon equation
within the framework of Colombeau algebra. Using the concept of fixed point and exploiting the well-
known fixed point theorem of J.A Marti [6]. Additionally, we provide an example to illustrate our results.
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1. INTRODUCTION

The Sine-Gordon equation is a nonlinear integrable partial differential equation in the space-time
coordinate. It is a nonlinear hyperbolic partial differential equation for a function ¢ dependent on two
variables typically denoted z and ¢, involving the wave operator and the sine of ¢, note that it is known
in the 19th century during the study of various problems of differential geometry. The equation has
numerous applications in physics [3,7]. The equation can be written simply as &; — &, + sin(§) = 0,
where ¢ = {(y, t). In the case of mechanical trasmission line, {(y, t) describes an angle of rotation of the
pendulums including applications in relativistic field theory. In the early eighties of the last century,
Colombeau introduced an algebra G of generalized functions to deal with the multiplication problem
of distributions, see [1,2]. This algebra G is differential which contains the space D’ of Schwartz
distributions. Furthermore, nonlinear operations more general than the multiplication make sense in
the algebra G. Therefore this algebra is a very convenient one to find and study solutions of nonlinear
differential equations with singular data and coefficients. This algebra plays a crucial role in order to
give a sense of multiplication of distributions [4,9]. As a nonlinear extension of distribution theory to

deal with nonlinearities and singularities of data and coefficients in PDE theory [5,9,11,12]. These
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algebras contain the space of distributions D’ as a subspace with an embedding realized through
convolution with a suitable mollifier. Elements of G are classes of nets of smooth functions called
moderates functions with respect to a set of negligibles functions. The reason for introducing this
regularity is the possibility of solving nonlinear problems with singularities and derivatives of arbitrary
real order. Fixed point theory has fascinated many researchers since 1922 with Banach’s famous fixed
point theorem. There is a vast literature on the subject and it is a very active area of research at present.
Fixed point theory is very important tools for proving the existence and uniqueness of the solutions to
various mathematical models: integral and partial differential equations, variational inequalities, etc.
This theory has been studied by many researchers, but it is rare to find a paper that presented the fixed
point theory in Colombeau algebra. We will rely on the work of J.Martin in [6] and we will use the
topology of locally convex spaces to make sense of the concept of a fixed point in a class of Colombeau
algebra compatible with our study of the sine-Gordon equation. In this paper, we investigate the

existence and uniqueness of solutions to the problem given by

(07 —02)¢ =2sin(¢), yeR, teRy,
£0,y) =aly), yeR,

8t£(07 y) = b(y)v Yy e R,

where a and b are two given distributions.

The organization of the paper is as follows. In section 2, we recall some fundamentals properties of the
generalized functions theory. The new notion of generalized semigroup take place in section 3. Section
4 is consecrated for the proof of the fixed point thoerem in Colombeau algebra. In Section 5 we have

introduced an example to illustrate our work.

2. PRELIMINAIRIES

In this section, we recall a few basics properties from the theory of Colombeau generalized functions.
The regularization methods of Colombeau-type is to model nonsmooth objects by approximating nets
of any smooth functions, which has a moderate asymptotics bounds and to identify regularizing nets
whose differences compared to the moderateness scale are negligible. The elements of Colombeau
algebras G are equivalence classes of regularizations nets, i.e., sequences of smooth functions satisfying
asymptotic conditions in the regularization parameter e. Therefore, for any set X, the family of sequences
(§c)ee(o,1) of elements of a set X will be denoted by X (0.1), such sequences will also be called nets and

simply written as &. Let n € N*¥, as in [4], we define the set
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The set of moderate functions is given as follows
Enr(R™) = {(ge)oo C ER™) :VK cC R"Va e N', 3N e N/

sup [0°€.(4)] = Ocro (™) }.
yeK

The ideal of negligible functions is defined by
N(R?) = {(§€)E>0 C E(RM)/VK cC R"Ya € N&,Wp e N/

sup |06 ()] = Ocro(e) }.
yeK

With operations defined componentwise, e.g., (&) + (ve) = (& + ve) etc. The Colombeau algebra is
defined as a factor set G(R"™) = &y (R™) /N (R™).

Also we define the following sets

en®)] = { (., (€ € Em®M
and
VR = { (&), (€ € NR™) .
The ring of all generalized real numbers is given by the following set
R=¢(R)/I(R),
where
EMR) = {(ge)e € (R)®V/3m € N,y = Ocole™) },
and
Z(R) = { (w)e € RV ¥m € N, [y = Ocsole™) }.
We note that R is a ring obtained by factoring moderate families of real numbers with respect to
negligible families. It is easy to prove that

Proposition 2.1. The space £(R) is an algebra, and Z(R) is an ideal of E(R).

In the same we define

e@®)] = { (.., re € E®)},
and

Z@®)| = { (7)., re € TR .

We will closed this section by the Gréonwall’s inequality given in the following

Lemma 2.2. Let o, 5 and u be three functions defined on an a bounded interval I = (a, b). Suppose that 3 and

u are continuous, moreover, we assume that « is locally integrable on I.
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(1) If B is non-negative and if u satisfies the integral inequality

t
u(t) < aft) +/ B(s)u(s)ds, Vt € I,
then
t t

u(t) < alt) + / a(s)B(s) exp ( / B(r)dr)ds, t € I.

(2) If, in addition, the function « is non-decreasing, then
t
u(t) < a(t) exp (/ B(s)ds), t € I.
3. GeNErALIZED Fixep Points

3.1. Locally convex spaces. In this subsection, we present the notion of locally convex spaces and the

notions of completeness in this type of space.

Definition 3.1. Let Y be a vector space indowed with a familly (1V;);c; of seminorms. For all i € I, we
denote 7; the topology induced by the seminorm N;, and 7 the topology generated by the classe of the

all union sets 7; . The pair (Y, 7) is said to be locally convex space.
The set of all balls of the form
B(i,r) = {y €Y/ Ni(y) < r}, Vi e Iand r > 0.

is called a basis of 0-neighbourhood where (1V;); is a family of seminorms. Then, (y,)nen is a Cauchy

sequence if and only if.
(Ve > 0) (Vz’ € I) (Elno € N) (Vn,p € N n > ng implies N;(Yntp — Yn) < 6),
and Y is sequentially complete if any Cauchy sequence converges to an element of Y.

3.2. Contraction in locally convex and complete spaces. The contraction map in type Colombeau
algebra is discussed in this subsection this contraction type is inspired by that in the classic case in

locally convex spaces Y.

Definition 3.2. We recall that a map H, : Y — Y is called contraction if for all ¢ € I there exits k; < 1
such that

V(yg, Ze) € X x X, Ni(Heye — H€Z€> < kz Nz(ye — ZE).
We have the following result

Theorem 3.3. [6] Any contraction H. : Y — Y has a fixed point. Moreover if Y is Hausdorff, this fixed

point is unique.
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3.3. Contraction operator in Y. We will give a notion of contraction map in type Colombeau algebra.

Definition 3.4. Consider a locally convex space Y endowed with a familly of seminorms (N;)icr. A

class of moderate functions compatible with properties of the space X is defined by
En(Y) = {(we)e € () OV /3m € N.Vi € LNi(ye) = Ocon(e ™) .
The corresponding class of negligible functions is given as follows
N ={w)e € VO ¥meNVi€ L, Nilye) = Ocole™) }.
The Colombeau algebra type is given in this case by
Y =Eu(Y)/N(Y).

First, we will see if it’s possible to give a definition of amap H : Y — Y by the data of a family
(He)ee(o,1) of maps He : X — X where H. is a linear and continuous operator on X. The general idea

is given in the following result

Lemma 3.5. [10] Let (H)eg(0,1) be a given family of maps H. : Y — Y. For each (ye)e € En(Y) and
(ye)e € N(Y), suppose that

(1) (Haye) € En(y),
(2) (H6(y6 + ye)>€ - (Heye>e S N(Y)
Then

is well defined.

Definition 3.6. [6] Amap H : Y — Y is called a contraction if only if
a) (ye)e € En(Y), implies (Heye)e € Ep(Y) forall e € (0,1).
b) H. is a contraction in (Y, Te) endowed with the family M. = (M, ;);c; and the corresponding
contraction constants are denoted by /. ; < 1.
c) Forevery i € I and € € (0,1], 3ae; > 0 and f¢; > 0, such that
oei Ny < M < Bei N;.
d) For eachi € I, Ve € (0,1], (251), and (1_#&1)E € |Em(R)].

Qe g

The essential result given in the next theorem which has been proven in [10]

Theorem 3.7. With the same previous notations, any contraction H : Y — Y has a fixed point in Y.
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4. MaIN ResuLrs

In order to study the existence and uniqueness of Colombeau generalized solutions of Sine-Gordon
equation with initial data are distributions, one introduces the algebra of generalized functions suitable
to this context. Let 2y = [—k, k] be a compact interval. For 0 < ¢ < s < k, define an interval I; and a

trapezoidal region 2 are defined by
I, = {ye]R, / |z Sk—t},

Q= {(t,y) ERT XxR/0<t<s, ,yc L}

We define the simplified algebra of global generalized functions, which must be compatible with the
study of the Sine-Gordon equation denoted G([0, c0) x R) by the quotient algebra

G([0,00) x R) = £,([0, 00) x R)/N*([0, 00) x R),

where
5]8\4([0700) X R) — {(65)5 6 (COO(R+ X R))(O’l)/am 6 N’VT > 0’
sup {1l (1, (0} = oﬁo@m)},
te[0,7
and

N3([0,00) X R) = {(56)6 e (C®*(RT x R))®Y /vm e N,vT > 0,

te[0,T

sup]{\l Ee(t, ) e} = OEHo(em)}-

Let us consider the Sine-Gordon equation with initial data are distributions,

(07 —02)¢ = 2sin(¢), yeR, teRT
g(oay) = a’(y)a ) € ]Ra <41)

6t5(07y) = b(y)7 Yy € R.

Theorem 4.1. The problem (4.1) has unique solution in G(]0, c0) x R).
The problem is equivalent to finding a fixed point of the map

g—¢g
£ H(E),
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where

1 [yt t pytt—s
+ = / b(y)dy + / / sin (£(s, 2))dzds,
2 y—t 0 Jy+s—t

for all (¢,y) € R x R. We will check the four conditions of the Definition 3.6.
a) Let

H(6t,9) = 5 (acly — )+ acly + 1)
+t +t—s
+ ; /y dy+/ /yy sin 56 s z))dzds (4.2)

+s—t

It is clear that H. is defined from C*>°(R™ x R,R) into C*°(R* x R, R). Endowed with the topology 7
given by the family of norms (Nr)7¢(o 4, C*°(RT x R, R) is a topological space, such that

Nr(€e) = S[up { &) (o) }-
Let (&)e € €5/ (RT x R). We can obtain
| He (&t ) Nlpeean) <Nl ae [lnee )
+ |l be | oo (1) +21 /Ot | sin (&(s, ) llzee () ds-.
Since |sin(t)| < |t|, Vt € R, then
| He(&e(t, ) e < I ae oo (o)
bl +2¢ / | €5.) oo ds,

which implies that

sup || He(&e(t, ) () <Il ae llzoor)
t€[0,T]

+ |l be llzoo (o) +2T% sup || &c(s,-) llLo=()
t€[0,T]
then,
Ny (Hc(&)) < Nr(ac) + No(be) + 2T%pr(&e),
it follows that

Nr(He(&)) € €3] = (He(&)), € €3/ (RT x R).
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e Now, let (ve). € N*(RT x R). We have
He (&t y) 4+ ve(t,y)) — He(&) (t, y)
y+t—s

:// (sin (&c(s, 2) + ve(s, 2))
0 Jyt+s—t
—sin (&(s,y)) )dzds

which implies
| He (ge(tv )+ ve(t, y)) — He(&)(t, ) HL"C(Qt)
t
<27 [ sin (6. + vels. ),
0

— sin (56(87 )) ”L‘X’(Qt) ds,

thus,
| He(Ec(t, ) + ve(t,y)) — He(§) (¢, ) [l ()
<ot [ 166 +ulsn)
—&c(s,.) llze=(au) ds,
taking the sup in the last inequality, it follows

sup {” H, (ge( ) + Ue(tvy)) - He(ge)(t’ ) ||L°°(Qt)}

0<t<T

t
<or / sup (|| €e(s,.) + vels, ) — £u(5,) ll=(ary s

0<t<T
hence
sup {|| He(Ec(t,.) +ve(t,y)) — He(€)(t, ) (o)}
0<t<T
< 2T20Sl1p {1l ve(ss ) llpeo (e bds
so,

H(& +ve) — He(&) € N*(RT x R).

According to the Definition 3.6, we can see that the map H is well defined.

b) The problem (4.1) can be written in term of representatives as follows
(07 —02)& = 2sin(&), yeR, teRt

ge(ya O) = ae(y)a y €R,

9:8c(0,y) = be(y), yeR.
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H. is well defined from C*° (Rt xR, R)) into C*°(R* x R, R). Endowed with the topology 7. given by the
family of norms (Mr ¢ )per+, C°(RT x R, R) is a topological space, such that for all £ € C*°(R" x R, R).

MT,e(yE) = sup {ethT | &e(2) ||L°°(Qt)}-
te[0,7)

Let (&)e, (ve)e € 5 (RT x R), we have

y+t—s

H, (fe(t,y)) - He(ve(t,y)) = /0 / (sin (&c(s, 2)) — sin (ve(s,y)) )dzds7

+s—t

which implies
I He(&e(t, ) = He(ve(t, ) lroe()
<2t [ 1605, = vlss) lmin) ds 43)
t
<27 [ &) =0l ) o, ds.
Multipling the both sides of the inequality by e =27, we can write
e || He(&e(t,)) = He(ve(t, ) =)
<27 [ 605, = (60 oo s
then
20 [ (€= (s, ) e ds
= 2Te T x

t
AeMW@—mmwm@wa

which gives

t
ssw{u@—mXaamwmﬁ/2ﬂﬁﬂw
te(0,7) 0

< sup {[| (& —ve)(s..) lpay} x (2T —1)

< sup {|| (& —ve)(s, ) ”LOO(QS)} (1 _ e—QtT) ‘

Hence

sup {eith | (He§e — Heve)(t, )) HLOO(Qt)} <
te(0,7]

sup {e72T || (& —ve)(s,-) [ poeqan} (1 — 2T,
te(0,7T
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that is
MT,e(He(fg) — He(ve)) < ]\411’6(5E _ UE)(l _ e—2tT)7

but 1 — e 2T < 1, it follows H, is a contraction in <C°° (RT x R,R), T€>.
¢) Forall T € RT and & € C°(R* x R,R), we have

— 2 -
1 sup {1 640) @} < sup {160 ey e )
0T t€[0,T)
< sup | &(%) HLOO(Qt)’

te[0,7
then

e " Ny < Mt < Nr.

d) For each T € R* we have ¢27” € |€5,| and 1/(1 — e~ 27°) € |£5,].

Finally, according to the Definition 3.6 the map

g—¢g

H :
5wm:mwmémww:h@mm}

is a contraction. From Theorem 3.3, H possesses a fixed point { = [(&¢).], where & is a fixed point of H..
Hence ¢ is a solution of (4.1).

Uniqueness: Suppose that v = [v¢] is another solution of the problem (4.1), we set
Ve = He(ve) + N,
where n, € N*¥(R* x R). We can write

+t—s
E(t,y) (t,y) / /y (sin(&c(s, 2)) — sin(ve(s,y)))dzds + n(t,y).
y

+s—t

We can obtain

| (€e = ve)(t,-) llneo ()
<2t [ 16wl ) lwia dot lnelt) oy
which implies
(€ = vt ) (o
<27 [ 116006 i dst [ nlt) i

By Gronwall’s lemma, we have

F€c(t,) = ve(t, ) lpoe(on< € [ melt,) lzeay) -
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And thus

sup {[| &e(t,.) —ve(t,.) [l pee () P < e* sup {ll ne(t,.) HLoo(Qt)}-
te[0,7) te€[0,7

Since (nc)e € N*(RT x R), then (& — ve)e € N*(RT x R), it follows that

E=n.

Thus, the solution is unique in G (R x R).

5. ExaMPLE

Let us consider the following problem

(07 —02)¢ =2sin(¢), yeR, teRF
£(0,y) =0(y), yeR, (5.1)
9i£(0,y) = d'(y), yeR.

Where § = [(dc)] is the embedding of the Dirac measure in G(R) and

Sely) =6+ vely) = vely) = ("), yER, forallee (0,1). (52)

8" = [(8!)¢] is the embedding of the Dirac measure in G(R) where

1

ﬂw:&*m@%:wum:—gwéxyeR,ﬂnmee@n. (5.3)
where ¢ is a test function such that ¢ € C*°(R), [p ¢ (y)dy =1, ¥(y) > 0. The solution of (5.1) is
given by

§(t,y) = [(&(t, )], forallee (0,1).
where
t pryt+t—s
Gty =vly—0+ [ [ sin(elsa)dads, () RO xR
0 Jy+s—t

We have

D&t ) lamnS | e gy +2¢ S sin (Ec(s,.)) ey ds.
Since |sin(t)| < |t|, Vt € R, then
MJ)MMmﬂWAmh+%/n& ) Lo ds.

e is of order O(e~™) for some m. From gronwall’s inegality, this familly () is moderates. Then
u € G([0,00) x R).
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