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Abstract. In the paper, we give the definitions, basic concepts, and formulas of the basic geo-
metric characteristics associated with the surface of an isotropic space R2

3. The geometric sense
of the dual mapping is revealed. Using the geometric interpretation of the dual mapping, we
prove that the dual asymptotic mapping is asymptotic. Some properties of shortest curves on
a surface are defined and proved. The geodesicity and conformality of the dual mapping is
proved.
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1. Introduction

Singularities associated with isotropic space vectors arise when studying the geometry
of pseudo-Euclidean spaces. Often these singularities form a whole subspace. One of such
subspaces is the isotropic space R2

3. An isotropic space is the subspace M(x, y, z, z) ∈1R4.
Despite this, the geometry of such subspaces has been little studied. In this paper, we show
that an asymptotic direction on a surface under a dual mapping corresponds to an asymptotic
direction on the dual surface.
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Differential geometry of isotropic spaces was first investigated by K. Strubecker [21]. The
works by E.M. Aydin [11], M.S. Lone and M.K. Karacan [18] are devoted to the reconstruction
of a surface with constant total curvature. In the paper [4], we solve the question of the
existence of a surface with a given total and mean curvature in the isotropic space R2

3. The
work by H.Sachs [20] is devoted to groups of the motion of an isotropic space; Yoon, D.W., Lee
J.W. [22] study helicoidal surfaces in the three-dimensional isotropic space R2

3 and construct
helicoidal surfaces satisfying a linear equation in terms of the Gaussian curvature and themean
curvature of the surface; M. Dede [12] investigate the recovery problem in Galilean space. [15]
in the paper, they satisfy some algebraic equations in terms of coordinate functions and Laplace
operators with respect to the first and second fundamental forms of a three-dimensional simple
isotropic space I13 . And they also give explicit shapes to those surfaces.

We determine and study the properties of a shortest curve on a surface and in its dual image.
It is proved that the dual mapping is geodesic and also conformal.

2. Preliminaries results

2.1. Basic concepts of an isotropic space R2
3. Consider an affine space A3 with the coordinate

system Oxyz. Let →X(x1, y1, z1) and
→
Y (x2, y2, z2) be vectors of A3.

Definition 1. If the scalar product of the vectors →Xand →Y is defined by the formula

(1)

(X, Y )1 = x1x2 + y1y2 if x1x2 + y1y2 6= 0,

(X, Y )2 = z1z2 if x1x2 + y1y2 = 0,

then A3 is said to be an isotropic space R2
3. [2, 8]

As it is known, the norm of a vector →X is defined by the formula |→X| =
√
→

(X,
→
X), and the

distance between points A(x1, y1, z1) and B(x2, y2, z2) is defined as the norm of the vector:
|
−→
AB| =

√
(
−→
AB,
−→
AB). From here we obtain the definition of the distance d between A and B :

(2) d =


√

(x2 − x1)2 + (y2 − y1)2 if
√

(x2 − x1)2 + (y2 − y1)2 6= 0,

|z2 − z1| if
√

(x2 − x1)2 + (y2 − y1)2 = 0.

The geometry in a plane of an isotropic space will be Euclidean if it is not parallel to the axis
Oz. When a plane is parallel to Oz, the geometry on it will be Galilean [7].

Since an isotropic space has an affine structure, there is an affine transformation that pre-
serves the distance determined by formula (2). This motion of an isotropic space is given by
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the formula [13,20]

(3)


x′ = x cosα− y sinα + a,

y′ = x sinα + y cosα + b,

z′ = Ax+By + z + c.

The matrix of this transformation has the form:
cosα − sinα 0

sinα cosα 0

A B 1

 .

The sphere of an isotropic space, that is, the set of points in the space equidistant from one
point, has the equation

(4) (x− x0)2 + (y − y0)2 = r2

here (x0, y0, z) is the center of the sphere (4), r is its radius. When the center coincides with
the origin, the equation of the sphere is x2 + y2 = r2.

2.2. Surface theory in isotropic space, duality. Let γ : I ⊆ R→ R2
3 be an admissible curve

parameterized by arc-length s ∈ R. In coordinate form, this can be written as

γ(s) = {x(s), y(s), z(s)} ,

where x, y, and z are smooth functions of one variable. Denote the first derivative with respect
to s by a prime, etc. Then the curvature and torsion functions of γ are respectively defined by
the formulas

(5) k(s) = x′(s)y′′(s)− x′′(s)y′(s)

and

(6) σ(s) =
1

k(s)
det (γ′(s), γ′′(s), γ′′′(s)) .

Moreover, the associated trihedron of γ is given as

τ = γ′(s),

ν =
1

k
γ′′(s),

β = (0, 0, 1).
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The Frenet’s formulas for such vectors have the form [19]

(7)


τ̇ = kν,

ν̇ = −kτ + σν,

β̇ = 0.

Let a regular surface from the class C2 be given in an isotropic space by the vector equality

(8) r(u, v) = (x(u, v); y(u, v); z(u, v)) , (u, v) ∈ D.

We introduce the concept of an isotropic surface normal vector [21]−→n m(0, 0, 1) and a normal
to a surface as in Euclidean space: −→n = [ru, rv]. In this case, wewill use the superimposed space
method, that is, the coordinate system Oxyz will be considered as the Euclidean Cartesian
coordinate system. Moreover, the surface will be considered as a surface of Euclidean space.

By analogy with an Euclidean space, we define the first and second quadratic forms of the
surface (8). The first quadratic form

(9) I = ds2 = Edu2 + 2Fdudv +Gdv2,

where

(10)


E = r2u = x2u + y2u,

G = r2v = x2v + y2v ,

F = rurv = xuxv + yuyv.

The second quadratic form

(11) II = (d2r, n) = Ldu2 + 2Mdudv +Ndv2,

where 

L = (ruu, n) =
(ruu, ru, rv)
√
EG− F 2

M = (ruv, n) =
(ruv, ru, rv)
√
EG− F 2

N = (rvv, n) =
(rvv, ru, rv)
√
EG− F 2

.

Consider also the second quadratic form of the surface (8) with respect to the isotropic normal
to the surface

(12) II = (d2r, nm) = Lmdu
2 + 2Mmdudv +Nmdv

2,
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where 
Lm = (ruu, nm) = zuu,

Mm = (ruv, nm) = zuv,

Nm = (rvv, nm) = zvv.

We define the normal section of the surface in the given direction by a plane passing in the
given direction and the isotropic normal nm.

The normal curvature of a curve is defined as the curvature of the curve resulting from the
normal section. Since the isotropic normal nm is directed along the axis Oz, the geometry of
the normal plane will be Galilean [1].

The normal curvature of a curve is defined by the formula [8], [3]

(13) kn =
IIm
I
.

There are two kinds of spheres in an isotropic space. The definition of the first of them we
gave in the previous paragraph (see (4)).

The second sphere is defined as a surface with the constant normal curvature. This sphere
of the unit radius has the equation [10]

(14) x2 + y2 = 2z,

we call it the isotropic sphere.
The total and mean curvature of the surface, defined by analogy with the Euclidean space,

respectively, have the following form

K =
LN −M2

EG− F 2
, and 2H =

EN − 2FM +GL

EG− F 2
.

When considering surfaces that are uniquely projected onto the plane Oxy, the formulas for
the total and mean curvature of the surface are further simplified and have the following form

K = LN −M2, and 2H = L+N.

Definition 2. Minimal surface is a surface whose mean curvature at any point is zero.
By definition, it will be L+N = 0.

Let a plane π be given in R2
3,which is not parallel to the axis Oz of the space. Consider the

section of the isotropic sphere by the plane π and denote it by Γ. Since an isotropic sphere is a
paraboloid of revolution, the section Γ by a plane will be a closed curve. It was proved in [2]
that Γ is an ellipse.
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Draw tangent planes to isotropic sphere (14) through points M ∈ Γ. Denote the set of
tangent planes to points F by {π}.

The following statement holds.
Theorem 1. All planes of the set {π} intersect at one point. [14]
If a plane π0 is given by the equation

(15) z = Ax+By + C,

then the intersection point of the planes of the set {π}will be (A,B,−C).

Definition 3. The point (A,B,−C) is said to be dual to plane (15) with respect to isotropic
sphere (14) [1].

Consider the plane z = H and its section Γ by an isotropic sphere. Let the surface F be given
by the equation

(16) F : {z = f(x, y) | (x, y) ∈ D′},

and the edge of the surface be the curve Γ. The surface (16) itself is convex and contained in
the inner part of the space bounded by the plane and the isotropic sphere.
Let us draw the tangent plane πM to the surface F at the pointM(x0, y0, z0). Denote byM∗

the dual image of the tangent space πM with respect to the isotropic sphere. When the point
M ∈ F changes on the surface F , its dual image describes a surface F ∗.
Definition 4. The surface F ∗ is said to be the dual surface to the surface F in an isotropic

space [1].
When F is given by the equation z = f(x, y), F ∗ has the equations

(17)


x∗(u, v) = f ′u(u, v),

y∗(u, v) = f ′v(u, v),

z∗(u, v) = u · f ′u(u, v) + v · f ′v(u, v)− f(u, v).

Calculating the total curvatureK∗ and the mean curvatureH∗ of the dual surface, we obtain

K∗ =
1

K
, and H∗ =

H

K
.

3. Main results

In this section, by analogy with the Euclidean space, we study the properties of curves on
the surface of an isotropic space. The main types of curves on the surface are defined in the
same way as in the Euclidean space.
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For example, the principal direction on a surface is the direction in which the normal
curvature takes on an extreme value. A curve on a surface is called a line of curvature if its
direction is always the same as the principal one.

The direction in which the normal curvature vanishes, is called asymptotic. A curve is called
asymptotic if the normal curvature is zero at all its points.

The study of the surface “in the small” differs little from the Euclidean one. We are interested
in problems “in the large” on the surface of an isotropic space. Therefore, we compare the
surface with its dual surface and determine their properties, which are mainly related to the
geometry “in the large”.
Let γ be a curve on a surface F. Denote by γ∗ ∈ F ∗ its dual image. It should be noted that

for regular surfaces, the dual mapping is unique. Therefore, the image of the curve γ will be a
curve on F ∗. In the general case, the dual mapping is ambiguous. We study regular surfaces.

Theorem 2. Under the dual mapping, the asymptotic direction of the surface F corresponds
to the asymptotic direction of the surface F ∗.

Proof. Since the normal curvature of a curve on the surface of an isotropic space is calculated
by formula (13), II = 0 in the asymptotic direction, that is, the second quadratic form must
vanish.

Therefore, we calculate the second quadratic form of the dual surface.
First, calculating the discriminant of the first quadratic form of the dual surface, we obtain:

E∗G∗ − (F ∗)2 =
[
f ′′uuf

′′
vv − f ′′uv2

]2
.

Calculating the coefficients, we get

L∗ =

∣∣∣∣∣∣∣∣∣
f ′′′uuu f ′′′uuv f ′′uu + uf ′′′uuu + vf ′′′uuv

f ′′uu f ′′uv uf ′′uu + vf ′′uv

f ′′uv f ′′vv uf ′′uv + vf ′′vv

∣∣∣∣∣∣∣∣∣√
E∗G∗ − (F ∗)2

=
1

f ′′uuf
′′
vv − f ′′uv2

f ′′′uuu
∣∣∣∣∣∣ f
′′
uv uf ′′uu + vf ′′uv

f ′′vv uf ′′uv + vf ′′vv

∣∣∣∣∣∣−

f ′′′uuv

∣∣∣∣∣∣ f
′′
uu uf ′′uu + vf ′′uv

f ′′uv uf ′′uv + vf ′′vv

∣∣∣∣∣∣+ (f ′′uu + uf ′′′uuu + vf ′′′uuv)

∣∣∣∣∣∣ f
′′
uu f ′′uv

f ′′uv f ′′vv

∣∣∣∣∣∣
 =

1

f ′′uuf
′′
vv − f ′′uv2

{
−uf ′′′uuu

(
f ′′uuf

′′
vv − f ′′uv2

)
− vf ′′′uuv

(
f ′′uuf

′′
vv − f ′′uv2

)
+

(f ′′uu + uf ′′′uuu + vf ′′′uuv)
(
f ′′uuf

′′
vv − f ′′uv2

)}
=
f ′′uu (f ′′uuf

′′
vv − f ′′uv2)

f ′′uuf
′′
vv − f ′′uv2

= f ′′uu = L;
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M∗ =

∣∣∣∣∣∣∣∣∣
f ′′′uuv f ′′′uvvv f ′′uv + uf ′′′uuv + vf ′′′uvv

f ′′uu f ′′uv uf ′′uu + vf ′′uv

f ′′uv f ′′vv uf ′′uv + vf ′′vv

∣∣∣∣∣∣∣∣∣√
E∗G∗ − (F ∗)2

=
1

f ′′uuf
′′
vv − f ′′uv2

f ′′′uuv
∣∣∣∣∣∣ f
′′
uv uf ′′uu + vf ′′uv

f ′′vv uf ′′uv + vf ′′vv

∣∣∣∣∣∣−

f ′′′uvv

∣∣∣∣∣∣ f
′′
uu uf ′′uu + vf ′′uv

f ′′uv uf ′′uv + vf ′′vv

∣∣∣∣∣∣+ (f ′′uv + uf ′′′uuv + vf ′′′uvv)

∣∣∣∣∣∣ f
′′
uu f ′′uv

f ′′uv f ′′vv

∣∣∣∣∣∣
 =

1

f ′′uuf
′′
vv − f ′′uv2

{
−uf ′′′uuv

(
f ′′uuf

′′
vv − f ′′uv2

)
− vf ′′′uvv

(
f ′′uuf

′′
vv − f ′′uv2

)
+

(f ′′uv + uf ′′′uuv + vf ′′′uvv)
(
f ′′uuf

′′
vv − f ′′uv2

)}
=
f ′′uv (f ′′uuf

′′
vv − f ′′uv2)

f ′′uuf
′′
vv − f ′′uv2

= f ′′uv = M ;

N∗ =

∣∣∣∣∣∣∣∣∣
f ′′′uvv f ′′′vvv f ′′vv + uf ′′′uvv + vf ′′′vvv

f ′′uu f ′′uv uf ′′uu + vf ′′uv

f ′′uv f ′′vv uf ′′uv + vf ′′vv

∣∣∣∣∣∣∣∣∣
√
W

=
1

f ′′uuf
′′
vv − f ′′uv2

f ′′′uvv
∣∣∣∣∣∣ f
′′
uv uf ′′uu + vf ′′uv

f ′′vv uf ′′uv + vf ′′vv

∣∣∣∣∣∣−
f ′′′vvv

∣∣∣∣∣∣ f
′′
uu uf ′′uu + vf ′′uv

f ′′uv uf ′′uv + vf ′′vv

∣∣∣∣∣∣+ (f ′′vv + uf ′′′uvv + vf ′′′vvv)

∣∣∣∣∣∣ f
′′
uu f ′′uv

f ′′uv f ′′vv

∣∣∣∣∣∣
 =

1

f ′′uuf
′′
vv − f ′′uv2

{
−uf ′′′uvv

(
f ′′uuf

′′
vv − f ′′uv2

)
− vf ′′′vvv

(
f ′′uuf

′′
vv − f ′′uv2

)
+

(f ′′vv + uf ′′′uvv + vf ′′′vvv)
(
f ′′uuf

′′
vv − f ′′uv2

)}
=
f ′′vv (f ′′uuf

′′
vv − f ′′uv2)

f ′′uuf
′′
vv − f ′′uv2

= f ′′vv = N.

Therefore L∗ = L, M∗ = M, N∗ = N.

Hence, the second quadratic form of the dual surface is equal to the second quadratic
form of its image. II = 0 for asymptotic directions of the surface F. Hence, II∗ = 0 in the
corresponding direction of the surface, too. This proves Theorem 2.
From this theorem, we can conclude that the dual mapping transfers asymptotic lines on

the surface F into asymptotic lines on the surface F ∗.
Let a pointM ∈ F andM∗ ∈ F ∗ be the point corresponding in duality. Consider a normal

section π at the pointM.

Theorem 3. A point of the surfaceM ∈ F and its dual imageM∗ ∈ F ∗ belong to the same
normal section.
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Proof. Draw a tangent plane α to the surface F through the pointM . Then the sections of
the planes π and α determine the normal direction (du, dv). Draw at the pointM a tangent
line in the direction (du, dv).
Denote by P and Q the intersection points of this tangent with the isotropic sphere. Obvi-

ously, these points belong to the normal section π. Moreover, the normal section π intersects
with the isotropic sphere along a cycle.

Draw at points P and Q tangents to the cycle formed by the section of the plane π with
the isotropic sphere. The intersection point of these tangents is the pointM∗ because these
tangents will be generators of the tangent cone of the isotropic sphere. Their intersection point
coincides with the top of the cone. Therefore, the normal section passes through the vertex of
the cone. This proves Theorem 3.
Corollary 2. The normal curvature of a curve on a dual surface can be calculated by the

formula k∗n =
II

III
where II, III are, respectively, the second and the third quadratic form of the

surface F .
Indeed, the third quadratic form of the surface F and the first quadratic form of F ∗ are

related by the equality

I∗ = (dx∗)2 + (dy∗)2 = dp2 + dq2 = III.

Moreover, II∗ = II. Therefore, k∗n =
II∗

I∗
=

II

III
.

Theorem 4. If F is a minimal surface, then the dual mapping will be conformal.
Proof. For a mapping to be conformal, the first quadratic form must be [17]

I∗ = λ(x, y)
(
dx2 + dy2

)
.

Let us find the conditions under which this equality holds. Calculate the first quadratic
form of the dual surface F ∗ under the condition that F is the minimal surface:

I∗ = (dx∗)2 + (dy∗)2 = (fxxdx+ fxydy)2 + (fxydx+ fyydy)2 =

(f 2
xx + f 2

xy)dx
2 + 2fxy(fxx + fyy)dxdy + (f 2

xy + f 2
yy)dy

2.

The expression fxx + fyy = 0 follows from the definition of a minimal surface F and the
mean curvature formula. Hence, if we consider the expression fxx = −fyy:

I∗ = (f 2
xx + f 2

xy)dx
2 + (f 2

xy + (−fxx)2)dy2 = (f 2
xx + f 2

xy)
(
dx2 + dy2

)
.
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We get from here that λ(x, y) = fxx + fxy or λ(x, y) = fxy + fyy.

This proves that the dual mapping of the minimal surface is conformal.
Corollary 2. If the translation surface satisfies the condition fxx = fyy, then its dual mapping

will be conformal.
Indeed, fxy = 0 always for translation surfaces; when the condition fxx = fyy is satisfied,

the first quadratic form of the dual surface has the form I∗ = fxx (dx2 + dy2) . By Theorem 4,
the mapping is conformal.

One of the concepts associated with a curve on a surface is the concept of a shortest curve on
a surface. In an isotropic space, the metric is degenerate. Therefore, the concept of a shortest
curve in an isotropic space differs significantly from such a concept in the Euclidean space
since the distance between points is defined as the length of its projection onto the plane Oxy.

Moreover, when projecting parallel to the axis Oz, the shortest line on the plane Oxy should
be used to determine a shortest curve on a surface. The geometry of the planeOxy is Euclidean.
The shortest line on the Euclidean plane is the segment connecting the considered points.

Therefore, the concept of a shortest curve on a surface between the points A and B on a
surface is defined in the following way.
Definition 5. A curve on the surface F formed by a section of the surface by a plane g

passing through points A and B, parallel to the axis Oz is called the shortest curve on the
surface F connecting the points A and B.

The plane g will be the only one because it must pass through A, parallel to the vector −→AB
and the vector ~k, which is parallel to the axis Oz. But the shortest curve connecting the points
A and B may not be unique. We mainly consider surfaces uniquely projected onto the plane
Oxy. For such surfaces, the shortest curve will be unique.

The shortest curve on the surface of an isotropic space has some properties of the Euclidean
shortest curve on the surface, but it also has its own characteristics.
For example, the shortest curve on a convex polyhedron can pass through its vertex. It is

known that the shortest curve on a polyhedron of the Euclidean space does not pass through
the vertex of the polyhedron [9].
This can be seen from the fact that through the vertex of a polyhedral angle, which is

uniquely projected onto the plane Oxy, one can always draw a plane parallel to the axis Oz.
Obviously, for points on the section lying on different sides of the vertices of the polyhedral
angle, the shortest path passes through the vertex.
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The condition of non-imposition of shortest curves on surfaces in isotropic space is satisfied.
Definition 6. A geodesic curve on a surface is a continuous curve that is shortest on any

sufficiently small segment of itself.
Lemma 1. The curvature of a shortest curve is equal to zero.
Proof of Lemma follows from the fact that the curvature of a segment on the Euclidean

plane is equal to zero.
A one-to-one mapping of the surface F1 onto the surface F2 is called geodesic if the image

γ2 ∈ F2 of the geodesic curve γ1 ∈ F1 is also a geodesic curve on the surface F2 [16].
Theorem 5. If a surface F is convex, then its dual mapping is a geodesic mapping.
Proof. The shortest curve always lies on the plane parallel to the axisOz.Hence, at the point

under consideration, it coincides with the normal section along the corresponding direction
of the shortest curve. It is proved in Theorem 3, that a point of a surface and its dual image
belong to the same normal section. A normal section always intersects the plane Oxy in a
straight line. Therefore, if the considered curve γ is geodesic, then its dual image γ∗ is also a
geodesic curve because they have a common projection on the plane Oxy.Hence, they have
the same, equal to zero, curvature. This shows that the dual image of a geodesic curve is a
geodesic curve.
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