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Abstract. In this paper, the structure of the group formed by the unit elements of the group algebra
corresponding to the finite Heisenberg group of higher dimensions is characterized. The characterization
of the unit group is done for the semi simple case using the Wedderburn decomposition of the group
algebra.
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1. Introduction

The Heisenberg group was named after the mathematician Werner Heisenberg. He introduced
this special class of matrix group in [4]. The Heisenberg group is the set of all 3× 3 upper triangular
matrices with diagonal element 1 over a commutative ring R and is denoted byH3(R). The Heisenberg
group has very important application in various fields like analysis and quantum mechanics.
The Heisenberg group possesses a unitary representation called the Segal-Bargmann transform, which
maps functions on Heisenberg group to functions on Euclidean space. This transform has applications
in signal processing, image analysis, and quantum mechanics (ref [10]). In the context of geometric
quantization, the Heisenberg group plays a vital role in defining quantum observables and studying
the quantization of symplectic manifolds. Pseudo-differential operators on Euclidean spaces can be
extended to the Heisenberg group. The Heisenberg group serves as a framework for studying the
properties and behavior of pseudo-differential operators as in [6]. Also, The Heisenberg group is a
classical example of a sub-Riemannian manifold [9].
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Due to the optimistic applications of the Heisenberg groups in various fields, the study of the corre-
sponding group algebra and its unit group will help to use major algebraic properties which can be
used in analysis and quantum mechanics. By extending the foundational concepts of the Heisenberg
group to higher dimensions, researchers can make progress in addressing the challenges posed by
real-world systems and exploring new frontiers in science and technology. In this paper, we generalize
the Heisenberg group to higher dimensions which will be very much helpful for the researchers in
new perspectives and offers tools to tackle complex problems, advance theoretical understanding,
and develop practical applications across various domains. Also, we characterized the unit group
U(KH2n+1(Cp)), n ≥ 1 for the Heisenberg group algebraKH2n+1(Cp) over the finite fieldK and the
characteristic of the fieldK does not divide the order of the Heisenbrg group p2n+1 in order to make
the Heisenberg group algebra semi-simple.
The flow of the paper is as follows. Section 2 has the definition and basic properties of Heisenberg
group is discussed and also, we introduced the Heisenberg group of higher dimension. In section 3,
the definitions and results required to prove the main result is given. The main results are proved in
section 4 and the final section concludes the paper.

2. Heisenberg groups and its generalization

Due to the enormous application in analysis and quantum mechanics as in [4], in this paper we
consider only the finite Heisenberg groups over the cyclic group Cp, where p is any prime. Throughout
this paper, the Heisenberg group means the following:

H3(Cp) =




1 a b

0 1 c

0 0 1

 | a, b, c ∈ Cp


There must be p3 possible matrices in H3(Cp). This p3 matrices forms a group under matrix multiplica-
tion with identity element as identity matrix and is denoted by e. Every element of H3(Cp) is denoted
by (a, b, c). Therefore, the multiplication can be viewed as (a, b, c) · (a′, b′, c′) = (a+a′, b+b′+ac′, c+c′).

The inverse of (a, b, c) is given by (a, b, c)−1 = (−a,−b+ ac,−c).

Lemma 2.1. i) For x( 6= e) ∈ H3(C2), the order of x is either 2 or 4.

ii) For x(6= e) ∈ H3(Cp), p > 2, the order of x is p.

Proof. i) We know that x2 = (a, b, c)2 = (0, ac, 0). If the product ac = 0, then the order is 2. If not, the
order is 4.
ii) The proof is direct from the fact that xm = (a, b, c)m = (ma,mb+ m(m−1)

2 ac,mc). �

Lemma 2.2. The number of conjugacy classes of H3(Cp) is p2 + p− 1.
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Proof. The elements of the group H3(Cp) has any one of the following form (for a, b, c 6= 0):

(0, 0, 0), (a, 0, 0), (0, b, 0), (0, 0, c), (a, b, 0), (0, b, c), (a, 0, c), (a, b, c)

The conjugacy class of (a, o, c) is C(a,0,c) = {(a, xc− az, c)|a, c 6= 0}, for any (x, y, z) ∈ H3(Cp). Both a
and c has p − 1 choices and so, (p − 1)2 conjugacy classes. Similarly, repeat the same procedure for
other elements. �

Lemma 2.3. For any g(6= e) ∈ H3(Cp), the elements g2, · · · , gp−1 /∈ Cg, where Cg denotes the conjugacy class

of g.

Proof. Let g = (a, b, c) ∈ H3(Cp). Then, C(a,b,c) has the elements of the form (a, b+ xc− az, c) for any
(x, y, z) ∈ H3(Cp). On the other hand, for 2 ≤ m ≤ p − 1, (a, b, c)m = (ma,mb + m(m−1)

2 ac,mc). If
(a, b, c)m ∈ C(a,b,c), then a = ma =⇒ m = 1 which is absurd. �

2.1. Heisenberg group of higher dimension. The Heisenberg group of higher dimension, denoted by
H2n+1(Cp) is the (n+ 2)× (n+ 2) upper triangular matrix with entries from Cp, that is,

H2n+1(Cp) =




1 x b

0 In y

0 0 1

 | b ∈ Cp


where x is the row vector of length n, y is the column vector of length n and the entries of x and y are
taken from Cp.

3. Preliminaries

This section contains the prerequisite definitions and results required to prove the main result. The
following notations holds throughout this paper.

K finite field of order κ = qk with characteristic q and k ∈ Z+

Kd extension field ofK with degree of extension d, d ∈ N

G finite group of order nwith q - n
eG exponent of the group G
ω primitive eG-th root of unity overK
G Galois group ofK(ω) overK, whereK(ω) is the splitting field ofK
TG,K collection of all s such that σ(ω) = ωs, where σ ∈ G

[x, y] denote the commutator x−1y−1xy of x, y ∈ G
The group algebra, denoted byKG over the fieldK is the linear combination of elements from G with
coefficients fromK. As a consequence of Maschke’s theorem [7], the group algebraKG is semisimple.
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Consequently,KG is isomorphic to the direct sum of matrix algebras over division rings byWedderburn
decomposition theorem [7], i.e.,

KG 'M(n1, D1)⊕ · · ·M(nt, Dt), ni, t ∈ Z+

The structure of the unit group ofKG can be obtained directly from the above isomorphism. The only
tricky part is to find the dimension of the matrix algebra. We recall that the unit group consists of all
invertible elements inKG and is denoted by, U (KG). The research in this direction becomes important
because of the applications of units in number theory [3], coding theory [5], cryptography [8] etc.

Definition 3.1. [2] (i) For any prime p, an element x ∈ G is said to be p-regular element if order of x is not

divisible by p.

(ii) For any p-regular element x ∈ G, the cyclotomic K-class of γx =
∑
h∈Cx

h is the set SK(γx) = {γxs | s ∈

TG,K}.

The proposition given below discuss about the total count of cyclotomic K-classes, whereas lemma
2.1 discusses the number of elements in a particular cyclotomic class. These two results are given by
Ferraz in [2].

Proposition 3.1. The set of simple components ofKG/J(KG) and the set of cyclotomicK-classes in G, where

J(KG) is the Jacobson radical ofKG, are in 1-1 correspondence.

Lemma 3.1. Let l be the number of cyclotomicK-classes in G. IfK(1),K(2), · · · ,K(l) are the simple components

of Z
(
KG/J(KG)

)
and S1, S2, · · · , Sl are the cyclotomicK-classes of G, then |Si| = [K(i) : K] with a suitable

ordering of the indices, assuming that G is cyclic.

Lemma 3.2. (i) LetKG be a semi-simple group algebra and let N E G. Then

KG ∼= K (G/N )⊕∆(G, N),

where ∆(G, N) is an ideal ofKG generated by the set {n− 1 : n ∈ N}.

(ii) If N = G′ in part (i), thenK (G/G′) is the sum of all commutative simple components ofKG and ∆(G,G′)

is the sum of all others.

Proposition 3.2. The number of irreducible representation ofKG is equal to the number of conjugacy classes of

G.

4. Main results

The group algebra KH2n+1(Cp) is semi-simple, by Maschke’s theorem. Equivalently,
J(KH2n+1(Cp)) = 0. Observe that the order of the Heisenberg group H2n+1(Cp) is p2n+1 and it
has 2n+ 1 generators each of order p.
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Lemma 4.1. The number of conjugacy classes of H2n+1(Cp) is p2n + p− 1.

Proof. The proof follows from lemma-2.2. �

Lemma 4.2. The commutator subgroup of H2n+1(Cp) is Cp.

Proof. The commutator subgroup is generated by the commutators of the group. The commutator of
the group has the following form.


1 x b

0 In y

0 0 1

 ,


1 x′ b′

0 In y′

0 0 1


 =


1 0 xy′ − x′y

0 In 0

0 0 1


Thus, every commutator belongs to the Z(H2n+1(Cp)). Also, there are p elements in the center of the
Heisenberg group and hence, the result. �

The unit group of the semi simple group algebras corresponding to the groupH2n+1(C2) andH2n+1(Cp),
for p > 2 are discussed in the subsequent sections.

4.1. Unit group of KH2n+1(C2). The group H2n+1(C2) has 22n + 1 conjugacy classes by lemma-4.1.
The representatives(R), size(S) and order(O) of the conjugacy classes are given below.

R e x1 · · · xn b y1 · · · yn x1x2 x1y1 · · ·
∏n
i,j=1 xiyj

S 1 2 · · · 2 1 2 · · · 2 2 2 · · · 2
O 1 2 · · · 2 2 2 · · · 2 2 4 · · · 2

The exponent of the group is 4.

Theorem 4.1. Let G = H2n+1(C2) be the Heisenberg group andK be the finite field of characteristic q not equal

to 2. Then,

KG ' K22n ⊕M2n(K)

Proof. The group algebraKG is finite and so, Artinian. Therefore, by Wedderburn’s theorem,

KG 'Mn1(D1)⊕Mn2(D2)⊕ · · · ⊕Mnr(Dr)

KG 'Mn1 (Km1)⊕Mn2 (Km2)⊕ · · · ⊕Mnr (Kmr)

In the above decomposition, each component is pairwise inequivalent simple components of the group
algebra. Use lemma 4.2, GG′ ' (C2)

2n,where C2 is the cyclic group of order 2.
Therefore, by lemma 3.2,

KG ' K22n ⊕r−22ni=1 Mni (Kmi)

Here, r = 22n + 1 by proposition 3.2. Since qk ≡ ±1 mod 4 for all prime q, |SK(γg)| = 1, ∀g ∈ G.
Therefore, by lemma 3.1,m1 = m2 = · · · = mr = 1. Hence,

KG ' K22n ⊕Mn1 (K)
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Equate the dimensions both the sides.

22n+1 = 22n + n21

22n = n21

n1 = 2n

∴ KG ' K22n ⊕M2n (K)

�

Corollary 4.1. Notations as above. Let U(KG) denotes the unit group of the Heisenberg group algebra. Then,

U (KG) ' (K∗)2
2n ⊕GL2n (K)

Corollary 4.2. Notations as above. The order of U(KG) is given by,

|U (KG)| = (κ− 1)2
2n × (κ2

n − κ2n−1)(κ2n − κ2n−2) · · · (κ2n − 1)

4.2. Unit group ofKH2n+1(Cp); p > 2. The Heisenberg group H2n+1(Cp) has p2n + p− 1 conjugacy
classes(by lemma-4.1) as given below.

R e x1 · · · xn b · · · bp−1 y1 · · · yn x1x2 · · ·
∏n

i,j=1 xp−1
i yp−1

j

S 1 p · · · p 1 · · · 1 p · · · p p · · · p

O 1 p · · · p p · · · p p · · · p p · · · p

The exponent of the group is p.

Theorem 4.2. Let G = H2n+1(Cp) be the Heisenberg group andK be the finite field of characteristic q not equal

to p. Then, for each subgroup of TG,K of order di,

KG ' K ⊕ (Kdi)
p2−1
di ⊕ (Mpn (Kdi))

p−1
di

Proof. The group algebraKG is finite and so, Artinian. Therefore, by Wedderburn’s theorem,

KG 'Mn1(D1)⊕Mn2(D2)⊕ · · · ⊕Mnr(Dr)

KG 'Mn1 (Km1)⊕Mn2 (Km2)⊕ · · · ⊕Mnr (Kmr)

In the above decomposition, each component is pairwise inequivalent simple components of the group
algebra. Here, r = p2n+p−1 by proposition 3.2. Since the exponent of G is p, TG,K = {1, 2, 3, · · · , p−1}.
Let p− 1 = pλ11 p

λ2
2 · · · p

λl
l and d1, d2, · · · , dα, where α = (λ1 + 1)(λ2 + 1) · · · (λl + 1) are the divisors of

p− 1. Then, for each divisor di(1 ≤ i ≤ α) there exist a unique subgroup of order di for TG,K . For each
subgroup of order di, SK(γe) = {γe} and SK(γg) =

{
γg, γg2 , · · · , γgdi

}
for all g ∈ G except identity by

lemma-2.3.
⇒ |SK(γg)| = di, ∀g( 6= e) ∈ G& |SK(γe)| = 1
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Use lemma 4.2, GG′ ' (Cp)
2n ,where Cp is the cyclic group of order p.

Therefore, by lemma 3.2,

KG ' K ⊕ (Kdi)
p2n−1

di ⊕ (Mn1 (Kdi))
p−1
di

Equate the dimensions both the sides.

p2n+1 = 1 + di
p2n − 1

di
+
p− 1

di
di(n

2
1)

n21 =
p2n+1 − p2n

p− 1

n1 = (p)n

∴ KG ' K ⊕ (Kdi)
p2n−1

di ⊕ (Mpn (Kdi))
p−1
di , for each subgroup of TG,K of order di, �

Corollary 4.3. Notations as above. Let U(KG) denotes the unit group of the Heisenberg group algebra. Then,

for each subgroup of TG,K of order di,

U (KG) ' K∗ ⊕ (K∗di)
p2n−1

di ⊕ (GLpn (Kdi))
p−1
di

Corollary 4.4. Notations as above. The order of U(KG) is given by,

|U (KG)| =

 (κ− 1)× (κdi − 1)
p2n−1

di ×[(
(κdi)p

n − 1
) (

(κdi)p
n − κdi

)
· · ·
(
(κdi)p

n − (κdi)p
n−1)] p−1

di

Example 1. Consider n = 1, p = 7 and G = H3(C7). The exponent of the group G is 7. So, TG,K can be

{1}, {1, 6}, {1, 2, 4}, {1, 2, 3, 4, 5, 6}. Here, d1 = 1, d2 = 2, d3 = 3, d4 = 6. Therefore, the unit group ofKqkG

for q 6= 7 is given by,

• If TG,K = {1} or qk ≡ 1 mod 7, then U (KG) = (K∗)49 ⊕ (GL7(K))6

• If TG,K = {1, 6} or qk ≡ 6 mod 7, then U (KG) = K∗ ⊕ (K∗2 )24 ⊕ (GL7(K2))
3

• If TG,K = {1, 2, 4} or qk ≡ {2, 4} mod 7, then U (KG) = K∗ ⊕ (K∗3 )16 ⊕ (GL7(K3))
2

• If TG,K = {1, 2, 3, 4, 5, 6} or qk ≡ {3, 5} mod 7, then U (KG) = K∗ ⊕ (K∗6 )8 ⊕GL7(K6)

5. Conclusion

In this paper, the Heisenberg groups of higher dimensions are discussed completely and the unit
groups of the corresponding group algebras are characterized in general. Overall, the generalization
of the Heisenberg group to higher dimensions opens up new avenues for exploration, enhances our
understanding of complex systems, and paves the way for advancements in multiple disciplines. The
findings presented in this paper have the potential to inspire further research, leading to innovative
solutions, improved models, and practical applications in a wide range of scientific and technological
domains.
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