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Abstract. Nowadays cryptographical protocols are developed by the use of tropical linear and non linear
systems. To attack such cryptographical protocols solutions of tropical linear and non linear systems
are essential. In this paper, we present the final general maximal solution of linear systems with some
special matrices over the tropical semiring. These matrices include natural arithmetic matrices, γ-diagonal
matrices, J-matrices, and circulant matrices. We provide proofs for several theorems based on the general
maximal solution of max linear systems, which can be utilized to solve cryptographic algorithms employing
the discrepancy method. We also compare the discrepancy method with the normalization method and
present results regarding the relationship between these two methods.
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1. Introduction

The initial research publication on tropical geometry was written by Imre Simon, a computer scientist
and mathematician hailing from Brazil [1–3]. By the aspects of automata in the tropical semiring,
Imre Simon rephrased the finite power property as a Burnside problem in his reasoning [4]. French
mathematicians coined the term “tropical" to recognize Simon’s efforts in applying min-plus algebra
to optimization theory. Since the late 1950s, semirings with an underlying set that is a subset of real
number system have been devised and redesign numerous times in various fields of research, where
the addition of two elements in a tropical semiring is either the maximum or minimum, similarly the
product of two elements in a tropical semiring is the usual addition [5, 6]. There are two tropical
semirings that differ depending on the operation being performed. The first is known as the minimum
tropical semiring, which addition by taking the minimum of two elements and multiplication through
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adding the elements. This algebraic structure is denoted as the min-plus semiring. Similarly, the
maximum tropical semiring finds addition by taking the maximum of two elements and multiplication
through adding the elements. This semiring is also known as the max-plus semiring [7–9]. Examples of
max-plus semirings are (R∪{−∞},⊕,�), (W∪{−∞},⊕,�). The tropical semiring (W∪{−∞},⊕,�)

was introduced by Simons [1]. The max-plus semiring is isomorphic to the min-plus semiring, and
both are idempotent semirings [10]. Working with tropical semirings is appealing because of their
simplicity and resemblance to algebraic geometry [11,12]. As a result, their ease of use and applicability
can be inspiring. The tropical semiring structure is used in a variety of fields including computer
science, linear algebra, number theory and automata theory, etc [5]. Tropical semirings are also used
in language theory, control theory and operation research [13]. Tropical semirings are playing an
important role in linear algebra, especially in solving the linear systems [14–17]. Currently, tropical
protocols [18] can be attacked through the application of solutions for tropical linear and non linear
systems. This application is inspires us to investigate the resolution of particular tropical linear systems
and determine the behavior of their solutions in matrices over the tropical semiring. Since tropical sum
is notated as ⊕, and the tropical product is notated as �. The sections of our paper are structured as
follows: Section 2 contains the basic definitions needed to understand this paper. Section 3 explains
the normalization and discrepancy method with necessary theorems. In Section 4, we have proved
some results on the solutions of some special matrices. Section 5 contains the results based on the
relationship between the normalization and discrepancy methods.

2. Preliminaries

A semiring S is a set which is non-empty with binary operations, namely addition and
multiplication, that satisfy the following axioms:

(1) The addition operation forms a commutative monoid under (S,+), with an identity element
denoted as 0.

(2) The multiplication operation forms a monoid under (S, .), with a single identity element
denoted as 1.

(3) Multiplication distributes over addition, meaning that for any elements a, b, c ∈ S, we have
a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a.

(4) For any element a ∈ S, we have a · 0 = 0 · a = 0.
(5) The element 1 is distinct from the element 0.

These properties define a semiring and are essential to its mathematical structure [2, 16, 19].
Themaximum tropical semiring is defined as the semiringR = (S∪(−∞),⊕,�). Here, the operations

⊕ and� represent maximum tropical addition and maximum tropical multiplication, respectively. The
set S is a semiring, and Rmust satisfy the following properties: commutativity under tropical addition,
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i.e., a⊕ b = b⊕ a for every a, b ∈ R; associativity under tropical addition and tropical multiplication,
i.e., (a⊕ b)⊕ c = a⊕ (b⊕ c) and (a� b)� c = a� (b� c) for every a, b, c ∈ R.

In addition,R satisfies the property ofmultiplication distributes over addition, means that a�(b⊕c) =
(a � b) ⊕ (a � c) for every a, b, c ∈ R. Furthermore, R has an additive identity denoted by e, where
for every a ∈ R, we have e⊕ a = a⊕ e = a (since the additive identity is −∞). However, R does not
have an additive inverse [16]. The minimum tropical semiring follows a similar pattern, but it requires
choosing the minimum [17].

Let’s consider a semiring denoted as S. We define the set of all matrices with m rows and n

columns over S asMm×n(S). In this context, we represent the element at the ij-th position of a matrix
P ∈ Mm×n(S) as pij , and we denote the transpose of matrix P as P T . Let P = (pij) ∈ Mm×n(S),
Q = (qij) ∈Mm×n(S), T = (tij) ∈Mn×l(S) and α ∈ S. Addition of two matrices generally calculated
by

P +Q = ((pij) + (qij))m×n

and similarly product of two matrices can be calculated by,

PT =
n∑

i=1

((pik)(tkj))m×l

and
αP = (α(pij))m×n

Similarly in the max-plus semiring, addition of two tropical matrices is can be calculated by

P ⊕Q = (max((pij), (qij)))m×l

and the multiplication of two tropical matrices is calculated by

P � T = max ((pik) + (tkj))m×l

and
α� P = (α+ (pij))m×n

A system P � x = q is said to be a tropical system if all the entries of the system are chosen from the
tropical semiring R = (S ∪ {±∞},⊕,�). A matrix P ∈Mm×n(S) is said to be a tropical matrix if all
the elements of the matrix are taken from the tropical semiring R = (S ∪ {±∞},⊕,�) [10]. A matrix
P is said to be a maximum tropical matrix if all the elements of the matrix are from the maximum
tropical semiring R = (S ∪ {−∞},⊕,�). Similarly, a matrix P is said to be a minimum tropical matrix
if all the elements of the matrix are from the minimum tropical semiring R = (S ∪ {∞},⊕,�).

Let S = R be the extended real number system under the max-plus algebra, and let P and Q be
m× nmatrices over the extended real numbers under the operation of maximum tropical semirings,
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where P = (pij)m×n and Q = (qij)m×n. (pij) and (qij) are the ij-th entries of P and Q, respectively.
We define P ≤ Q as (pij) ≤ (qij) for all i, j [17]. A matrix P = (pij) is said to be regular if (pij) 6= ±∞.
A vector b ∈ Sm is said to be a normal vector or regular vector if bj 6= −∞, for all j ∈ m [16]. If we
consider the min-plus algebra, in a regular vector, we have bj 6=∞ for all j ∈ m [17].

A solution of the tropical system P � x = q is called the maximal solution x∗, if x ≤ x∗ for any other
solution x [16,17]. A linear system P � x = q is said to be a tropical linear system if the elements of
the linear system are all from any one of the tropical semirings. Through out this paper we define
T = (W ∪ {−∞},⊕,�) where W denoting the set of all whole numbers, V=(R ∪ {−∞},⊕,�) where
R is a set of all real numbers,W=(Z ∪ {−∞},⊕,�) where Z is a set of all integers.

Definition 2.1. A matrix P ∈ Mm×n(T) is said to be a natural arithmetic matrix if the entries of the
matrix P are continuously written with natural numbers following the pattern of the respective row or
column. Types of natural arithmetic matrix are,

• Row natural arithmetic matrix
• Column natural arithmetic matrix

Definition 2.2. Amatrix P ∈Mm×n(T) is said to be a column natural arithmetic matrix if it is in the
form of 

1 2 3 · · · n

n+ 1 n+ 2 n+ 3 · · · 2n

2n+ 1 2n+ 2 2n+ 3 · · · 3n
... ... ... ... ...
· · · · · · · · · · · · m.n


Definition 2.3. Amatrix P ∈Mm×n(T) is said to be a row natural arithmetic matrix, if it is in the below
form, 

1 m+ 1 2m+ 1 · · · · · ·

2 m+ 2 2m+ 2 · · · · · ·

3 m+ 3 2m+ 3 · · · · · ·
... ... ... ... ...
m 2m 3m · · · n.m


Definition 2.4. Let P ∈ Mm×n(V), and it is named a J-matrix if all the entries of the matrix P are
equal to j.
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j j j · · · j

j j j · · · j

j j j · · · j
... ... ... . . . j

j j j · · · j


Definition 2.5. Amatrix P ∈Mm×m(V)with entries c0, c1, c2, ..., cm−1 is said to be a circulant matrix
if it is of the form 

c0 cm−1 cm−2 · · · c1

c1 c0 cm−1 · · · c2

c2 c1 c0 · · · c3
... ... ... ... cm−2

... ... ... ... cm−1

cm−1 cm−2 c2 · · · c0


3. Normalization and Decrepancy Methods

P � x = q is said to be a maximum linear system if the coefficients of the linear systems are from
the maximum tropical semirings [20]. We are aware that there are various methods for solving linear
equations [14, 21, 22]. In this paper, we utilized the normalization method [16, 17] and the discrepancy
method to solve the linear system of equations over the tropical semiring. We will compare both
methods and analyze the relationship between them. P = (pij) ∈ Mm×n (S/{−∞}), Q = (qij) ∈

Mm×n(S/{−∞}), where (S/{x}) denotes all values of R except x, and q = (qj) is a regular vector
1 ≤ j ≤ m, and the j-th column of the P matrix is denoted as Pj .

3.1. Normalization method. Let P � x = q be a tropical linear system or a linear system over the max
plus semiring, where the matrix P ∈Mm×n(S/{−∞}) and Pj ∈ (S/{−∞})m is the j-th normal vector
withm rows. The normalized matrix P̃ of the given matrix P is calculated by [16,17].

P̃ =
[
(P1 − P̂1) (P2 − P̂2) (P3 − P̂3) · · · (Pn − P̂n)

]
where Pj denotes the j-th column of the given matrix P

P̂j =
p1j + p2j + · · ·+ pmj

m
, ∀ j ∈ n.

similarly, normalized vector of the given regular vector q ∈ Sm is calculated by

q̃ = q − q̂

where
q̂ =

q1 + q2 + q3 + · · ·+ qm
m
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we can denote the normalized system of P �x = q as P̃ �y = q̃, where y = (P̂j− q̃)+x = ((P̂j− q̂+xj))

P � x = q =⇒ max(P1 + x1, P2 + x2, · · · , Pn + xn) = q

=⇒ max((P1 − P̂1) + P̂1 + x1, · · · , (Pn − P̂n) + P̂n + xn) = (q − q̂) + q̂

=⇒ max(P̃1 + P̂1 + x1), (P̃2 + P̂2 + x2), · · · , (P̃n + P̂n + xn) = q̃ + q̂

now subtract by q̂ on both side
=⇒ max((P̃1 + (P̂1 − q̂ + x1), (P̃1 + (P̂2 − q̂ + x2), · · · , (P̃1 + (P̂n − q̂ + xn)) = q̃

=⇒ max((P̃1 + y1), (P̃2 + y2)), · · · , (P̃n + yn) = q̃

=⇒ P̃ � y = q̃

where yj ≤ q̃i − p̃ij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Now we discuss the associated normalized matrix
U = (uij) ∈Mm×n(S), where uij = q̃i− p̃ij .We take zj as the element that is the minimum of Uj , where
Uj is the j-th column of the U matrix. Now we have to find the maximal solution for the given system.
Initially, we have to find the solution y∗ for the normalized system. Where y∗ is obtained by placing
each column’s minimum element of Uj as yj . After finding y∗, we have to find the maximal solution
x∗ of the given system P � x = q, with each entry of the maximal solution can be calculated by the
formula xj∗ = yj

∗ − P̂j + q̂, where

y∗ =



y1
∗

y2
∗

y3
∗

...
yn

∗



x∗ =



x1
∗ = y1

∗ − P̂1 + q̂

x2
∗ = y2

∗ − P̂2 + q̂

x3
∗ = y3

∗ − P̂3 + q̂
...

xn
∗ = yn

∗ − P̂n + q̂


Theorem 3.1. [16] The linear system P � x = q has a solution if and only if every row of the associated

normalized matrix U contains at least one element that is a column minimum.

3.2. Discrepancymethod. There is anothermethod to determine the existence of the solutionP�x = q.
Where solution is obtained by defining the“discrepancy" and “reducible discrepancy" matrices as
follows:

DPq =


q1 − p11 q1 − p12 · · · q1 − p1n
q2 − p21 q2 − p22 · · · q2 − p2n

... ... ... ...
qm − pm1 qm − pm2 · · · qm − pmn
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and

RDPq =

1 if dij =minimum of the j-th column

0 else

where dij denotes ij-th entry of the reducible discrepancy matrix RDPq and note that minimum of
each column of DPq is the element of x∗. If each row of the matrix RDPq contains only one element
with a value 1, then P �x = q has a unique solution. In addition, if atleast one row contains an element
1 more than one time, then P � x = q has many solutions.

Theorem 3.2. A system P � x = q has a solution if and only if every row of the reducible discrepancy matrix

has atleast one element with value 1.

Proof. Assume that the system has a solution, which implies that for some i-th row, 1 ≤ i ≤ m, of the
reducible discrepancy matrix, there is no element with the value 1. Since the discrepancy matrix does
not have a column minimum element in that corresponding row, we have xj < qi− pij for all 1 ≤ j ≤ n.
Thus,max{pi1 + x1, pi2 + x2, · · · , pin + xn} < qi, which contradicts our assumption that the system has
a solution. Every row of the reducible discrepancy matrix should have an element of value 1.

Conversely, if every row of the reducible discrepancy matrix has at least one element with value 1,
then xj = qi−pij for 1 ≤ i ≤ m and 1 ≤ j ≤ n. This implies thatmax{pi1+x1, pi2+x2, · · · , pin+xn} = qi.
Hence, the system has a solution. �

Theorem 3.3. A system P � x = q has many solutions if and only if atleast one row of the reducible discrepancy

matrix has more than one element with the value 1

4. Main Results

In this section, we will discuss the general maximal solution of particular matrices. Let us assume
the tropical semirings T = (W ∪ {−∞},⊕,�), where W denotes the set of all whole numbers, V =

(R ∪ {−∞},⊕,�), where R is the set of all real numbers, andW = (Z ∪ {−∞},⊕,�), where Z is the
set of all integers. In this section, we have concluded and written some results on certain matrices using
the discrepancy method.

4.1. Analysing the tropical systems over some special matrices with discrepancy method.

Theorem 4.1. Let P ∈Mm×m(T) be a row natural arithmetic matrix and P � x = q is a linear system over

the tropical semiring (T).

(1) If them× 1 regular vector q is of the form
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q =



m2 + 1

m2 + 2

m2 + 3
...

m2 +m


then the linear system P � x = q has many solutions.

(2) If q = Pj for some 1 ≤ j ≤ m then the system has many solutions, where Pj denotes the j-th column of

P matrix.

Proof. (1) Assume that P is a row natural arithmetic matrix over the tropical semiring T,



1 m+ 1 2m+ 1 3m+ 1 · · · · · · m(m− 1) + 1

2 m+ 2 2m+ 2 3m+ 2 · · · · · · m(m− 1) + 2

3 m+ 3 2m+ 3 3m+ 3 · · · · · · · · ·
... ... ... ... ... ... ...
m 2m 3m 4m · · · m(m− 1) m(m− 1) +m





x1

x2

x3

x4
...
xm


=



m2 + 1

m2 + 2

m2 + 3
...

m2 +m



The discrepancy matrix is obtained as follows,

DPq =



m2 m2 −m m2 − 2m · · · m2 −m(m− 1)

m2 m2 −m m2 − 2m · · · m2 −m(m− 1)

m2 m2 −m m2 − 2m · · · m2 −m(m− 1)
... ... ... · · ·

...
m2 m2 −m m2 − 2m · · · m2 −m(m− 1)


The reducible discrepancy matrix is obtained as follows,

RDPq =



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
... ... ... . . . ...
1 .. 1 1 1


Every row of RDPq matrix contains more than one element of value 1. Since we conclude the
system has many solutions
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x∗ =



m2

m2 −m

m2 − 2m
...

m2 −m(m− 1)


all other solutions are obtained as follows,

x∗ =



m2

v11

v21
...

vm−1
1


, v11 ≤ m2 −m, v21 ≤ m2 − 2m, ...., vm−1

1 ≤ m2 −m(m− 1)

similarly we can find the solutions till the term

x∗ =



v1m

v2m
...

vm−1
m

m2 −m(m− 1)


, v1m ≤ m2, v2m ≤ m2 −m, ...., vm−1

m ≤ m2 −m(m− 2)

(2) if q = Pj , for some 1 ≤ j ≤ m then we have to show that system has many solution. Suppose
q = Pk, for some 1 ≤ k ≤ m then k-th column of DPq matrix is a zero vector and (k − 1)-th
column vector is am vector (Sincem vector denotes the vector which has all entries of value
m), (k − 2)-th column vector is a 2m vector. Similarly (k − r)-th column vector is a rm vector
and (k + 1)th column is a (−m) vector. Similarly we are getting (k + h)-th column is a (−hm)

vector.



1 m+ 1 2m+ 1 3m+ 1 · · · · · · m(m− 1) + 1

2 m+ 2 2m+ 2 3m+ 2 · · · · · · m(m− 1) + 2

3 m+ 3 2m+ 3 3m+ 3 · · · · · · · · ·
... ... ... ... · · ·

... ...
m 2m 3m 4m · · · m(m− 1) m(m− 1) +m





x1

x2

x3

x4
...
xm


= Pj ,

The discrepancy matrix is obtained as follows,
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DPq =



rm .. m 0 −m · · · −hm

rm .. m 0 −m · · · −hm

rm .. m 0 −m · · ·
...

... ... ... ... ... ... ...
rm .. m 0 −m .. −hm



RDPq =



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
... ... ... . . . ...
1 .. 1 1 1


Clearly, we can say that system has many solution. Maximal solution is

x∗ =



rm
...

2m

m

0

−m
...
−hm


all other solutions are obtained by,

x∗ =



rm

v11

v21

v31
...
vk1
...

vm−1
1



;
v11 ≤ (r − 1)m, v21 ≤ (r − 2)m, ...., vk1 ≤ 0, ...., vk+1

1

≤ −m, ...vh1 ≤ (−hm)
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x∗ =



v12

(r − 1)m

v22

v32
...
vk2
...
vm2



;
v12 ≤ rm, v22 ≤ (r − 2)m, ...., vk2 ≤ 0, ...., vk+1

2

≤ (−m), ..., vh2 ≤ (−hm).

finally we get solutions till the term as follows,

x∗ =



v1m

v2m

v2m

v3m
...
vkm
...
−hm



;
v1m ≤ (rm), v2m ≤ (r − 1)m, v3m ≤ (r − 2)m, ...., vkm

≤ 0, ...., vk+1
m ≤ (−m), ..., vh−1

m ≤ (−(h− 1)m).

�

Theorem 4.2. Let P ∈Mm×m(T) be a column natural arithmetic matrix and P � x = q is linear system over

the tropical semiring (T),

(1) If them× 1 regular vector q is of the form

q =



m2 +m

m2 + 2m

m2 + 3m
...

2m2


then the linear system P � x = q has a solution.

(2) If q = Pj , for some 1 ≤ j ≤ m then the system has many solutions, where Pj denotes the j-th column of

P matrix.
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Proof. (1) Given P matrix is a column natural arithmetic matrix over the tropical semiring T,



1 2 3 4 · · · m

m+ 1 m+ 2 m+ 3 m+ 4 · · · 2m

2m+ 1 2m+ 2 2m+ 3 2m+ 4 · · · 3m

... ... ... ... ... ...
(m− 1)m+ 1 (m− 1)m+ 2 (m− 1)m+ 3 · · · m(m− 1) +m





x1

x2

x3

x4
...
xm



=



m2 +m

m2 + 2m

m2 + 3m

...
2m2


The discrepancy matrix of the system P � x = q is obtained as follows,

DPq =



m2 +m− 1 m2 +m− 2 m2 +m− 3 · · · m2

m2 +m− 1 m2 +m− 2 m2 +m− 3 · · · m2

m2 +m− 1 m2 +m− 2 m2 +m− 3 · · · m2

... ... ... · · ·
...

m2 +m− 1 m2 +m− 2 m2 +m− 3 · · · m2


and

RDPq =



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
... ... ... . . . ...
1 .. 1 1 1


where in RDPq matrix every row contains a element with value 1 more than one time. We can
conclude the system has many solutions.

x∗ =



m2 +m− 1

m2 +m− 2

m2 +m− 3
...
m2


(2) if q = Pj for some 1 ≤ j ≤ m then we have to show that system has many solution. Suppose

that q = Pk, then kth column ofDPq matrix is a zero vector, (k− 1)th column vector is a 1 vector,
(Since 1 vector denote the vector which has all entries 1), (k − 2)th column vector is a 2 vector,
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(k−r)th column vector is a r vector, (k+1)th column is a (−1) vector, Similarly (k+h)th column
is a (−h) vector.



1 2 3 · · · · · · m

m+ 1 m+ 2 m+ 3 · · · · · · 2m

2m+ 1 2m+ 2 2m+ 3 · · · · · · 3m

... ... ... ... ... ...
(m− 1)m+ 1 (m− 1)m+ 2 (m− 1)m+ 3 · · · · · · m(m− 1) +m





x1

x2

x3

x4
...
xm


= Pj ,

The discrepancy matrix is obtained as follows,

DPq =



r · · · 1 0 −1 · · · −h

r · · · 1 0 −1 · · · −h

r · · · 1 0 −1
... ...

... ... ... ... ... ... ...
r · · · 1 0 −1 · · · −h


The reducible discrepancy matrix is obtained as follows,

RDPq =



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
... ... ... . . . ...
1 .. 1 1 1


Since RDPq we can say that system has many solution and the maximal solution is obtained as
follows,

x∗ =



r

r − 1
...
2

1

0

−1

−2
...
−h


�



Asia Pac. J. Math. 2023 10:24 14 of 20

Theorem 4.3. Let P ∈Mm×m(V) be a J-matrix over the tropical semiringV and P �x = q be a linear system

with them× 1 normal vector q of the form

q =



q1

q2

q3
...

qm


then,

(1) The system has many solution if and only if qi = qj for all 1 ≤ i, j ≤ m.

(2) The system has no solution if and only if qi 6= qj , 1 ≤ i, j ≤ m.

Proof. Assume that J-matrix over the tropical semiringV

j j j · · · j

j j j · · · j

j j j · · · j
... ... ... . . . j

j j j · · · j





x1

x2

x3
...
xm


=



q1

q2

q3
...
qm


The discrepancy matrix of the system is obtained as follows,

DPq =



q1 − j q1 − j q1 − j · · · q1 − j

q2 − j q2 − j q2 − j · · · q2 − j

q3 − j q3 − j q3 − j · · · q3 − j
... ... ... ... ...

qm − j qm − j qm − j · · · qm − j


(1) Assume qi = qj = k, for all 1 ≤ i, j ≤ m that implies dijs are equal for all 1 ≤ i, j ≤ m that

implies every elements of DPq are minimum. We obtain the reducible discrepancy matriix
RDPq as follows,

RDPq =



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
... ... ... . . . ...
1 .. 1 1 1


Since RDPq we conclude system has many solutions.
Conversely assume that system has a many solutions. We have to show that qi = qj for all
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1 ≤ i, j ≤ m. Already we have

p̃1j = k,∀1 ≤ j ≤ m

p̃2j = k,∀1 ≤ j ≤ m
...

˜pmj = k, ∀1 ≤ j ≤ m

suppose qi 6= qj for some 1 ≤ i, j ≤ m then we can split into two cases.
(a) If qi = r < qj = k then i-th row of the DPq matrix contains column minimum element of

every column and i-th row of RDPq matrix contains all element as 1 and all other rows
does not contains any element with a value one. We conclude that the system has no
solution. Which is a contradiction to our assumption.

(b) Similarly for the case qj = k < qi = r also we get contradiction. Let qi − j = w then
maximal solution

x∗ =



w

w

w
...
w


(2) Assume qi 6= qj for some 1 ≤ i, j ≤ m, If qi = r < qj = k then i-th row of the DPq matrix

contains column minimum element of every column. i-th row of RDPq matrix contains all
element as 1 and all other rows does not contains element with a value one. We conclude that
the system has no solution. Conversely assume that system has no solution. Suppose qi = qj

then by the first part of the Theorem 4.3 we know that system has a many solutions. So by the
contradiction we can prove qi 6= qj for some 1 ≤ i, j ≤ m.

�

Corollary 4.4. Let P ∈Mm×m(V) be a J-matrix and P � x = q be a linear system over the tropical semiring

V with normal vector

q =



j

j

j
...

j


then the system has a solution.
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Proof. By the first part of the Theorem 4.3 directly we can prove that system has many solutions. �

Theorem 4.5. Let P ∈Mm×m(V) be a γ-diagonal matrix and if P � x = q be a linear system over the tropical

semiring V with normal vector

q =



γ

γ

γ
...

γ


then system has a solution.

Proof. Assume that the system with γ− diagonal matrix,

γ 0 0 · · · 0

0 γ 0 · · · 0

0 0 γ · · · 0
... ... ... . . . ...
0 0 0 · · · γ





x1

x2

x3
...
xm


=



γ

γ

γ
...
γ


The discrepancy matrix is obtained as follows,

DPq =



0 γ γ · · · γ

γ 0 γ · · · γ

γ γ 0 · · ·
...

... ... ... . . . ...
γ γ γ · · · 0


The reducible discrepancy matrix is obtained by splitting two cases as follows, if γ < 0 then

RDPq =



0 1 1 1 1

1 0 1 1 1

1 1 0 1 1
... ... ... . . . ...
1 · · · 1 1 0



x∗ =



γ

γ

γ
...
γ
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all other maximal solutions are

x∗ =



γ

v11

v21
...

vm−1
1


; v11 ≤ γ, v21 ≤ γ, ..., vm−1

1 ≤ γ

x∗ =



v12

γ

v22
...

vm−1
2


; v12 ≤ γ, v22 ≤ γ, ..., vm−1

2 ≤ γ

similarly we get as follows,

x∗ =



v1m

v2m

v3m
...

vm−1
m

γ


; v1m ≤ γ, v2m ≤ γ, ..., vm−1

m ≤ γ

if 0 < γ then

RPq =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0
... ... ... . . . ...
0 .. 0 0 1



x∗ =



0

0

0
...
0


It is a unique solution. �

Theorem 4.6. Let P � x = q be a tropical linear system with the circulant matrix P ∈Mm×m over the tropical

semiringV, where q is am× 1 normal vector, if q = Cj , for some 1 ≤ j ≤ m, where Cj is j-th column of the

circulant matrix then the system has a solution.
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Proof. Assume that P � x = q be a tropical linear system with the circulant matrix.

c0 cm−1 cm−2 · · · c1

c1 c0 cm−1 · · · c2

c2 c1 c0 · · · c3
... ... ... ... cm−2

... ... ... ... cm−1

cm−1 cm−2 c2 · · · c0





x1

x2

x3
...
xm


= Cj

where q = Cj , for some 1 ≤ j ≤ m. Suppose that q = Ck , 1 ≤ k ≤ m, where Ck denotes the k-th
column of the circulant matrix then k-th column of DPq matrix is zero and corresponding k-th column
of RDPq matrix contains all entries of value one. Which implies that the system has a solution. �

5. Relationship between Normalization and Discrepancy Methods

We finished the scenarios in which the particular matrices over the tropical semirings have a solution
or do not have a solution in the preceding sections. We used discrepancy method to determine the
general form of the maximal solution of several specific matrices over tropical semirings. We also
compared the normalization and discrepancy approaches in this section by comparing the data obtained
from both methods. To understand the relationship between the two methodologies, we present the
following theorems.

Theorem 5.1. A tropical linear system P � x = q where P ∈Mm×m(S) every row of associated normalized

matrix has atleast one column minimum element if and only if every row of RDPq has atleast one element with

value of 1.

Proof. Assume that every row of the associated normalized matrix has atleast one column minimum
element. Which gives that system has a solution. If the system has a solution then by the Theorem 3.2
we can say that every row of RDPq has atleast one element with the value 1. Conversely assume that
every row of RDPq has atleast one element of value 1. By the Theorem 3.2 we can say that system has a
solution. By the Theorem 3.1 we can prove that every row of associated normalized matrix has atleast
one column minimum element. �

Theorem 5.2. Let the system P � x = q with P ∈Mm×n(S) if every row of associated normalized matrix has

atleast one column minimum element if and only if every row of DPq has atleast one column minimum element.

Proof. Assume that every row of the associated normalized matrix has atleast one column minimum
element. Suppose any one of the rows of discrepancy matrix has no column minimum element then by
the Theorem 5.1 that implies some row ofRDPq has no element with value 1. which is the contradiction.
Conversely assume that every row of the DPq has atleast one column minimum element. We know
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that every row of the RDPq has atleast one element with a value 1 which implies that system has a
solution. By Theorem 3.1 every row of associated normalized matrix has atleast one column minimum
element. Hence the proof. �

Theorem 5.3. Let the system P � x = q with P ∈ Mm×n(S), RDPq matrix has exactly one element with a

value 1 if and only if the associated normalized matrix has exactly one column minimum element.

Conclusion

In this article to determine the solutions of tropical linear systems, we employed with discrepancy
method. We talked about the conditions in tropical systems which came up with a unique solution,
many solutions and no solution. We used the discrepancy approach to find all the solutions once
the system had numerous. Also we spoken about how to use the normalization and discrepancy
methods to determine the maximal solution of the linear equations over the tropical semirings. We
employed certain matrices row natural arithmetic matrices, column natural matrices, γ - diagonal
matrices, J-matrices, and circulant matrices and studied the general form of the maximal solutions. We
have also written several theorems about the generalized maximal solutions of specific linear systems
over the tropical semirings. We presented some results on relationship between two methods. In future
we may try to concentrate on the attack of cryptographical algorithms with obtained solutions.
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