

SEMIDETACHED UP (BCC)-SUBALGEBRAS OF UP (BCC)-ALGEBRAS

AIYARED IAMPAN^{1,*}, N. RAJESH²

¹Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand

²Department of Mathematics, Rajah Serfoji Government College (affiliated to Bharathidasan University), Thanjavur-613005,

Tamilnadu, India

*Corresponding author: aiyared.ia@up.ac.th

Received Aug. 6, 2023

ABSTRACT. The concept of semidetached UP (BCC)-subalgebras is introduced, and their properties are investigated. Several conditions for a semidetached structure in UP (BCC)-algebras to be a semidetached UP (BCC)-subalgebra are provided. The concepts of $(\overline{e}, \overline{e} \lor \overline{q_k})$ -fuzzy UP (BCC)-subalgebras, *k*-left (*k*-right) ($q_k, \overline{e} \lor \overline{q_k}$)-fuzzy UP (BCC)-subalgebras, ($q_k, \overline{e} \lor \overline{q_k}$)-fuzzy UP (BCC)-subalgebras, and ($\overline{e} \lor \overline{q_k}, \overline{e} \lor \overline{q_k}$)fuzzy UP (BCC)-subalgebras are introduced, and relative relations and properties are discussed. 2020 Mathematics Subject Classification. 03G25, 03E72, 08A72.

Key words and phrases. UP (BCC)-algebra; semidetached structure; semidetached UP (BCC)-subalgebra; $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy UP (BCC)-subalgebra.

1. INTRODUCTION

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [8], played a vital role in generating some different types of fuzzy subgroups, called fuzzy subgroups, introduced by Bhakat and Das [1]. In particular, the idea of an $(\in, \in \lor q)$ -fuzzy subgroup is an important and useful generalization of the Rosenfeld's fuzzy subgroup [9]. In UP-algebras, the concept of fuzzy UP-subalgebras, which is studied in [10], is also important and useful generalization of the well-known concepts. The notion of UP-algebras (see [4]) and the concept of BCC-algebras (see [7]) are the same concept, as shown by Jun et al. [6] in 2022. We shall refer to it as BCC rather than UP in this article out of respect for Komori, who initially described it in 1984. In Bordbar et. al. [2] introduced the notion of semidetached subalgebras, and investigated their properties.

DOI: 10.28924/APJM/10-25

In this paper, we introduce the concepts of $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebras, *k*-left (*k*-right) $(q_k, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebras, and $(\overline{\in} \lor \overline{q_k}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebras, and $(\overline{\in} \lor \overline{q_k}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebras, and investigate relative relations and properties. We provide several conditions for a semidetached structure in BCC-algebras to be a semidetached BCC-subalgebra.

2. Preliminaries

The concept of BCC-algebras (see [7]) can be redefined without the condition (2.6) as follows:

An algebra $X = (X, \cdot, 0)$ of type (2, 0) is called a *BCC-algebra* (see [3]) if it satisfies the following conditions:

$$(\forall x, y, z \in X)((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0)$$
(2.1)

$$(\forall x \in X)(0 \cdot x = x) \tag{2.2}$$

$$(\forall x \in X)(x \cdot 0 = 0) \tag{2.3}$$

$$(\forall x, y \in X)(x \cdot y = 0 = y \cdot x \Rightarrow x = y)$$
(2.4)

After this, we assign X instead of a BCC-algebra $(X, \cdot, 0)$ until otherwise specified.

We define a binary relation \leq on *X* as follows:

$$(\forall x, y \in X)(x \le y \Leftrightarrow x \cdot y = 0) \tag{2.5}$$

In *X*, the following assertions are valid (see [4]).

$$(\forall x \in X)(x \le x) \tag{2.6}$$

$$(\forall x, y, z \in X)(x \le y, y \le z \Rightarrow x \le z)$$
(2.7)

$$(\forall x, y, z \in X)(x \le y \Rightarrow z \cdot x \le z \cdot y)$$
(2.8)

$$(\forall x, y, z \in X)(x \le y \Rightarrow y \cdot z \le x \cdot z)$$
(2.9)

$$(\forall x, y, z \in X)(x \le y \cdot x, \text{ in particular}, y \cdot z \le x \cdot (y \cdot z))$$
 (2.10)

$$(\forall x, y \in X)(y \cdot x \le x \Leftrightarrow x = y \cdot x) \tag{2.11}$$

$$(\forall x, y \in X)(x \le y \cdot y) \tag{2.12}$$

$$(\forall a, x, y, z \in X)(x \cdot (y \cdot z) \le x \cdot ((a \cdot y) \cdot (a \cdot z)))$$
(2.13)

$$(\forall a, x, y, z \in X)(((a \cdot x) \cdot (a \cdot y)) \cdot z \le (x \cdot y) \cdot z)$$
(2.14)

$$(\forall x, y, z \in X)((x \cdot y) \cdot z \le y \cdot z)$$
(2.15)

$$(\forall x, y, z \in X)(x \le y \Rightarrow x \le z \cdot y)$$
(2.16)

$$(\forall x, y, z \in X)((x \cdot y) \cdot z \le x \cdot (y \cdot z))$$

$$(2.17)$$

$$(\forall a, x, y, z \in X)((x \cdot y) \cdot z \le y \cdot (a \cdot z))$$
(2.18)

A *fuzzy set* [11] in a nonempty set X is defined to be a function $\lambda : X \to [0, 1]$, where [0, 1] is the unit closed interval of real numbers.

Definition 2.1. [5] A fuzzy set λ in a nonempty set *X* of the form

$$\lambda(y) = \begin{cases} t \in (0,1] & \text{if } y = x, \\ 0 & \text{if } y \neq x, \end{cases}$$

is said to be a *fuzzy point with support* x and value t and is denoted by x_t .

For a fuzzy point x_t and a fuzzy set λ in a nonempty set X, Pu and Liu [8] introduced the symbol $x_t \alpha \lambda$, where $\alpha \in \{ \in, q, \in \forall q, \in \land q \}$. To say that $x_t \in \lambda$ (resp., $x_t q \lambda$), we mean $\lambda(x) \ge t$ (resp., $\lambda(x) + t > 1$), and in this case, x_t is said to *belong to* (resp., *be quasi-coincident with*) a fuzzy set λ . To say that $x_t \in \forall q \lambda$ (resp., $x_t \in \land q \lambda$), we mean $x_t \in \lambda$ or $x_t q \lambda$ (resp., $x_t \in \lambda$ and $x_t q \lambda$). We assign the symbol $x_t \overline{\alpha} \lambda$ to the negation of $x_t \alpha \lambda$.

Jun [5] considered the general form of the symbol $x_t q \lambda$ as follows: for an arbitrary element $k \in [0, 1)$, we say that

$$x_t q_k \lambda \Leftrightarrow \lambda(x) + t + k > 1, \tag{2.19}$$

$$x_t \in \forall q_k \lambda \Leftrightarrow x_t \in \lambda \text{ or } x_t q_k \lambda.$$
(2.20)

Definition 2.2. [10] A fuzzy set λ in X is called a *fuzzy BCC-subalgebra* of X if it satisfies:

$$(\forall x, y \in X)(\lambda(x \cdot y) \ge \min\{\lambda(x), \lambda(y)\}).$$
(2.21)

Definition 2.3. [10] For any fuzzy set λ in a nonempty set X and any $t \in [0, 1]$, the set $U(\lambda, t) = \{x \in X \mid \lambda(x) \ge t\}$ is called a *level subset* of λ .

Definition 2.4. [5] A fuzzy set λ in *X* is called an $(\in, \in \lor q_k)$ -fuzzy BCC-subalgebra of *X* if it satisfies:

$$(\forall x, y \in X, \forall t, r \in (0, 1]) (x_t \in \lambda, y_r \in \lambda \Rightarrow (x \cdot y)_{\min\{t, r\}} \in \lor q_k \lambda).$$
(2.22)

3. Semidetached BCC-Subalgebras

Given a set *X* and a subinterval Ω of [0, 1], a *semidetached structure* over Ω is defined to be a pair (X, f), where $f : \Omega \to P(X)$ is a mapping when P(X) is represented as the power set of *X*.

Definition 3.1. A semidetached structure (X, f) over Ω is called a *semidetached BCC-subalgebra* over Ω with respect to $t \in \Omega$ (briefly, *t*-semidetached BCC-subalgebra over Ω) if f(t) is a BCC-subalgebra of X. We say that (X, f) is a *semidetached BCC-subalgebra* over Ω if it is a *t*-semidetached BCC-subalgebra over Ω with respect to all $t \in \Omega$.

Given a fuzzy set λ in a set *X*, consider the following mappings:

$$\ell_U^{\lambda}: \Omega \to P(X), t \mapsto U(\lambda, t), \tag{3.1}$$

$$\ell_{Q_k}^{\lambda}: \Omega \to P(X), t \mapsto Q_k(\lambda, t),$$
(3.2)

$$\ell^{\lambda}_{\mathscr{E}_{k}}: \Omega \to P(X), t \mapsto \mathscr{E}_{k}(\lambda, t), \tag{3.3}$$

where $Q_k(\lambda, t) = \{x \in X \mid x_t q_k \lambda\}$ and $\mathscr{E}_k(\lambda, t) = \{x \in X \mid x_t \in \lor q_k \lambda\}$, which are called the q_k -set and $\in \lor q_k$ -set with respect to t (briefly, t- q_k -set and t- $\in \lor q_k$ -set), respectively, of λ . A t- q_k -set with k = 0 is called a t-q-set and is denoted by $Q(\lambda, t)$. A t- $\in \lor q_k$ -set with k = 0 is called a t- $\in \lor q$ -set and is denoted by $\mathscr{E}(\lambda, t)$. Note that, for any $t, r \in (0, 1]$, if $t \ge r$, then every r- q_k -set is contained in the t- q_k -set, that is, $Q_k(\lambda, r) \subseteq Q_k(\lambda, t)$. Obviously, $\mathscr{E}_k(\lambda, t) = U(\lambda, t) \cup Q_k(\lambda, t)$.

Lemma 3.2. [10] A fuzzy set λ is a fuzzy BCC-subalgebra of X if and only if $U(\lambda, t)$ is a BCC-subalgebra of X for all $t \in [0, 1]$ if it is nonempty.

Theorem 3.3. A semidetached structure (X, ℓ_U^{λ}) is a semidetached BCC-subalgebra over $\Omega = (0, 1]$ if and only if λ is a fuzzy BCC-subalgebra of X.

Proof. Straightforward from Lemma 3.2.

Theorem 3.4. If λ is an (\in, \in) -fuzzy BCC-subalgebra (or equivalently, λ is a fuzzy BCC-subalgebra) of X, then a semidetached structure $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, 1]$.

Proof. Let $x, y \in \ell_{Q_k}^{\lambda}(t)$ for $t \in \Omega = (0, 1]$. Then $x_t q_k \lambda$ and $y_t q_k \lambda$, that is, $\lambda(x) + t + k > 1$ and $\lambda(y) + t + k > 1$. It follows from (2.21) that $\lambda(x \cdot y) + t + k \ge \min\{\lambda(x), \lambda(y)\} + t + k = \min\{\lambda(x) + t + k, \lambda(y) + t + k\} > 1$. Hence, $(x \cdot y)_t \in \forall q_k \lambda$, and so $x \cdot y \in \ell_{Q_k}^{\lambda}(t)$. Therefore, $\ell_{Q_k}^{\lambda}(t)$ is a BCC-subalgebra of X. Consequently, $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, 1]$.

Corollary 3.5. If λ is an (\in, \in) -fuzzy BCC-subalgebra (or equivalently, λ is a fuzzy BCC-subalgebra) of X, then a semidetached structure (X, ℓ_U^{λ}) is a semidetached BCC-subalgebra over $\Omega = (0, 1]$.

Given a fuzzy set λ in $X, x, y \in X, t, r \in [0, 1]$, and $k \in [0, 1)$, we consider the following condition:

$$x_t q_k \lambda, y_r q_k \lambda \Rightarrow (x \cdot y)_{\min\{t,r\}} \in \forall q_k \lambda.$$
(3.4)

Definition 3.6. A fuzzy set λ in X is called a *k*-left (resp., *k*-right) $(q_k, \in \lor q_k)$ -fuzzy BCC-subalgebra of X if it satisfies the condition (3.4) for all $x, y \in X$ and $t, r \in (0, \frac{1-k}{2}]$ (resp., $t, r \in (\frac{1-k}{2}, 1]$).

Proof. Let λ be a k-right $(q_k, \in \lor q_k)$ -fuzzy BCC-subalgebra of X. Let $x, y \in X$ and $t, r \in (0, 1]$ be such that $x_t \in \lambda$ and $y_r \in \lambda$. Then $\lambda(x) \ge t$ and $\lambda(y) \ge r$. Suppose that $(x \cdot y)_{\min\{t,r\}} \in \overline{q_k} \lambda$. Then $\lambda(x \cdot y) < \min\{t, r\}$ and $\lambda(x \cdot y) + \min\{t, r\} + k \le 1$. It follows that $\lambda(x \cdot y) < \frac{1-k}{2}$ and so that $\lambda(x \cdot y) < \min\{t, r, \frac{1-k}{2}\}$. Hence, $1 - k - \lambda(x \cdot y) > 1 - k - \min\{t, r, \frac{1-k}{2}\} = \max\{1 - k - t, 1 - k - r, 1 - k - \frac{1-k}{2}\} \ge \max\{1 - k - \lambda(x), 1 - k - \lambda(y), \frac{1-k}{2}\}$, and so there exists $\delta \in (0, 1]$ such that $1 - k - \lambda(x \cdot y) \ge \delta > \max\{1 - k - \lambda(x), 1 - k - \lambda(y), \frac{1-k}{2}\}$. Then $\delta \in (\frac{1-k}{2}, 1], \lambda(x) + \delta + k > 1$ and $\lambda(y) + \delta + k > 1$, that is, $(x, \delta)q_k\lambda$ and $(y, \delta)q_k\lambda$. Since λ is a k-right $(q_k, \in \lor q_k)$ -fuzzy BCC-subalgebra of X, it follows that $(x \cdot y, \delta) \in \lor q_k \lambda$. On the other hand, $1 - k - \lambda(x \cdot y) \ge \delta$ implies that $\lambda(x \cdot y) + \delta + k \le 1$, that is, $(x \cdot y, \delta)\overline{q_k}\lambda$ and $\lambda(x \cdot y) \le 1 - \delta - k < 1 - k - \frac{1-k}{2} = \frac{1-k}{2} < \delta$, that is, $(x \cdot y, \delta)\overline{\in \lor q_k}\lambda$, which is a contradiction. Therefore, $(x \cdot y)_{\min\{t,r\}} \in \lor q_k\lambda$, and thus λ is an $(\in, \in \lor q_k)$ -fuzzy BCC-subalgebra of X. □

Corollary 3.8. Every 0-right $(q, \in \lor q)$ -fuzzy BCC-subalgebra of X is an $(\in, \in \lor q)$ -fuzzy BCC-subalgebra.

We consider the converse of Theorem 3.7.

Theorem 3.9. If every fuzzy point has the value t in $(0, \frac{1-k}{2}]$, then every $(\in, \in \lor q_k)$ -fuzzy BCC-subalgebra of X is a k-left $(q_k, \in \lor q_k)$ -fuzzy BCC-subalgebra.

Proof. Let λ be an $(\in, \in \lor q_k)$ -fuzzy BCC-subalgebra of X. Let $x, y \in X$ and $t, r \in (0, \frac{1-k}{2}]$ be such that $x_tq_k\lambda$ and $y_rq_k\lambda$. Then $\lambda(x) + t + k > 1$ and $\lambda(y) + r + k > 1$. Since $t, r \in (0, \frac{1-k}{2}]$, it follows that $\lambda(x) > 1 - t - k \ge \frac{1-k}{2} \ge t$ and $\lambda(y) > 1 - r - k \ge \frac{1-k}{2} \ge r$, that is, $x_t \in \lambda$ and $y_r \in \lambda$. It follows from (3.4) that $(x \cdot y)_{\min\{t,r\}} \in \lor q_k\lambda$. Hence, λ is a k-left $(q_k, \in \lor q_k)$ -fuzzy BCC-subalgebra of X.

Corollary 3.10. If every fuzzy point has the value t in (0, 0.5], then every $(\in, \in \lor q)$ -fuzzy BCC-subalgebra of X is a 0-left $(q, \in \lor q)$ -fuzzy BCC-subalgebra.

Proposition 3.11. If $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$, then

$$(\forall x, y \in X, \forall t, r \in \Omega) (x_t \in \lambda, y_r \in \lambda \Rightarrow (x \cdot y)_{\max\{t, r\}} q_k \lambda).$$
(3.5)

Proof. Let $x, y \in X$ and $t, r \in \Omega = (\frac{1-k}{2}, 1]$ be such that $x_t \in \lambda$ and $y_r \in \lambda$. Then $\lambda(x) \ge t > \frac{1-k}{2}$ and $\lambda(y) \ge r > \frac{1-k}{2}$, which imply that $\lambda(x) + t + k > 1$ and $\lambda(y) + r + k > 1$, that is, $x_t q_k \lambda$ and $y_r q_k \lambda$. It follows that $x, y \in \ell_{Q_k}^{\lambda}(\max\{t, r\})$ and $\max\{t, r\} \in (\frac{1-k}{2}, 1]$. Since $\ell_{Q_k}^{\lambda}(\max\{t, r\})$ is a BCC-subalgebra of X by assumption, we have $x \cdot y \in \ell_{Q_k}^{\lambda}(\max\{t, r\})$ and so $(x \cdot y)_{\max\{t, r\}} q_k \lambda$.

Corollary 3.12. If $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0.5, 1]$, then

$$(\forall x, y \in X, \forall t, r \in \Omega) (x_t \in \lambda, y_r \in \lambda \Rightarrow (x \cdot y)_{\max\{t, r\}} q\lambda).$$
(3.6)

Proposition 3.13. If $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, \frac{1-k}{2}]$, then

$$(\forall x, y \in X, \forall t, r \in \Omega) (x_t q_k \lambda, y_r q_k \lambda \Rightarrow (x \cdot y)_{\max\{t, r\}} \in \lambda).$$
(3.7)

Proof. Let $x, y \in X$ and $t, r \in \Omega = (0, \frac{1-k}{2}]$ be such that $x_t q_k \lambda$ and $y_r q_k \lambda$. Then $x \in \ell_{Q_k}^{\lambda}(t)$ and $y \in \ell_{Q_k}^{\lambda}(r)$. It follows that $x, y \in \ell_{Q_k}^{\lambda}(\max\{t, r\})$ and $\max\{t, r\} \in \Omega = (0, \frac{1-k}{2}]$. Thus $x \cdot y \in \ell_{Q_k}^{\lambda}(\max\{t, r\})$ since $\ell_{Q_k}^{\lambda}(\max\{t, r\})$ is a BCC-subalgebra of X by the assumption. Hence, $\lambda(x \cdot y) + k + \max\{t, r\} > 1$ and so $\lambda(x \cdot y) > 1 - k - \max\{t, r\} \ge \frac{1-k}{2} \ge \max\{t, r\}$. Thus $(x \cdot y)_{\max\{t, r\}} \in \lambda$.

Corollary 3.14. If $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, 0.5]$, then

$$(\forall x, y \in X, \forall t, r \in) (x_t q \lambda, y_r q \lambda \Rightarrow (x \cdot y)_{\max\{t, r\}} \in \lambda).$$
(3.8)

Theorem 3.15. If λ is a k-right $(q_k, \in \forall q_k)$ -fuzzy BCC-subalgebra of X, then $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$.

Proof. Let $x, y \in \ell_{Q_k}^{\lambda}(t)$ for $t \in (\frac{1-k}{2}, 1]$. Then $x_t q_k \lambda$ and $y_t q_k \lambda$. Since λ is a k-right $(q_k, \in \lor q_k)$ -fuzzy BCC-subalgebra of X, we have $(x \cdot y)_t \in \lor q_k \lambda$, that is, $(x \cdot y)_t \in \lambda$ or $(x \cdot y)_t q_k \lambda$. If $(x \cdot y)_t \in \lambda$, then $\lambda(x \cdot y) \ge t > \frac{1-k}{2} > 1 - t - k$ and so $\lambda(x \cdot y) + t + k > 1$, that is, $(x \cdot y)_t q_k \lambda$. Hence, $x \cdot y \in \ell_{Q_k}^{\lambda}$. If $(x \cdot y)_t q_k \lambda$, then $x \cdot y \in \ell_{Q_k}^{\lambda}(t)$. Therefore, $\ell_{Q_k}^{\lambda}(t)$ is a BCC-subalgebra of X, and consequently $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$.

Corollary 3.16. If λ is a 0-right $(q, \in \forall q)$ -fuzzy BCC-subalgebra of X, then $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0.5, 1]$.

Theorem 3.17. For a BCC-subalgebra A of X, let λ be a fuzzy set in X such that

- (1) $\lambda(x) \geq \frac{1-k}{2}$ for all $x \in A$,
- (2) $\lambda(x) = 0$ for all $x \in X \setminus A$.

Then λ *is a* k*-left* $(q_k, \in \lor q_k)$ *-fuzzy* BCC-subalgebra of X.

Proof. Let $x, y \in X$ and $t, r \in (0, \frac{1-k}{2}]$ be such that $x_t q_k \lambda$ and $y_r q_k \lambda$. Then $\lambda(x) + t + k > 1$ and $\lambda(y) + r + k > 1$, which imply that $\lambda(x) > 1 - t - k \ge \frac{1-k}{2}$ and $\lambda(y) > 1 - r - k \ge \frac{1-k}{2}$. Hence, $x \in A$ and $y \in A$. Since A is a BCC-subalgebra of X, we get $x \cdot y \in A$ and so $\lambda(x \cdot y) \ge \frac{1-k}{2} \ge \max\{t, r\}$. Thus $(x \cdot y)_{\max\{t,r\}} \in \lambda$, and so $(x \cdot y)_{\max\{t,r\}} \in \forall q_k \lambda$. Therefore, λ is a k-left $(q_k, \in \lor q_k)$ -fuzzy BCC-subalgebra of X.

Corollary 3.18. For a BCC-subalgebra A of X, let λ be a fuzzy set in X such that

- (1) $\lambda(x) \ge 0.5$ for all $x \in A$,
- (2) $\lambda(x) = 0$ for all $x \in X \setminus A$.

Then λ *is a* 0-*left* $(q, \in \lor q)$ *-fuzzy BCC-subalgebra of X.*

Proposition 3.19. If $(X, \ell_{\mathscr{E}_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$, then

$$(\forall x, y \in X, \forall t, r \in \Omega) (x_t q_k \lambda, y_r q_k \lambda \Rightarrow (x \cdot y)_{\max\{t, r\}} \in \forall q_k \lambda).$$
(3.9)

Proof. Let $x, y \in X$ and $t, r \in \Omega = (\frac{1-k}{2}, 1]$ be such that $x_t q_k \lambda$ and $y_r q_k \lambda$. Then $x \in \ell_{Q_k}^{\lambda}(t) \subseteq \ell_{\mathscr{E}_k}^{\lambda}(t)$ and $y \in \ell_{Q_k}^{\lambda}(r) \subseteq \ell_{\mathscr{E}_k}^{\lambda}(r)$. It follows that $x, y \in \ell_{\mathscr{E}_k}^{\lambda}(\max\{t, r\})$ and so from the hypothesis that $x \cdot y \in \ell_{\mathscr{E}_k}^{\lambda}(\max\{t, r\})$. Hence, $(x \cdot y)_{\max\{t, r\}} \in \lor q_k \lambda$.

Corollary 3.20. If $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$, then

$$(\forall x, y \in X, \forall t, r \in \Omega)(x_t q \lambda, y_r q \lambda \Rightarrow (x \cdot y)_{\max\{t, r\}} \in \lor q \lambda).$$
(3.10)

Lemma 3.21. A fuzzy set λ in X is an $(\in, \in \lor q_k)$ -fuzzy BCC-subalgebra of X if and only if it satisfies:

$$(\forall x, y \in X)(\lambda(x \cdot y) \ge \min\{\lambda(x), \lambda(y), \frac{1-k}{2}\}).$$
(3.11)

Proof. The proof is straightforward by Definition 2.4.

Theorem 3.22. If λ is an $(\in, \in \forall q_k)$ -fuzzy BCC-subalgebra of X, then $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$.

Proof. Let $x, y \in \ell_{Q_k}^{\lambda}(t)$ for $t \in \Omega = (\frac{1-k}{2}, 1]$. Then $x_t q_k \lambda$ and $y_t q_k \lambda$, that is, $\lambda(x) + t + k > 1$ and $\lambda(y) + t + k > 1$. It follows from Lemma 3.21 that $\lambda(x \cdot y) + t + k \ge \min\{\lambda(x), \lambda(y), \frac{1-k}{2}\} + t + k = \min\{\lambda(x) + t + k, \lambda(y) + t + k, \frac{1-k}{2} + t + k\} > 1$. Hence, $(x \cdot y)_t q_k \lambda$, and so $x \cdot y \in \ell_{Q_k}^{\lambda}(t)$. Therefore, $\ell_{Q_k}^{\lambda}(t)$ is a BCC-subalgebra of X for all $t \in (\frac{1-k}{2}, 1]$, and consequently X is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$.

Corollary 3.23. If λ is an $(\in, \in \forall q)$ -fuzzy BCC-subalgebra of X, then $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0.5, 1]$.

Theorem 3.24. If $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$, then λ is an $(\in, \in \lor q_k)$ -fuzzy BCC-subalgebra of X.

Proof. Assume that there exist $a, b \in X$ such that $\lambda(a \cdot b) < \min\{\lambda(a), \lambda(b), \frac{1-k}{2}\} = t_0$. Then $t_0 \in (0, \frac{1-k}{2}]$, $a, b \in U(\lambda, t_0) \subseteq \ell^{\lambda}_{\mathscr{E}_k}(t_0)$, which implies that $a \cdot b \in \ell^{\lambda}_{\mathscr{E}_k}(t_0)$. Hence $\lambda(a \cdot b) \ge t_0$ or $\lambda(a \cdot b) + t_0 + k > 1$. This is a contradiction. Thus $\lambda(x \cdot y) \ge \min\{\lambda(x), \lambda(y), \frac{1-k}{2}\}$ for all $x, y \in X$. It follows from Lemma 3.21 that λ is an $(\in, \in \lor q_k)$ -fuzzy BCC-subalgebra of X.

Corollary 3.25. If $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0.5, 1]$, then λ is an $(\in, \in \lor q)$ -fuzzy BCC-subalgebra of X.

Theorem 3.26. If λ is an $(\in, \in \forall q_k)$ -fuzzy BCC-subalgebra of X, then $(X, \ell_{\mathscr{E}_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, \frac{1-k}{2}]$.

Proof. Let $x, y \in \ell_{\mathscr{E}_k}^{\lambda}(t)$ for $t \in \Omega = (0, \frac{1-k}{2}]$. Then $x_t \in \forall q_k \lambda$ and $y_t \in \forall q_k \lambda$. Hence, we have the following four cases:

- (1) $x_t \in \lambda$ and $y_t \in \lambda$,
- (2) $x_t \in \lambda$ and $y_t q_k \lambda$,
- (3) $x_t q_k \lambda$ and $y_t \in \lambda$,
- (4) $x_t q_k \lambda$ and $y_t q_k \lambda$.

The first case implies that $(x \cdot y)_t \in \forall q_k \lambda$ and so $x \cdot y \in \ell^{\lambda}_{\mathscr{E}_k}(t)$. For the second case, $y_t q_k \lambda$ induces $\lambda(y) > 1 - t - k \ge t$, that is, $y_t \in \lambda$. Hence, $(x \cdot y)_t \in \forall \overline{q_k} \lambda$ and so $x \cdot y \in \ell^{\lambda}_{\mathscr{E}_k}(t)$. Similarly, the third case implies $x \cdot y \in \ell^{\lambda}_{\mathscr{E}_k}(t)$. The last case induces $\lambda(x) > 1 - t - k \ge t$ and $\lambda(y) > 1 - t - k \ge t$, that is, $x_t \in \lambda$ and $y_t \in \lambda$. It follows that $(x \cdot y)_t \in \forall q_k \lambda$ and so that $x \cdot y \in \ell^{\lambda}_{\mathscr{E}_k}(t)$. Therefore, $\ell^{\lambda}_{\mathscr{E}_k}(t)$ is a BCC-subalgebra of X for all $t \in (0, \frac{1-k}{2}]$. Hence, $(X, \ell^{\lambda}_{\mathscr{E}_k})$ is a semidetached BCC-subalgebra over $\Omega = (0, \frac{1-k}{2}]$.

Corollary 3.27. If λ is an $(\in, \in \lor q)$ -fuzzy BCC-subalgebra of X, then $(X, \ell_{\mathscr{E}_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, 0.5]$.

Theorem 3.28. If λ is a $(q_k, \in \lor q_k)$ -fuzzy BCC-subalgebra of X, then $(X, \ell_{\mathscr{E}_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$.

Proof. Let $x, y \in \ell_{\mathscr{E}_k}^{\lambda}(t)$ for $t \in \Omega = (\frac{1-k}{2}, 1]$. Then $x_t \in \forall q_k \lambda$ and $y_t \in \forall q_k \lambda$. Hence, we have the following four cases:

- (1) $x_t \in \lambda$ and $y_t \in \lambda$,
- (2) $x_t \in \lambda$ and $y_t q_k \lambda$,
- (3) $x_t q_k \lambda$ and $y_t \in \lambda$,
- (4) $x_t q_k \lambda$ and $y_t q_k \lambda$.

For the first case, we have $\lambda(x) + t + k \ge 2t + k > 1$ and $\lambda(y) + t + k \ge 2t + k > 1$, that is, $x_t q_k \lambda$ and $y_t q_k \lambda$. Hence, $(x \cdot y)_t \in \forall q_k \lambda$, and so $x \cdot y \in \ell_{\mathscr{E}_k}^{\lambda}(t)$. For the second case, $x_t \in \lambda$ implies $\lambda(x) + t + k \ge 2t + k > 1$, that is, $x_t q_k \lambda$. Hence, $(x \cdot y)_t \in \forall q_k \lambda$, and so $x \cdot y \in \ell_{\mathscr{E}_k}^{\lambda}(t)$. Similarly, the third case implies $x \cdot y \in \ell_{\mathscr{E}_k}^{\lambda}(t)$. For the last case, we have $(x \cdot y)_t \in \forall q_k \lambda$, and so $x \cdot y \in \ell_{\mathscr{E}_k}^{\lambda}(t)$. Consequently, $\ell_{\mathscr{E}_k}^{\lambda}(t)$ is a BCC-subalgebra of X for all $t \in \Omega = (\frac{1-k}{2}, 1]$. Therefore, $(X, \ell_{\mathscr{E}_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$. \Box

Corollary 3.29. If λ is a $(q, \in \forall q)$ -fuzzy BCC-subalgebra of X, then $(X, \ell_{\mathscr{E}_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0.5, 1]$.

For $\alpha \in \{\in, q_k\}$ and $t \in (0, 1]$, we say that $x_t \overline{\alpha} \lambda$ if $x_t \alpha \lambda$ does not hold.

Definition 3.30. A fuzzy set λ in X is called an $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X if it satisfies:

$$(\forall x, y \in X, \forall t, r \in (0, 1])((x \cdot y)_{\min\{t, r\}} \in \lambda \Rightarrow x_t \in \forall \overline{q_k} \lambda \text{ or } y_r \in \forall \overline{q_k} \lambda).$$
(3.12)

Theorem 3.31. A fuzzy set λ in X is an $(\overline{\in}, \overline{\in} \vee \overline{q_k})$ -fuzzy BCC-subalgebra of X if and only if the following inequality is valid:

$$(\forall x, y \in X)(\max\{\lambda(x \cdot y), \frac{1-k}{2}\} \ge \min\{\lambda(x), \lambda(y)\}).$$
(3.13)

Proof. Let λ be an $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X. Assume that (3.13) is not valid. Then there exist $a, b \in X$ such that $\max\{\lambda(a \cdot b), \frac{1-k}{2}\} < \min\{\lambda(a), \lambda(b)\} = t$. Then $\frac{1-k}{2} < t \le 1, a_t \in \lambda, b_t \in \lambda$, and $(a \cdot b)_t \overline{\in} \lambda$. It follows from (3.12) that $a_t \overline{q_k} \lambda$ or $b_t \overline{q_k} \lambda$. Hence, $\lambda(a) \ge t$ and $\lambda(a) + t + k \le 1$ or $\lambda(b) \ge t$ and $\lambda(b) + t + k \le 1$. In either case, we have $t \le \frac{1-k}{2}$, which is a contradiction. Therefore, $\max\{\lambda(x \cdot y), \frac{1-k}{2}\} \ge \min\{\lambda(x), \lambda(y)\}$ for all $x, y \in X$.

Conversely, suppose that (3.13) is valid. Let $x, y \in X$ and $t, r \in (0, 1]$ be such that $(x \cdot y)_{\min\{t,r\}} \in \lambda$. Then $\lambda(x \cdot y) < \min\{t, r\}$. If $\max\{\lambda(x \cdot y), \frac{1-k}{2}\} = \lambda(x \cdot y)$, then $\min\{t, r\} > \lambda(x \cdot y) \ge \min\{\lambda(x), \lambda(y)\}$ and so $\lambda(x) < t$ or $\lambda(y) < r$. Thus $x_t \in \lambda$ or $y_r \in \lambda$, which implies that $x_t \in \forall q_k \lambda$ or $y_r \in \forall q_k \lambda$. If $\max\{\lambda(x \cdot y), \frac{1-k}{2}\} = \frac{1-k}{2}$, then $\min\{\lambda(x), \lambda(y)\} \le \frac{1-k}{2}$. Suppose $x_t \in \lambda$ or $y_r \in \lambda$. Then $t \le \lambda(x) \le \frac{1-k}{2}$ or $r \le \lambda(y) \le \frac{1-k}{2}$, and so $\lambda(x) + t + k \le \frac{1-k}{2} + \frac{1-k}{2} + k = 1$ or $\lambda(y) + r + k \le \frac{1-k}{2} + \frac{1-k}{2} + k = 1$. Therefore, $x_t \overline{q_k} \lambda$ or $y_r \overline{q_k} \lambda$ and so $x_t \in \forall \overline{q_k} \lambda$ or $y_r \in \forall \overline{q_k} \lambda$. Hence, λ is an $(\in, \in \forall \overline{q_k})$ -fuzzy BCC-subalgebra of X.

Corollary 3.32. A fuzzy set λ in X is an $(\overline{\in}, \overline{\in} \lor \overline{q})$ -fuzzy BCC-subalgebra of X if and only if the following inequality is valid:

$$(\forall x, y \in X)(\max\{\lambda(x \cdot y), 0.5\} \ge \min\{\lambda(x), \lambda(y)\}).$$
(3.14)

Theorem 3.33. A fuzzy set λ in X is an $(\overline{\in}, \overline{\in} \vee \overline{q_k})$ -fuzzy BCC-subalgebra of X if and only if (X, ℓ_U^{λ}) is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$.

Proof. Assume that λ is an $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X. Let $x, y \in \ell_U^{\lambda}(t)$ for $t \in \Omega = (\frac{1-k}{2}, 1]$. Then $\lambda(x) \ge t$ and $\lambda(y) \ge t$. It follows from (3.13) that $\max\{\lambda(x \cdot y), \frac{1-k}{2}\} \ge \min\{\lambda(x), \lambda(y)\} \ge t$. Since $t > \frac{1-k}{2}$, it follows that $\lambda(x \cdot y) \ge t$ and so $x \cdot y \in \ell_U^{\lambda}(t)$. Thus $\ell_U^{\lambda}(t)$ is a BCC-subalgebra of X. Hence, (X, ℓ_U^{λ}) is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$.

Conversely, suppose that (X, ℓ_U^{λ}) is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$. If (3.13) is not valid, then there exist $a, b \in X$ such that $\max\{\lambda(a \cdot b), \frac{1-k}{2}\} < \min\{\lambda(a), \lambda(b)\} = t$. Then $t \in (\frac{1-k}{2}, 1], a, b \in \ell_U^{\lambda}(t)$, and $a \cdot b \notin \ell_U^{\lambda}(t)$. This is a contradiction, and so (3.13) is valid. Using Theorem 3.31, we know that λ is an $(\overline{e}, \overline{e} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X.

Corollary 3.34. A fuzzy set λ in X is an $(\overline{\in}, \overline{\in} \lor \overline{q})$ -fuzzy BCC-subalgebra of X if and only if (X, ℓ_U^{λ}) is a semidetached BCC-subalgebra over $\Omega = (0.5, 1]$.

Theorem 3.35. A fuzzy set λ in X is an $(\overline{\in}, \overline{\in} \vee \overline{q_k})$ -fuzzy BCC-subalgebra of X if and only if $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, \frac{1-k}{2}]$.

Proof. Assume that $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, \frac{1-k}{2}]$. If (3.13) is not valid, then there exist $a, b \in X, t \in (0, 1]$, and $k \in [0, 1)$ such that $\max\{\lambda(a \cdot b), \frac{1-k}{2}\} + t + k \leq 1 < \min\{\lambda(a), \lambda(b)\} + t + k$. It follows that $a_tq_k\lambda$ and $b_tq_k\lambda$, that is, $a, b \in \ell_{Q_k}^{\lambda}(t)$. But $(a \cdot b)_t\overline{q_k}\lambda$, that is, $a \cdot b \notin \ell_{Q_k}^{\lambda}$. This is a contradiction, and so (3.13) is valid. Using Theorem 3.31, we have λ is an $(\overline{e}, \overline{e} \vee \overline{q_k})$ -fuzzy BCC-subalgebra of X.

Conversely, suppose that λ is an $(\overline{\in}, \overline{\in} \vee \overline{q_k})$ -fuzzy BCC-subalgebra of X. Let $x, y \in \ell_{Q_k}^{\lambda}(t)$ for $t \in \Omega = (0, \frac{1-k}{2}]$. Then $x_t q_k \lambda$ and $y_t q_k \lambda$, that is, $\lambda(x) + t + k > 1$ and $\lambda(y) + t + k > 1$. It follows from (3.13) that $\max\{\lambda(x \cdot y), \frac{1-k}{2}\} \ge \min\{\lambda(x), \lambda(y)\} > 1 - t - k \ge \frac{1-k}{2}$ and so $\lambda(x \cdot y) + t + k > 1$, that is, $x \cdot y \in \lambda$. Therefore, $\ell_{Q_k}^{\lambda}(t)$ is a BCC-subalgebra of X. Hence, $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, \frac{1-k}{2}]$.

Using Theorems 3.33 and 3.35, we have the following corollary.

Corollary 3.36. For a fuzzy set λ in *X*, the following are equivalent:

- (1) (X, ℓ_U^{λ}) is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$,
- (2) $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, \frac{1-k}{2}]$.

Definition 3.37. A fuzzy set λ in X is called an $(\overline{\in} \lor \overline{q_k}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X if it satisfies:

$$(\forall x, y \in X, \forall t, r \in (0, 1])((x \cdot y)_{\min\{t, r\}} \in \forall \overline{q_k} \lambda \Rightarrow x_t \in \forall \overline{q_k} \lambda \text{ or } y_r \in \forall \overline{q_k} \lambda).$$
(3.15)

Theorem 3.38. Every $(\overline{\in} \lor \overline{q_k}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X is an $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra.

Proof. Let $x, y \in X$ and $t, r \in (0, 1]$ be such that $(x \cdot y)_{\min\{t,r\}} \overline{\in} \lambda$. Then $(x \cdot y)_{\min\{t,r\}} \overline{\in} \vee \overline{q_k} \lambda$, and so $x_t \overline{\in} \vee \overline{q_k} \lambda$ or $y_r \overline{\in} \vee \overline{q_k} \lambda$ by (3.15). Hence, λ is an $(\overline{\in}, \overline{\in} \vee \overline{q_k})$ -fuzzy BCC-subalgebra of X.

Corollary 3.39. If λ is an $(\overline{\in} \lor \overline{q_k}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X, then

- (1) λ is an $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X,
- (2) λ satisfies the condition (3.13),
- (3) (X, ℓ_U^{λ}) is a semidetached BCC-subalgebra over $\Omega = (\frac{1-k}{2}, 1]$,
- (4) $(X, \ell_{Q_k}^{\lambda})$ is a semidetached BCC-subalgebra over $\Omega = (0, \frac{1-k}{2}]$.

Definition 3.40. A fuzzy set λ in X is called a $(\overline{q_k}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X if it satisfies:

$$(\forall x, y \in X, \forall t, r \in (0, 1])((x \cdot y)_{\min\{t, r\}}\overline{q_k}\lambda \Rightarrow x_t \overline{\in} \lor \overline{q_k}\lambda \text{ or } y_r \overline{\in} \lor \overline{q_k}\lambda).$$
(3.16)

Theorem 3.41. Assume that $\min\{t, r\} \leq \frac{1-k}{2}$ for any $t, r \in (0, 1]$. Then every $(\overline{q_k}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X is an $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra.

Proof. Let λ be an $(\overline{q_k}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X. Assume that $(x \cdot y)_{\min\{t,r\}} \overline{\in} \lambda$ for $x, y \in X$ and $t, r \in (0, 1]$ with $\min\{t, r\} \leq \frac{1-k}{2}$. Then $\lambda(x \cdot y) < \min\{t, r\} \leq \frac{1-k}{2}$, and so $\lambda(x \cdot y) + k + \min\{t, r\} < \frac{1-k}{2} + \frac{1-k}{2} + k = 1$, that is, $(x \cdot y)_{\min\{t,r\}}q_k\lambda$. It follows from (3.16) that $x_t \overline{\in} \lor \overline{q_k}\lambda$ or $y_r \overline{\in} \lor \overline{q_k}\lambda$. Therefore, λ is an $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X.

Corollary 3.42. Assume that $\min\{t, r\} \le 0.5$ for any $t, r \in (0, 1]$. Then every $(\overline{q}, \overline{\in} \lor \overline{q})$ -fuzzy BCC-subalgebra of X is an $(\overline{\in}, \overline{\in} \lor \overline{q})$ -fuzzy BCC-subalgebra.

Theorem 3.43. Assume that $\min\{t, r\} > \frac{1-k}{2}$ for any $t, r \in (0, 1]$. Then every $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra of X is a $(\overline{q_k}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebra.

Proof. Let λ be an $(\overline{\in}, \overline{\in} \vee \overline{q_k})$ -fuzzy BCC-subalgebra of X. Assume that $(x \cdot y)_{\min\{t,r\}}\overline{q_k}\lambda$ for $x, y \in X$ and $t, r \in (0, 1]$ with $\min\{t, r\} > \frac{1-k}{2}$. If $(x \cdot y)_{\min\{t,r\}} \in \lambda$, then $\lambda(x \cdot y) \ge \min\{t, r\}$, and so $\lambda(x \cdot y) + k + \min\{t, r\} > \frac{1-k}{2} + \frac{1-k}{2} + k = 1$. Hence, $(x \cdot y)_{\min\{t,r\}}q_k\lambda$, which is a contradiction. Thus $(x \cdot y)_{\min\{t,r\}}\overline{\in}$, which implies from (3.12) that $x_t\overline{\in} \vee \overline{q_k}\lambda$ or $y_r\overline{\in} \vee \overline{q_k}\lambda$. Therefore, λ is a $(\overline{q_k}, \overline{\in} \vee \overline{q_k})$ -fuzzy BCC-subalgebra of X.

Corollary 3.44. Assume that $\min\{t, r\} > 0.5$ for any $t, r \in (0, 1]$. Then every $(\overline{\in}, \overline{\in} \lor \overline{q})$ -fuzzy BCC-subalgebra of X is a $(\overline{q}, \overline{\in} \lor \overline{q})$ -fuzzy BCC-subalgebra.

4. Conclusion

In the present paper, we have introduced the notion of semidetached BCC-subalgebras of BCCalgebras. Several conditions for a semidetached structure in BCC-algebras to be a semidetached BCC-subalgebra are provided. The concepts of $(\overline{\in}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebras, *k*-left (*k*-right) $(q_k, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebras, $(q_k, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebras, and $(\overline{\in} \lor \overline{q_k}, \overline{\in} \lor \overline{q_k})$ -fuzzy BCC-subalgebras are presented, and relative relations and properties are described.

Acknowledgment

This work was supported by the revenue budget in 2023, School of Science, University of Phayao (Grant No. PBTSC66019).

References

- [1] S.K. Bhakat, P. Das, (∈, ∈ ∨q)-fuzzy subgroup, Fuzzy Sets Syst. 80 (1996), 359–368. https://doi.org/10.1016/ 0165-0114(95)00157-3.
- [2] H. Bordbar, M. Rahim Bordbar, Y.B. Jun, A generalization of semidetached subalgebras in BCK/BCI-algebras, New Math. Nat. Comput. 15 (2019), 489–501. https://doi.org/10.1142/s1793005719500285.
- [3] Y. Huang, BCI-algebra, Science Press, Beijing, China, 2006.
- [4] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Related Topics. 5 (2017), 35–54. https://doi.org/10.22124/jart.2017.2403.

- [5] Y.B. Jun, Generalizations of (∈, ∈ ∨q)-fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl. 58 (2009), 1383–1390. https://doi.org/10.1016/j.camwa.2009.07.043.
- [6] Y.B. Jun, B. Brundha, N. Rajesh, R.K. Bandaru, (3, 2)-fuzzy UP-subalgebras and (3, 2)-fuzzy UP-filters, J. Mahani Math. Res. 1 (2022), 1–14. https://doi.org/10.22103/JMMRC.2022.18786.1191.
- [7] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391–394.
- [8] P. Pao-Ming, L. Ying-Ming, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571–599. https://doi.org/10.1016/0022-247x(80)90048-7.
- [9] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517. https://doi.org/10.1016/0022-247x(71) 90199-5.
- [10] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inf. 12 (2016), 739–756.
- [11] L.A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.