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1. Introduction, preliminaries and problem statement

The theory of functions of many complex variables, or multidimensional complex analysis, currently
has a fairly strictly constructed theory [1], [2], [3]. At the same time, many questions of classical
complex analysis still do not have unambiguous multidimensional analogues. In the works of E. Cartan,
K. Siegel, Hua Luogeng and I.I. Pyatetsky-Shapiro the matrix approach to the presentation of the theory
of multidimensional complex analysis is widely used (see [4–8]).

In 1935, E. Cartan proved that there are only six possible types of irreducible, homogeneous, bounded,
symmetric domains. These domains denoted by, <I ,<II ,<III and <IV are called classical domains:

<I =
{
Z ∈ C [m× k] : I(m) − ZZ

′
> 0
}
,

<II =
{
Z ∈ C [m×m] : I(m) − ZZ > 0, ∀Z ′ = Z

}
,

<III =
{
Z ∈ C [m×m] : I(m) + ZZ > 0, ∀Z ′ = −Z

}
,
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<IV =
{
z ∈ Cn :

∣∣zz′∣∣2 + 1− 2zz′ > 0,
∣∣zz′∣∣ < 1

}
.

The dimensions of these domains are equal, respectively to:

mk,m(m+ 1)/2,m(m− 1)/2, n.

Consider the space of complexm2 variables, denoted by Cm2 . In some questions, it is convenient
to represent the points Z of this space in the form of square [m × m]-matrices, i.e. in the form of
Z = (zij)

m
i,j=1. With this representation of points, the space Cm2 will denote C[m × m]. The direct

product C[m×m]× · · · × C[m×m]︸ ︷︷ ︸
n

of n instances of [m×m]-matrices space we denote by Cn[m×m].

Let Z = (Z1, Z2, ..., Zn) be a vector composed of square matrices Zj of orderm considered over the
field of complex numbers C. We can assume that Z is an element of the space Cn[m×m] ∼= Cnm2 .

We define a matrix "scalar" product as below

〈Z,Z〉 = Z1W
∗
1 + ...+ ZnW

∗
n

whereW ∗j is a conjugate and transposed matrix for the matrixWj .
Define matrix balls(see [9,10]) B(1)

m,n, B(2)
m,n and B(3)

m,n of the first, second and third types, respectively:

B(1)
m,n = {(Z1, ..., Zn) = Z ∈ Cn [m×m] : I − 〈Z,Z〉 > 0} ,

B(2)
m,n =

{
Z ∈ Cn [m×m] : I − 〈Z,Z〉 > 0, ∀Z ′ν = Zν , ν = 1, ..., n

}
,

B(3)
m,n = {(Z ∈ Cn [m×m] : I − 〈Z,Z〉 > 0, ∀ Z ′ν = −Zν , ν = 1, ..., n

}
.

The skeletons (Shilov boundaries) of matrix balls B(k)
m,n, denote by X(k)

m,n, k = 1, 2, 3, i.e.,

X(1)
m,n = {Z ∈ Cn [m×m] : 〈Z,Z〉 = I} ,

X(2)
m,n =

{
Z ∈ Cn [m×m] : 〈Z,Z〉 = I, Z ′v = Zν , ν = 1, 2, ..., n

}
,

X(3)
m,n = {Z ∈ Cn [m×m] : I − 〈Z,Z〉 = 0, Z

′
ν = −Zν , ν = 1, 2, ..., n

}
.

Note that B(1)
1,1, B(2)

1,1 and B(3)
2,1- are unit discs, X(1)

1,1, X(2)
1,1, and X(3)

2,1- unit circles in the complex plane C.
If n = 1,m > 1, then B(k)

m,1, k = 1, 2, 3 - are classical domains of the first, second and third type
(according to the classification of E.Cartan [4]), and the skeletons of X(1)

m,1, X(2)
m,1, and X(3)

m,1 - are unitary,
symmetric unitary and skew-symmetric unitary matrices, respectively.

Recently, scientists have achieved many significant results in classical domains and at the same
time, a number of open problems have been formulated. For example, [11] studies the regularity
and algebraicity of maps in classical domains, and [12] studies the harmonic Bergman functions in
classical domains from a new point of view and proves the results of characterization of harmonic
Bergman functions in domains of the first type. In [13] holomorphic and pluriharmonic functions for
classical domains of the first type are defined, Laplace and Hua Luogeng operators are studied and a
connection between these operators is found. In [14–18] studies present the properties of Bergman and
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Cauchy–Szegő kernels for classical domains. For this, we use the statements of the Sommer-Mehring
theorem (see [19]) on the extension of the Bergman kernel and some properties of the Bergman kernel
and these domains were used as bounded full circular symmetric convexity.

In [20], the problem of holomorphic continuability of a function into a matrix ball given in pieces of
its skeleton is considered. For this purpose complete orthonormal systems in a matrix ball are used.
And also applied in this orthonormal systems, in the work [21, 22] obtained analogues of the Laurent
series with respect to thematrix ball from the spaceCn[m×m]. To do this, we first introduce the concept
of a matrix ball layer from Cn[m ×m], then in this matrix ball layer the properties of Bochner–Hua
Luogeng integrals are used to obtain analogues of the Laurent series.

In [20] some unsolved problems are formulated relating to the matrix balls B(2)
m,n and B(3)

m,n from the
space Cn[m×m]. One of them is to write out an orthonormal basis for B(2)

m,n and B(3)
m,n (the existence of

such bases follows from A.Cartan’s theorem on complete circular domains (see [23]). In this paper
Cn[m×m], the second type of matrix spheres in the space B(2)

m,n and its skeleton (Shilov boundary) are
calculated X(2)

m,n (see [24], [25]). The results obtained in this paper are analogs of the results obtained
by Hua Luogeng in classical domains of the second type and G. Khudayberganov in matrix balls of the
first type X(2)

m,n.
Note that, the matrix ball B(2)

m,n is a complete circular convex bounded domain. In addition, the
domain B(2)

m,n and its backbone X(2)
m,n are invariant with respect to unitary transformations (see [27]).

We are interested in the orthonormal system spaces B(2)
m,n and X(2)

m,n, i.e. to write out an orthonormal
basis for the domains B(2)

m,n and its skeleton X(2)
m,n. The existence of such bases follows from the theorem

of A.Cartan on complete circular domains [23].
Lemma 1 [27]. The matrix ball has the following properties:

1) B(2)
m,n is bounded domain;

2) B(2)
m,n is full circular domain;

3) Domain B(2)
m,n and its skeleton X(2)

m,n are invariant with respect to unitary transformations;

4) B(2)
m,n is convex domain.

The volume of the matrix ball of the second type is calculated using the following theorem.
Theorem 1 [24]. Letm ≥ 2 and Zν ism×m the symmetric matrix. Let’s put

J(λ) =

∫
I−〈Z,Z〉>0

[det(I − 〈Z,Z〉)]λŻ,

where Ż =
m∏
i=1

mn∏
j=1

dxijdyij , xij + iyij = zij . Then

J(λ) =
π
m(m+1)

2
n

(λ+ 1) · ... · (λ+mn)
· Γ(2λ+ 3)Γ(2λ+ 5) . . .Γ(2λ+ 2mn− 1)

Γ(2λ+mn+ 2)Γ(2λ+mn+ 3) . . .Γ(2λ+ 2mn)
.
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In particular, when λ = 0, the volume of the matrix ball of the second type is obtained

V (B(2)
m,n) =

π
m(m+1)

2
n

m!
· 2!4! · ... · (2mn− 3)!

(mn+ 1)!(mn+ 2)! · ... · (2mn− 1)!
.

Let k1, k2, ..., km are integers satisfying the condition k1 ≥ k2 ≥ ... ≥ km ≥ 0. Each element of P from
GL(m) (i.e. the group of all non-degenerate matrices of orderm) corresponds in the representation of
GL(m) with the signature (k1, k2, ..., km) matrix

Ak1,k2,...,km(P ). (1)

Suppose that the representation (1) is unitary for unitary matrices P. It is known that (1) is a matrix
having (see. [6], [29]) Nk rows and columns where

Nk = N(k1, k2, ..., km) =
D(k1 +m− 1, k2 +m− 2, ..., km−1 + 1, km)

D(m− 1,m− 2, ..., 1, 0)
, (2)

D(k1, k2, ..., km) =
∏

1≤i<j≤m
(ki − kj), m ≥ 2.

The trace of this matrix we will denote by

χk1,k2,...,km(P ) = SpAk1,k2,...,km(P ).

This value is called the character of the representation (1) (see [29]).
If P is a diagonal matrix, P = Λ = [λ1, λ2, ..., λm], then (see [6], [28])

χk1,k2,...,km(Λ) =
Mk1,k2,...,km(λ1, λ2, ..., λm)

D(λ1, λ2, ..., λm)
,

where
Mk1,k2,...,km(λ1, λ2, ..., λm) = det

∣∣∣λki+m−ij

∣∣∣m
i,j=1

.

Denote by u = (u1, u2, ..., um) a vector inm-dimensional complex space. By u[α] we will denote a vector
with components √

α!

α1!α2!...αm!
uα1
1 uα2

2 ...uαmm , α =

m∑
i=1

αi, α ≥ 0. (3)

The dimension of the vector u[α] is equal to
(m+ α− 1)!

α!(m− 1)!
.

For complete circular domains, it can be assumed that the group of movements that leave the origin
stationary consists of linear transformations of the form

v = uP, (4)

where P is a unitary matrix. Then transformation (4) induces transformation

v[α] = u[α]P [α], (5)
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where P [α] denotes the α-th symmetrized Kronecker power of the matrix P (see [29]).
Expression (3) contains all monomials of degree α, i.e. any homogeneous form from u1, u2, ..., um of

degree α is a linear combination of expressions of the form (3). Any polynomial of u1, u2, ..., um is a
linear combination of expressions of the form (3) if α takes the values 0,1,2,....

1.1. Examples to α-th symmetric Kronecker power. For questions that arise, let’s look at a special
case. Letm = 2, α =2. Then

z[2] =
{
z21 ,
√

2z1z2, z
2
2

}
, w[2] =

{
w2
1,
√

2w1w2, w
2
2

}
,

but P [2] has the following form:

P [2] =


p211

√
2p11p12 p212

√
2p11p21 p11p22 + p12p21

√
2p12p22

p221
√

2p21p22 p222

 .

Let nowm = 2, α =3. Then

z[3] =
{
z31 ,
√

3z21z2,
√

3z1z
2
2 , z

3
2

}
, w[3] =

{
w3
1,
√

3w2
1w2,

√
3w1w

2
2, w

3
2

}
,

but P [3] it has the following form:

P [3] =


p311

√
3p211p12

√
3p11p

2
12 p312

√
3p212p21 p211p22 + 2p11p12p21 2p11p12p21

√
3p212p22

√
3p11p

2
21 2p11p21 + p12p

2
21 p11p

2
22 + 2p12p21p22

√
3p12p

2
22

p321
√

3p221p22
√

3p21p
2
22 p322

 .

2. Main results

Let’s describe the vector elementZ = (Z1, Z2, ..., Zn) ∈ B(2)
m,n in the form of a point in spaceCn·m(m+1)

2 :

z =
{
z
(1)
11 , z

(1)
12 , ..., z

(1)
1m, z

(1)
22 , z

(1)
23 , ..., z

(1)
2m, ..., z

(1)
m−1,m−1, z

(1)
m−1,m, z

(1)
mm ,

z
(2)
11 , z

(2)
12 , ..., z

(2)
1m, z

(2)
22 , z

(2)
23 , ..., z

(2)
2m, ..., z

(2)
m−1,m−1, z

(2)
m−1,m, z

(2)
mm,

. . .

z
(n)
11 , z

(n)
12 , ..., z

(n)
1m , z

(n)
22 , z

(n)
23 , ..., z

(n)
2m , ..., z

(n)
m−1,m−1, z

(n)
m−1,m, z

(n)
mm

}
∈ Cn·

m(m+1)
2 . (6)

By z[α] we will denote a vector with components√
α!

α1!α2!...αnm(m+1)
2

!
·
(
z
(1)
11

)α1

·
(
z
(1)
12

)α2

· ... ·
(
z
(1)
1m

)αm
·
(
z
(1)
22

)αm+1

·
(
z
(1)
23

)αm+2

· ... ·
(
z
(1)
2m

)α2m−1

×

×
(
z
(1)
m−1,m−1

)αm(m+1)
2 −2 ·

(
z
(1)
m−1,m

)αm(m+1)
2 −1 ·

(
z(1)mm

)αm(m+1)
2 ×

×
(
z
(2)
11

)αm(m+1)
2 +1 ·

(
z
(2)
12

)αm(m+1)
2 +2 · ... ·

(
z(2)mm

)αm(m+1)

· ... ·
(
z(n)mm

)αnm(m+1)
2 . (7)



Asia Pac. J. Math. 2023 10:27 6 of 10

z[α] is a monomial of z(ν)kj , ν = 1, n, k, j = 1,m of degree α. These components are linearly indepen-
dent, and any homogeneous polynomial of degree α can be written as a linear combination of these
components.

The dimension of the subspace generated by the vector z[α] is equal to the dimension of the direct
sum of subspaces with dimensions (see [6], [28], [29]):(

nm(m+1)
2 + α− 1

)
!

α!(nm(m+1)
2 − 1)!

.

From the theorems 1.3.2 and 1.4.2 in the book [6] we know that the space of homogeneous polyno-
mials is power α from z

(s)
kj can be decomposed into a direct sum of subspaces invariant with respect to

transformation (5). These subspaces have dimensions

Nα = N(2α1, 2α2, ..., 2αm(m+1)
2

),

where α1 + α2 + ...,+αm(m+1)
2

= α (the value of Nα is calculated as formulas (2)).
Let U = (U1, U2, ..., Un) ∈ X(2)

m,n. The following polynomials,

ϕα(U) = ϕ(s)
α1, α2, ..., αm(m+1)

2

(U), s = 1, 2, ...,Nα. (8)

forming the basis of a subspace of dimension Nα, where ϕ(s)
α1, α2, ..., αm(m+1)

2

(U) and components of the
vector u[α] (these components are calculated as formulas (7)).

If we put

ψ(s)
α (U) = ρ

− 1
2

α · ϕ(α)
α (U) ,

then the following lemma is valid.
Lemma 2. For the skeleton X(2)

m,n function system

(ρα)−
1
2ϕ(j)

α (U), j = 1, 2, ...,Nα, α = 0, 1, 2, ...

is an orthonormal system, where

ρα =

∫
X(2)
m,n

∣∣∣ϕ(j)
α (U)

∣∣∣2U̇ .
Proof. By virtue of our designation, for U ∈ X(2)

m,n we have

u[α] = {ϕ(1)
α (U), ϕ(2)

α (U), ..., ϕ(Nα)
α (U)}.

Then ∫
X(2)
m,n

(
u[α]
)′(

u[β]
) �

U̇ = R(Nα,Nβ), (9)
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where U̇ =
m∏
p=1

mn∏
q=1

dxpqdypq, xpq + iypq = upq, and

R(Nα,Nβ) =

 O, α 6= β,

ρα · INα , α = β,

where O is a null matrix, and ρα does not depend on s. Therefore,∫
X(2)
m,n

ϕ(s)
α (U) · ϕ(l)

β (U) U̇ = δsl · δαβ · ρα, (10)

where δαβ is the Kronecker delta:

δαβ =

0, α 6= β,

1, α = β.

Lemma 1 is proved

Now we can calculate the constant ρα.
It is known that (9) is a square matrix having Nα rows and columns (see [23]). In integral (10) we

multiply both parts by Nα:

Nαρα =

∫
X(2)
m,n

Nα∑
i=1

∣∣∣ϕ(i)
α (U)

∣∣∣2U̇ =

∫
X(2)
m,n

Sp[Aα1,α2,...,αm(〈U,U〉)]U̇ =

=

∫
X(2)
m,n

χα1,α2,...,αm(〈U,U〉)U̇ = V (X(2)
m,n)

and
ρα =

V (X(2)
m,n)

Nα
,

where V (X(2)
m,n) is the volume of the matrix ball skeleton (see [25]).

The group of movements of the matrix ball B(2)
m,n, leaving the beginning stationary, consists of

transformations of the form
W = U ′ZV (11)

where U and V are unitary matrices of ordersm andmn, respectively. Let’s arrange the elements of
the matrix Z andW in the form (6).

The transformation (11) of the matrix Z into the matrixW induces some transformation of the vector
z into the vector w. This transformation has the form:

w = z(U ⊗ V ),

here the sign⊗means the Kronecker product. Then the transformation of the vector z[α] into the vector
w[α] consists of transformations of the form

w[α] = z[α](U ⊗ V )[α].
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The z[α] subspace invariant under this transformation is split into a direct sum of subspaces with
dimensions

qα = N(2α1, 2α2, ..., 2αm(m+1)
2

) ·N(2α1, 2α2, ..., 2αm(m+1)
2

, 0, ..., 0).

The components z[α] denote by ϕ(s)
α1,α2,...,αm(Z), s = 1, 2, ..., qα.

Theorem 2. The system of functions

(ρα)−
1
2ϕ(s)

α (Z), s = 1, 2, ..., qα, α = 0, 1, 2, ...

for a matrix ball B(2)
m,n is an orthonormal system, where

ρα =

∫
B(2)
m,n

∣∣∣ϕ(s)
α (Z)

∣∣∣2Ż. (12)

Proof. If Z is converted toW by transformation (11), then ϕ(s)
α1,α2,...,αm(Z) are converted to linear

combinations from ϕ
(s)
α1,α2,...,αm(W ) by matrix

Aα1,α2,...,αm(m+1)
2

(U)⊗Aα1,α2,...,αm(m+1)
2

,0,...,0(V ), (13)

where
Aα1,α2,...,αm(m+1)

2

(U) = U [α], Aα1,α2,...,αm(m+1)
2

,0,...,0(V ) = V [α].

For various (α1, α2, ..., αm) representations (13) are not equivalent. Therefore,∫
B(2)
m,n

ϕ(s)
α (Z) · ϕ(j)

β (Z) Ż = δαβ · δsj · ρα,

where α = (α1, α2, ..., αm), β = (β1, β2, ..., βm), Ż =
m∏
p=1

mn∏
q=1

dxpqdypq, xpq + iypq = zpq, and ρα do not
depend on i. Thus, a lot of functions

{ϕsα(Z)}s,α

forms an orthogonal system in the matrix ball B(2)
m,n. The theorem 2 is proved.

Now we calculate the important, for practical matters, constant ρα using (12). For this purpose, first
of all, we will clarify the process of obtaining the functions ϕsα(Z). The vector obtained from the matrix
Z is transformed by means of the matrix (13) when Z undergoes transformation (11). For a diagonal
matrix Λ = [λ1, λ2, ..., λm] the matrix Aα1,α2,...,αm(Λ) is also diagonal. Therefore,

qα∑
i=1

∣∣∣ϕ(s)
α (Z)

∣∣∣2 = Sp[Aα1,α2,...,αm(〈Z,Z〉)]

and we have
qαρα =

∫
B(2)
m,n

Sp[Aα1,α2,...,αm(〈Z,Z〉)]Ż =

∫
B(2)
m,n

χα1,α2,...,αm(〈Z,Z〉)Ż.
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it follows that

ρα =
V
(
B(2)
m,n

)
qα

where V (B(2)
m,n) is the volume of the matrix ball skeleton (see Theorem 1).

3. Open problems

We present some unsolved problems related to matrix balls of the third type B(3)
m,n and its skeletons

(Shilov boundary X(3)
m,n):

1. Write out an orthonormal basis for B(3)
m,n (the existence of such bases follows from A.Cartan’s

theorem on complete circular domains (see [4]).
21,2. Introduce the concepts of A-harmonic functions in B(2)

m,n and B(3)
m,n (see [13]).

31,2. To obtain the criterion of holomorphic continuity into matrix balls B(2)
m,n and B(3)

m,n of functions
defined on the skeleton part (Shilov boundaries) (see [20]).
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