EXISTENCE OF SOLUTIONS FOR SOME UNILATERAL PROBLEMS WITH DEGENERATE COERCIVITY

YOUSSEF AKDIM ${ }^{1}$, SOUMIA LALAOUI RHALI ${ }^{2}$, YOUSSEF OUMOUACHA ${ }^{2, *}$
${ }^{1}$ LAMA Laboratory, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P.O. Box 1796 Atlas Fez, Morocco
${ }^{2}$ Laboratory LSI, Department of Mathematics, Physics and Informatics, Faculty Polydisciplinary of Taza, University Sidi Mohamed Ben Abdellah, P.O. Box 1223 Taza Gare, Morocco
*Corresponding author: youssef.oumouacha@usmba.ac.ma

Received Aug. 30, 2023

Авstract. In this paper, we investigate the existence and regularity of solutions to unilateral problem associated to the equation of the type:

$$
\operatorname{div} a(x, u, \nabla u)=\operatorname{div} F \quad \text { in } \Omega,
$$

where Ω is a bounded open set of $\mathbb{R}^{N}, N \geq 2$, and a is a Carathéodory function having degenerate coercivity. 2020 Mathematics Subject Classification. 35J70, 35J60.

Key words and phrases. degenerate coercivity; degenerate elliptic equations; unilateral problem.

1. Introduction

Let Ω be an open bounded subset of $\mathbb{R}^{N}, N \geq 2$. Let $|F| \in L^{m}(\Omega)$ for some $m \geq 1$. Consider the following nonlinear Dirichlet problem

$$
\begin{equation*}
A u=-\operatorname{div} F, \tag{1.1}
\end{equation*}
$$

where $A u=-\operatorname{div} a(\cdot, u, \nabla u)$ is nonlinear elliptic differential operator of monotone type defined on $W_{0}^{1, p}(\Omega)$ into its dual $W^{-1, p^{\prime}}(\Omega)$ with p is a real such that $1<p<N$.

Problem (1.1) in the coercive case has been studied in [8], [7], where the authors have proved the existence and regularityd of solutions. We refer to the references therein, for more results in different particular cases.

In a recent work [4], Benkirane and Youssfi considered the Dirichlet (1.1) in noncoercive case, more precisely when the Carathéodory function $a(x, s, \xi)$ satisfying the following degenerate coercivity

DOI: 10.28924/APJM/10-30
condition

$$
\begin{equation*}
a(x, s, \xi) \cdot \xi \geq h^{p-1}(|s|)|\xi|^{p}, \tag{1.2}
\end{equation*}
$$

with h is a continuous decreasing function such that its primitive H is unbounded. And they have obtained the regularity of solutions in terms of the summability of the datum F.

The existence results for similar problems to (1.1) with datum f rather than $\operatorname{div} F$ have been obtained by several authors. In this direction, we cite [1] where the authors studied the Dirichlet problem

$$
\begin{cases}-\operatorname{div} a(x, u, \nabla u)=f & \text { in } \Omega \tag{1.3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

They proved the existence and some regularity of solutions under various assumptions on the summability of the function f. see also [10]. Recently, in [2] Ayadi and Souilah studied the obstacle problem associated to (1.3) using the penalization method.

In [5], Boccardo and Cirmi have obtained the existence and uniqueness of solution to the obstacle problem for the Dirichlet problem

$$
\begin{cases}-\operatorname{div} a(x, \nabla u)=f & \text { in } \Omega \tag{1.4}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Where the data f belongs to $L^{1}(\Omega)$ (see also [6]).
In the present paper we deal with the existence and regularity results for the unilateral problem associated to the equation (2.1) under the condition of degenerate coercivity (1.2). Mainly, we will prove that the results obtain in [4] remain true in the case of unilateral problem. Due to the lack of coercivity of the nonlinear elliptic operator A, the results are obtained by means of approximation through suitable coercive problems.

The paper is organized as follows: In Section 2, we introduce the assumptions and state our main results. In Section 3 we obtained a priori estimates needed to prove the existence results in Section 4.

2. Basic assumptions and main results

Let Ω be an open bounded subset of $\mathbb{R}^{N}(N \geq 2), p$ be a real number such that $1<p<N$. Taking ψ a measurable function on Ω such that

$$
\psi \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)
$$

we define the convex $\operatorname{set} \mathcal{K}_{\psi}$ by

$$
\mathcal{K}_{\psi}=\left\{v \in W_{0}^{1, p}(\Omega): v(x) \geq \psi(x) \text { in } \Omega\right\} .
$$

Let us consider the Dirichlet problem

$$
\begin{cases}\operatorname{div} a(x, u, \nabla u)=\operatorname{div} F & \text { in } \Omega \tag{2.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function (i.e., $a(\cdot, s, \xi)$ is measurable on Ω, for every $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, and $a(x, \cdot, \cdot)$ is continuous on $\mathbb{R} \times \mathbb{R}^{N}$, a.e. $\left.x \in \Omega\right)$, such that the following assumptions holds for almost every $x \in \Omega$, for every $s \in \mathbb{R}$, for every $\xi \neq \eta \in \mathbb{R}^{N}$:

$$
\begin{gather*}
a(x, s, \xi) \cdot \xi \geq h^{p-1}(|s|)|\xi|^{p}, \tag{2.2}\\
|a(x, s, \xi)| \leq \beta\left(j(x)+|s|^{p-1}+|\xi|^{p-1}\right), \tag{2.3}\\
(a(x, s, \xi)-a(x, s, \eta)) \cdot(\xi-\eta)>0, \tag{2.4}
\end{gather*}
$$

where $\left.h: \mathbb{R}^{+} \rightarrow\right] 0, \infty[$ is a decreasing continuous function such that its primitive H is unbounded

$$
\begin{equation*}
H(s)=\int_{0}^{s} h(t) d t, \tag{2.5}
\end{equation*}
$$

$j(x)$ is a positive function lying in $L^{p^{\prime}}(\Omega)$ and β is a positive constant.
As regards the datum, we suppose that $F \in\left(L^{m}(\Omega)\right)^{N}$ for some $m>1$.
The first result concerns the existence of bounded solutions with the data having high summability.
Theorem 2.1. Assume that (2.2)-(2.5) hold. Let $|F|$ belongs to $L^{m}(\Omega)$, with

$$
\begin{equation*}
m>\frac{N}{p-1} \tag{2.6}
\end{equation*}
$$

Then there exists a function $u \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ which is solution of the unilateral problem

$$
\left\{\begin{array}{l}
u \in \mathcal{K}_{\psi} \tag{2.7}\\
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla(u-v) d x \leq \int_{\Omega} F \cdot \nabla(u-v) d x \\
\forall v \in \mathcal{K}_{\psi}
\end{array}\right.
$$

Now we take the limit case $|F| \in L^{m}(\Omega)$ with $m=\frac{N}{p-1}$. The solutions we get do not belong in general to $W_{0}^{1, p}(\Omega)$. We will introduce a different formulation of unilateral problem, along with a new definition of gradient for a measurable function.

For a fixed $k \geq 0$ and $s \in \mathbb{R}$, we recall the definition of the usual truncation function $T_{k}(s)$

$$
T_{k}(s)= \begin{cases}s & \text { if }|s| \leq k, \\ k \frac{s}{|s|} & \text { if }|s|>k,\end{cases}
$$

and we denote by $\mathcal{T}_{0}^{1, p}(\Omega)$ the space of the measurable function u such that $T_{k}(u)$ belongs to $W_{0}^{1, p}(\Omega)$ for every $k>0$. We recall the following result (see [3], Lemma 2.1):

Lemma 2.2. For every $u \in \mathcal{T}_{0}^{1, p}(\Omega)$ there exists a unique measurable map $v: \Omega \rightarrow \mathbb{R}^{N}$ such that

$$
\nabla T_{k}(u)=v \chi_{\{|u|<k\}} \quad \text { a.e. in } \Omega \text {. }
$$

Moreover, if $u \in W_{0}^{1, p}(\Omega)$, then v coincides with the usual distributional gradient ∇u.
We will define the gradient of u as the function v, and we will denote it by $v=\nabla u$.

Theorem 2.3. Assume that (2.2)-(2.5) hold. Let $|F| \in L^{m}(\Omega)$ with

$$
\begin{equation*}
m=\frac{N}{p-1} \tag{2.8}
\end{equation*}
$$

Assume in addition that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{\operatorname{th}(t)}=0 . \tag{2.9}
\end{equation*}
$$

Then there exists a measurable function u which is solution of the unilateral problem

$$
\left\{\begin{array}{l}
u \geq \psi \text { a.e. in } \Omega \tag{2.10}\\
u \in \mathcal{T}_{0}^{1, p}(\Omega) \\
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_{k}(u-v) d x \leq \int_{\Omega} F \cdot \nabla T_{k}(u-v) d x \\
\forall v \in \mathcal{K}_{\psi} \cap L^{\infty}(\Omega)
\end{array}\right.
$$

If we weaken the summability of $|F|$ we obtain unbounded solution. In the interest of simplification, we assume that the function h in (2.2) is defined as follows

$$
\begin{equation*}
h(s)=\frac{1}{(1+|s|)^{\theta}}, \quad \text { with } 0 \leq \theta<1 \tag{2.11}
\end{equation*}
$$

Let us set

$$
\tilde{m}=\frac{N p^{\prime}}{N-\theta(N-p)} .
$$

Theorem 2.4. Assume that (2.3), (2.4) and (2.2) (with (2.11)) hold. Let $|F|$ belongs to $L^{m}(\Omega)$, with

$$
\begin{equation*}
\tilde{m} \leq m<\frac{N}{p-1} . \tag{2.12}
\end{equation*}
$$

Then there exists a function $u \in W_{0}^{1, p}(\Omega) \cap L^{r}(\Omega)$, with

$$
\begin{equation*}
r=(1-\theta)(m(p-1))^{*}, \tag{2.13}
\end{equation*}
$$

which is a solution of the unilateral problem (2.7).
As before we define

$$
\bar{m}=\max \left(p^{\prime}, \frac{N p^{\prime}}{p((1-\theta) N+\theta)}\right) .
$$

Theorem 2.5. Assume that (2.3), (2.4) and (2.2) (with (2.11)) hold. Let $F \in L^{m}(\Omega)$ with

$$
\begin{equation*}
\bar{m} \leq m<\tilde{m} . \tag{2.14}
\end{equation*}
$$

Then there exists a measurable function u wich is solution of the unilateral problem (2.10). Moreover, u belongs to $W_{0}^{1, q}(\Omega) \cap L^{r}(\Omega)$, with

$$
\begin{equation*}
r=(1-\theta)(m(p-1))^{*}, \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
q=\frac{(1-\theta) N m(p-1)}{N-\theta m(p-1)} . \tag{2.16}
\end{equation*}
$$

3. A priori estimates

To prove existence results stated in the precedent section we introduce the following approximating problems. Let $n \in \mathbb{N}$

$$
\left\{\begin{array}{l}
u_{n} \in \mathcal{K}_{\psi} \tag{3.1}\\
\left\langle A_{n} u_{n}, u_{n}-v\right\rangle \leq \int_{\Omega} F \cdot \nabla\left(u_{n}-v\right) d x \\
\forall v \in \mathcal{K}_{\psi}
\end{array}\right.
$$

where $A_{n} u_{n}=-\operatorname{div} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)$. For a fixed n, thanks to the hypotheses (2.2)-(2.4) A_{n} is a nonlinear operator of Leray-Lions type, and since $\operatorname{div} F$ belongs to $W^{-1, p^{\prime}}(\Omega)$, by well-known results (see [11]) there exists at least a solution u_{n} so the approximate problem (3.1).

Lemma 3.1. Let $|F|$ be in $L^{m}(\Omega)$ with $m>\frac{N}{p-1}$ and let u_{n} be a solution of the approximate problem (3.1). Then the sequence u_{n} is bounded in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$.

Proof. Let us start with the estimate in $L^{\infty}(\Omega)$. Define, for s in \mathbb{R}

$$
G_{k}(s)=s-T_{k}(s) .
$$

For $\varepsilon>0$ and $k>\|\psi\|_{\infty}$, let $v=u_{n}-T_{\varepsilon}\left(G_{k}\left(u_{n}\right)\right) v$ belongs to $W_{0}^{1, p}(\Omega)$, and for ε small enough we obtain $v \geq \psi$. So the function v belongs to \mathcal{K}_{ψ} and can be used as test function in (3.1), giving

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{\varepsilon}\left(G_{k}\left(u_{n}\right)\right) d x \leq \int_{\Omega} F \cdot \nabla T_{\varepsilon}\left(G_{k}\left(u_{n}\right)\right) d x . \tag{3.2}
\end{equation*}
$$

using assumption (2.2), It follows that

$$
h^{p-1}(k+\varepsilon) \int_{\left\{k<\left|u_{n}\right| \leq k+\varepsilon\right\}}\left|\nabla u_{n}\right|^{p} d x \leq \int_{\left\{k<\left|u_{n}\right| \leq k+\varepsilon\right\}} F \cdot \nabla u_{n} d x .
$$

Now, we can follow the same steps as in the proof of Theorem 5 [4] to obtain

$$
\begin{equation*}
\left\|u_{n}\right\|_{\infty} \leq H^{-1}\left(\frac{1}{N C_{N}^{\frac{1}{N}}}\|F\|_{\left(L^{m}(\Omega)\right)^{N}}^{p^{\prime}}\left(\int_{0}^{|\Omega|} \frac{d \sigma}{\sigma^{\frac{N-1}{N} \frac{p m}{p m-p^{\prime}}}}\right)^{1-\frac{p^{\prime}}{p m}}\right):=c_{\infty} \tag{3.3}
\end{equation*}
$$

where C_{N} denotes the measure of the unit ball in \mathbb{R}^{N}.

Now we prove that the sequence u_{n} is bounded in $W_{0}^{1, p}(\Omega)$. Let us consider ψ as test function in (3.1), then using (2.2) and (2.3) we get

$$
\begin{gather*}
h^{p-1}\left(c_{\infty}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x-\beta \int_{\Omega}\left(j(x)+\left|T_{n}\left(u_{n}\right)\right|^{p-1}+\left|\nabla u_{n}\right|^{p-1}\right) \cdot \nabla \psi \\
\leq \int_{\Omega} F \cdot \nabla\left(u_{n}-\psi\right) d x \tag{3.4}
\end{gather*}
$$

The second term on the left-hand-side of (3.4), is evaluated by using Young's inequality with $\nu>0$. We will denote by $C_{i}, i=1,2 \ldots$ some generic constants

$$
\begin{align*}
\beta \int_{\Omega}(j(x)+ & \left.\left|T_{n}\left(u_{n}\right)\right|^{p-1}+\left|\nabla u_{n}\right|^{p-1}\right) \cdot \nabla \psi \\
& \leq C_{1}+\beta \int_{\Omega}\left|\nabla u_{n}\right|^{p-1} \cdot \nabla \psi \\
& \leq C_{1}+\beta \nu \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x+C_{2}(\nu) \int_{\Omega}|\nabla \psi|^{p} d x \tag{3.5}\\
& \leq C_{3}(\nu)+\beta \nu \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x .
\end{align*}
$$

Concerning the term on the right-hand-side of (3.4)

$$
\begin{align*}
\int_{\Omega} F \cdot \nabla\left(u_{n}-\psi\right) d x & \leq \int_{\Omega}|F| \cdot\left|\nabla u_{n}\right| d x+\int_{\Omega}|F| \cdot|\nabla \psi| d x \\
& \leq C_{4}(\nu) \int_{\Omega}|F|^{p^{\prime}} d x+\frac{1}{p} \int_{\Omega}|\nabla \psi|^{p} d x+\nu \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \tag{3.6}
\end{align*}
$$

Combining (3.4), (3.5) and (3.6), we deduce that

$$
\left(h^{p-1}\left(c_{\infty}\right)-\nu(\beta+1)\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq C_{5}(\nu),
$$

we can now choose ν such that $h^{p-1}\left(c_{\infty}\right)=2 \nu(\beta+1)$, to get

$$
\frac{1}{2} h^{p-1}\left(c_{\infty}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq C_{6} .
$$

The last inequality tells us that the sequence u_{n} is bounded in $W_{0}^{1, p}(\Omega)$.

Lemma 3.2. Assume that m satisfies (2.12), let $|F|$ belongs to $L^{m}(\Omega)$, and let u_{n} be a solution of (3.1). Then the norms of u_{n} in $L^{r}(\Omega)$ (where r is defined by (2.13)) and in $W_{0}^{1, p}(\Omega)$ are bounded by a constants which depend on $\theta, m, N,|\Omega|$ and the norm of F in $L^{m}(\Omega)$.

Proof. Let us start with the estimate in $L^{r}(\Omega)$. For $k \in \mathbb{N}$ with $k>\|\psi\|_{L^{\infty}(\Omega)}$, let $v=u_{n}-T_{1}\left(G_{k}\left(u_{n}\right)\right)$ (which is an admissible test function). Choosing v as test function in (3.1), we have

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{1}\left(G_{k}\left(u_{n}\right)\right) d x \leq \int_{\Omega} F \cdot \nabla T_{1}\left(G_{k}\left(u_{n}\right)\right) d x \tag{3.7}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\int_{B_{k}} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla u_{n} d x \leq \int_{B_{k}} F \cdot \nabla u_{n} d x \tag{3.8}
\end{equation*}
$$

where we have set

$$
B_{k}=\left\{x \in \Omega: k<\left|u_{n}\right| \leq k+1\right\} .
$$

Hence, using (2.2) Hölder's inequality, we get

$$
\begin{aligned}
\int_{B_{k}} h^{p-1}\left(\left|u_{n}\right|\right)\left|\nabla u_{n}\right|^{p} d x & \leq \int_{B_{k}} F \cdot \nabla u_{n} d x \\
& \leq\left[\int_{B_{k}}|F|^{\left.\right|^{\prime}} d x\right]^{\frac{1}{p^{\prime}}}\left[\int_{B_{k}}\left|\nabla u_{n}\right|^{p} d x\right]^{\frac{1}{p}}
\end{aligned}
$$

and since h is decreasing, we obtain

$$
\begin{equation*}
\int_{B_{k}}\left|\nabla u_{n}\right|^{p} d x \leq(2+k)^{\theta p} \int_{B_{k}}|F|^{\left.\right|^{\prime}} d x \tag{3.9}
\end{equation*}
$$

If γ is a positive number (to be fixed later). Let $p^{*}=\frac{p N}{N-p}$ be the Sobolev conjugate exponent of p, by Sobolev's inequality and the previous inequality we can write

$$
\begin{align*}
{\left[\int_{\Omega}\left|u_{n}\right|^{\mid \gamma p^{*}} d x\right]^{\frac{p}{p^{*}}} } & \leq C \int_{\Omega} \mid \nabla\left(\left.\left|u_{n}\right|^{\gamma}\right|^{p} d x\right. \\
& =C \int_{\Omega}\left|u_{n}\right|^{p(\gamma-1)}\left|\nabla u_{n}\right|^{p} d x \\
& =C \sum_{k=0}^{\infty} \int_{B_{k}}\left|u_{n}\right|^{p(\gamma-1)}\left|\nabla u_{n}\right|^{p} d x \\
& \leq C \sum_{k=0}^{\infty}(1+k)^{p(\gamma-1)} \int_{B_{k}}\left|\nabla u_{n}\right|^{p} d x \tag{3.10}\\
& \leq C \sum_{k=0}^{\infty}(1+k)^{p(\gamma-1)}(2+k)^{\theta p} \int_{B_{k}}|F|^{p^{\prime}} d x \\
& \leq C \sum_{k=0}^{\infty}(2+k)^{p(\theta+\gamma-1)} \int_{B_{k}}|F|^{p^{\prime}} d x .
\end{align*}
$$

Therefore, using the fact that on the set B_{k} we have $\left|u_{n}\right|>k$ and then Hölder's inequality to get

$$
\begin{align*}
{\left[\int_{\Omega}\left|u_{n}\right|^{\mid p^{*}} d x\right]^{\frac{p}{p^{*}}} } & \leq C \sum_{k=0}^{\infty} \int_{B_{k}}|F|^{p^{\prime}}\left(2+\left|u_{n}\right|\right)^{p(\theta+\gamma-1)} d x \\
& =C \int_{\Omega}|F|^{p^{\prime}}\left(2+\left|u_{n}\right|\right)^{p(\theta+\gamma-1)} d x \\
& \leq C\left[\int_{\Omega}|F|^{m} d x\right]^{\frac{p^{\prime}}{m}}\left[\int_{\Omega}\left(2+\left|u_{n}\right|\right)^{\frac{p m(\theta+\gamma-1)}{m-p^{\prime}}} d x\right]^{1-\frac{p^{\prime}}{m}} \tag{3.11}\\
& \leq C\|F\|_{\left(L^{m}(\Omega)\right)^{N}}^{p^{\prime}}\left[1+\int_{\Omega}\left|u_{n}\right|^{\frac{p m(\theta+\gamma-1)}{m-p^{\prime}}} d x\right]^{1-\frac{p^{\prime}}{m}}
\end{align*}
$$

We now choose γ such that

$$
\frac{p m(\theta+\gamma-1)}{m-p^{\prime}}=\gamma p^{*}
$$

namely

$$
\gamma=\frac{(1-\theta)(m(p-1))^{*}}{p^{*}}
$$

It turns out that $\gamma p^{*}=r$, so that from (3.11) we have

$$
\left[\int_{\Omega}\left|u_{n}\right|^{r} d x\right]^{\frac{p}{p^{*}}} \leq C\|F\|_{\left(L^{m}(\Omega)\right)^{N}}^{p^{\prime}}\left[1+\int_{\Omega}\left|u_{n}\right|^{r} d x\right]^{1-\frac{p^{\prime}}{m}}
$$

since $1-\frac{p^{\prime}}{m}<\frac{p}{p^{*}}$ (due to the fact that $m<\frac{N}{p-1}$), one has

$$
\int_{\Omega}\left|u_{n}\right|^{r} d x \leq C
$$

therefore, u_{n} is bounded in $L^{r}(\Omega)$.
Now we turn to the estimates in $W_{0}^{1, p}(\Omega)$. On one hand we write

$$
\int_{\Omega}\left|\nabla\left(\left|u_{n}\right|^{\gamma}\right)\right|^{p} d x=C \int_{\Omega}\left|u_{n}\right|^{p(\gamma-1)}\left|\nabla u_{n}\right|^{p} d x .
$$

It's clear that $\gamma \geq 1$ since $m \geq \frac{p^{\prime} N}{N-\theta(N-p)}$, thus

$$
\int_{\left\{\left|u_{n}\right|>1\right\}}\left|\nabla u_{n}\right|^{p} d x \leq C \int_{\Omega}\left|u_{n}\right|^{p(\gamma-1)}\left|\nabla u_{n}\right|^{p} d x .
$$

Hence, from (3.10) and (3.11) we obtain

$$
\int_{\left\{\left|u_{n}\right|>1\right\}}\left|\nabla u_{n}\right|^{p} d x \leq C .
$$

On the other hand,inequality (3.9), written for $k=0$, and then using the Hölder inequality implies

$$
\int_{\left\{\left|u_{n}\right| \leq 1\right\}}\left|\nabla u_{n}\right|^{p} d x \leq 2^{\theta p}\|F\|_{\left(L^{m}(\Omega)\right)^{N}}^{p^{\prime}}|\Omega|^{1-\frac{p^{\prime}}{m}} .
$$

We conclude that

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq C
$$

which completes the proof of Lemma 3.2.

Lemma 3.3. Assume that m satisfies (2.14), let $|F|$ belongs to $L^{m}(\Omega)$, and let u_{n} be a solution of (3.1). Then, there exist two positive constants c_{1}, c_{2} depending on Ω, N, F, θ and s, such that, for any $n \in \mathbb{N}$,

$$
\begin{equation*}
\left\|u_{n}\right\|_{L^{r}(\Omega)} \leq c_{1} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u_{n}\right\|_{W_{0}^{1, q}(\Omega)} \leq c_{2}, \tag{3.13}
\end{equation*}
$$

where r and q are defined by (2.15) and (2.16) respectively. Moreover, the sequence $T_{k}\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$ for every $k>0$.

Proof. Let $k \in \mathbb{N}$ and $\tau \geq 0$. If we take $u_{n}-T_{1}\left(G_{k}\left(u_{n}\right)\right)$ as test function in (3.1), and use hypothesis (2.2), we obtain

$$
\begin{equation*}
\int_{B_{k}} h^{p-1}\left(\left|u_{n}\right|\right)\left|\nabla u_{n}\right|^{p} d x \leq \int_{B_{k}} F \cdot \nabla u_{n} d x \tag{3.14}
\end{equation*}
$$

where we have set

$$
B_{k}=\left\{x \in \Omega: k<\left|u_{n}\right| \leq k+1\right\}
$$

hence, using Hölder's inequality, we get

$$
\begin{aligned}
\int_{B_{k}} h^{p-1}\left(\left|u_{n}\right|\right)\left|\nabla u_{n}\right|^{p} d x & \leq \int_{B_{k}} F \cdot \nabla u_{n} d x \\
& \leq\left[\int_{B_{k}}|F|^{p^{\prime}} d x\right]^{\frac{1}{p^{\prime}}}\left[\int_{B_{k}}\left|\nabla u_{n}\right|^{p} d x\right]^{\frac{1}{p}}
\end{aligned}
$$

and since h is decreasing, we obtain

$$
\begin{equation*}
\int_{B_{k}}\left|\nabla u_{n}\right|^{p} d x \leq(2+k)^{\theta p} \int_{B_{k}}|F|^{p^{\prime}} d x . \tag{3.15}
\end{equation*}
$$

On the other hand, let $\gamma>0$ be a real number which will be chosen later

$$
\begin{aligned}
\int_{\Omega} \frac{\left|\nabla u_{n}\right|^{p}}{\left(1+\left|u_{n}\right|\right)^{\gamma}} d x & =\sum_{k=0}^{+\infty} \int_{B_{k}} \frac{\left|\nabla u_{n}\right|^{p}}{\left(1+\left|u_{n}\right|\right)^{\gamma}} d x \\
& \leq \sum_{k=0}^{+\infty} \frac{1}{(1+k)^{\gamma}} \int_{B_{k}}\left|\nabla u_{n}\right|^{p} d x
\end{aligned}
$$

using (3.15)

$$
\begin{align*}
\int_{\Omega} \frac{\left|\nabla u_{n}\right|^{p}}{\left(1+\left|u_{n}\right|\right)^{\gamma}} d x & \leq \sum_{k=0}^{\infty} \frac{(2+k)^{\theta p}}{(1+k)^{\gamma}} \int_{B_{k}}|F|^{p^{\prime}} d x \\
& \leq 2^{\theta p} \sum_{k=0}^{\infty}(1+k)^{\theta p-\gamma} \int_{B_{k}}|F|^{p^{\prime}} d x \\
& \leq 2^{\theta p} \sum_{k=0}^{\infty} \int_{B_{k}}|F|^{p^{\prime}}\left(1+\left|u_{n}\right|\right)^{\theta p-\gamma} d x \tag{3.16}\\
& =2^{\theta p} \int_{\Omega}|F|^{p^{\prime}}\left(1+\left|u_{n}\right|\right)^{\theta p-\gamma} d x \\
& \leq 2^{\theta p}\|F\|_{\left(L^{m}(\Omega)\right)^{N}}^{p^{\prime}}\left[\int_{\Omega}\left(1+\left|u_{n}\right|\right)^{\frac{(\theta p-\gamma) m}{m-p^{\prime}}} d x\right]^{1-\frac{p^{\prime}}{m}} .
\end{align*}
$$

Let r and q be as in (2.15) and (2.16). Then one can check that $r=q^{*}=N q /(N-q)$. Therefore, using the Sobolev inequality and (3.16), we have

$$
\begin{align*}
{\left[\int_{\Omega}\left|u_{n}\right|^{r} d x\right]^{\frac{q}{r}} } & \leq c \int_{\Omega}\left|\nabla u_{n}\right|^{q} d x=c \int_{\Omega} \frac{\left|\nabla u_{n}\right|^{q}}{\left(1+\left|u_{n}\right|\right)^{\frac{\gamma q}{p}}}\left(1+\left|u_{n}\right|\right)^{\frac{\gamma q}{p}} d x \\
& \leq c\left[\int_{\Omega} \frac{\left|\nabla u_{n}\right|^{p}}{\left(1+\left|u_{n}\right|\right)^{\gamma}} d x\right]^{\frac{q}{p}}\left[\int_{\Omega}\left(1+\left|u_{n}\right|\right)^{\frac{\gamma q}{p-q}} d x\right]^{\frac{p-q}{p}} \tag{3.17}\\
& \leq c 2^{\theta q}\|F\|_{\left(L^{m}(\Omega)\right)^{N}}^{\frac{q p^{\prime}}{p}}\left[\int_{\Omega}\left(1+\left|u_{n}\right|\right)^{\frac{(\theta p-\gamma) m}{m-p^{\prime}}} d x\right]^{\left(1-\frac{p^{\prime}}{m}\right)^{\frac{q}{p}}}\left[\int_{\Omega}\left(1+\left|u_{n}\right|\right)^{\frac{\gamma q}{p-q}} d x\right]^{\frac{p-q}{p}} .
\end{align*}
$$

We choose now γ such that $\frac{\lambda q}{p-q}=r$, that is

$$
\begin{equation*}
\gamma=\frac{p N-m(p-1)(N-\theta(N-p))}{N-m(p-1)} . \tag{3.18}
\end{equation*}
$$

Thanks to the choice of γ in (3.18), we get

$$
\frac{(\theta p-\gamma) m}{m-p^{\prime}}=r
$$

Consequently, we get

$$
\begin{align*}
{\left[\int_{\Omega}\left|u_{n}\right|^{r} d x\right]^{\frac{q}{r}} } & \leq c 2^{\theta q}\|F\|_{\left(L^{m}(\Omega)\right)^{N}}^{\frac{q p^{\prime}}{p}}\left[\int_{\Omega}\left(1+\left|u_{n}\right|\right)^{r} d x\right]^{1-\frac{p^{\prime} q}{m p}} \\
& \leq c 2^{\theta q}\|F\|_{\left(L^{m}(\Omega)\right)^{N}}^{\frac{q p^{\prime}}{p}}\left[|\Omega|+\int_{\Omega}\left|u_{n}\right|^{r} d x\right]^{1-\frac{p^{\prime} q}{m p}} \tag{3.19}
\end{align*}
$$

Since $m<\frac{N}{p-1}$, the last exponent in (3.19) is smaller than $\frac{q}{r}$. Therefore, we obtain

$$
\begin{equation*}
\left[\int_{\Omega}\left|u_{n}\right|^{r} d x\right]^{\frac{q}{r}} \leq c 2^{\theta q}\|F\|_{\left(L^{m}(\Omega)\right)^{N}}^{\frac{q p^{\prime}}{p}}\left[|\Omega|+\int_{\Omega}\left|u_{n}\right|^{r} d x\right]^{\frac{q}{r}} . \tag{3.20}
\end{equation*}
$$

Thus, we conclude the boundedness of u_{n} in $L^{r}(\Omega)$. Going back to (3.17), this in turn implies an estimate for the norm of u_{n} in $W_{0}^{1, q}(\Omega)$.

To prove the last part of Lemma 3.3, we take $u_{n}-T_{k}\left(u_{n}-\psi\right)$ as test function in (3.1) to get

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}-\psi\right) d x \leq \int_{\Omega} F \cdot \nabla T_{k}\left(u_{n}-\psi\right) d x \tag{3.21}
\end{equation*}
$$

Since we are on the set $\left\{\left|u_{n}-\psi\right| \leq k\right\}$, we set $M=k+\|\psi\|_{L^{\infty}(\Omega)}$. For $n>M$, we have

$$
\begin{aligned}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}-\psi\right) d x & =\int_{\Omega} a\left(x, T_{M}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}-\psi\right) d x \\
& =\int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}} a\left(x, T_{M}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla\left(u_{n}-\psi\right) d x .
\end{aligned}
$$

using (2.2) in (3.21), we obtain

$$
\begin{gather*}
\left.h^{p-1}(M) \int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}} \mid \nabla u_{n}\right)\left.\right|^{p} d x-\int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}} a\left(x, T_{M}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla \psi d x \\
\leq \int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}} F \cdot \nabla\left(u_{n}-\psi\right) d x . \tag{3.22}
\end{gather*}
$$

and therefore, using (2.3), Höder's and Young's inequalities, one can estimate the second term on the left-hand side

$$
\begin{aligned}
\int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}} a(x, & \left.T_{M}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla \psi d x \\
& \leq \int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}} \beta\left(j(x)+\left|T_{M}\left(u_{n}\right)\right|^{p-1}+\left|\nabla u_{n}\right|^{p-1}\right) \cdot|\nabla \psi| d x \\
& \leq C+\int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}}\left|\nabla u_{n}\right|^{p-1} \cdot|\nabla \psi| d x \\
& \leq C+\frac{1}{p^{\prime}} \int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}}\left|\nabla u_{n}\right|^{p} .
\end{aligned}
$$

For the term in the right-hand side, since $|F|$ belongs to $L^{p^{\prime}}(\Omega)$ and using höder's and Young's inequalities, we obtain

$$
\begin{aligned}
\int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}} F \cdot \nabla\left(u_{n}-\psi\right) d x & \leq \int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}}|F|\left|\nabla u_{n}\right| d x+\int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}}|F||\nabla \psi| d x \\
& \leq C+\frac{1}{p} \int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}}\left|\nabla u_{n}\right|^{p} .
\end{aligned}
$$

therefore

$$
\int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}}\left|\nabla u_{n}\right|^{p} \leq C,
$$

replacing k with $k+\|\psi\|_{\infty}$ in the last inequality, we get

$$
\begin{equation*}
\int_{\left\{\left|u_{n}\right| \leq k\right\}}\left|\nabla u_{n}\right|^{p} \leq \int_{\left\{\left|u_{n}-\psi\right| \leq k\right\}}\left|\nabla u_{n}\right|^{p} \leq C . \tag{3.23}
\end{equation*}
$$

So that the Lemma 3.3 is completely proved.

4. Proof of the results

4.1. Proof of theorem 2.1. The Lemma 3.1 guarantees the existence of a subsequence, still denoted by $\left\{u_{n}\right\}$, and a measurable function u such that

$$
\begin{equation*}
u_{n} \rightarrow u \quad \text { and a.e. in } \Omega, \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n} \rightharpoonup u \quad \text { weakly in } W_{0}^{1, p}(\Omega) . \tag{4.2}
\end{equation*}
$$

Since $u_{n}(x) \geq \psi(x)$ a.e. in $\Omega, \forall n \in \mathbb{N}$

$$
\begin{equation*}
u \geq \psi \text { a.e. in } \Omega . \tag{4.3}
\end{equation*}
$$

Moreover, we shall prove that

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \quad \text { a.e. in } \Omega . \tag{4.4}
\end{equation*}
$$

In order to get (4.4), it is sufficient to show that

$$
\begin{equation*}
u_{n} \rightarrow u \quad \text { strongly in } W_{0}^{1, p}(\Omega) \tag{4.5}
\end{equation*}
$$

We write

$$
\begin{align*}
& \int_{\Omega}\left(a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x \\
& \quad=\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x-\int_{\Omega} a\left(x, u_{n}, \nabla u\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x . \tag{4.6}
\end{align*}
$$

For $n>c_{\infty}$, if we take u as test function in (3.1), we obtain

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla\left(u_{n}-u\right) d x \leq \int_{\Omega} F \cdot \nabla\left(u_{n}-u\right) d x \tag{4.7}
\end{equation*}
$$

Since F belongs at least to $\left(L^{p^{\prime}}(\Omega)\right)^{N}$, the term -div F is in $W^{-1, p^{\prime}}(\Omega)$, so that by (4.2) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} F \cdot\left(\nabla u_{n}-\nabla u\right) d x=0 \tag{4.8}
\end{equation*}
$$

this and (4.7) yield

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x \leq 0 \tag{4.9}
\end{equation*}
$$

In view of the growth assumption (2.3) and vitali's theorem we have

$$
\begin{equation*}
a\left(x, u_{n}, \nabla u\right) \rightarrow a(x, u, \nabla u) \quad \text { strongly in }\left(L^{p^{\prime}}(\Omega)\right)^{N} . \tag{4.10}
\end{equation*}
$$

It follows by (4.2) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} a\left(x, u_{n}, \nabla u\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x=0 \tag{4.11}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left(a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x=0 . \tag{4.12}
\end{equation*}
$$

Using Lemma 5 in [9], we get (4.5). Also we have

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \quad \text { strongly in }\left(L^{p}(\Omega)\right)^{N} \text { and a.e. in } \Omega . \tag{4.13}
\end{equation*}
$$

We can now pass to the limit. Let $v \in \mathcal{K}_{\psi}$, choosing v as test function in (3.1). For every $n>c_{\infty}$ one has

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla\left(u_{n}-v\right) d x \leq \int_{\Omega} F \cdot \nabla\left(u_{n}-v\right) d x \tag{4.14}
\end{equation*}
$$

The right-hand side converges, as n tends to infinity, to

$$
\begin{equation*}
\int_{\Omega} F \cdot \nabla(u-v) d x \tag{4.15}
\end{equation*}
$$

In view of Fatou's Lemma, we obtain

$$
\begin{equation*}
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla u d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n} d x . \tag{4.16}
\end{equation*}
$$

Thanks to (4.13) and Vitali's theorem, we get

$$
a\left(x, u_{n}, \nabla u_{n}\right) \rightarrow a(x, u, \nabla u) \quad \text { strongly in }\left(L^{p^{\prime}}(\Omega)\right)^{N},
$$

thus

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla v d x \longrightarrow \int_{\Omega} a(x, u, \nabla u) \cdot \nabla v d x \tag{4.17}
\end{equation*}
$$

Consequently, by combining (4.15)-(4.17), it is then possible to pass to the limit as n tends to infinity in (4.14) to obtain

$$
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla(u-v) d x \leq \int_{\Omega} F \cdot \nabla(u-v) d x
$$

4.2. Proof of theorem 2.3. Under the hypotheses of Theorem 2.3, we have the following results.

Lemma 4.1. Let u_{n} be a solution of (3.1). Then there exists a measurable function u such that

$$
\begin{gather*}
u_{n} \rightarrow u \quad \text { in measure, } \tag{4.18}\\
u_{n} \rightarrow u \quad \text { a.e. in } \Omega, \tag{4.19}
\end{gather*}
$$

and

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \quad \text { weakly in } W_{0}^{1, p}(\Omega) \text { for every } k>0 \tag{4.20}
\end{equation*}
$$

Proof. Firstly, we show that u_{n} is a Cauchy sequence in measure. Let $\eta \geq 0$, if we use as test function $v=u_{n}-\eta T_{k}\left(u_{n}\right)$ in (3.1) which is an admissible test function for η small enough, we get

$$
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \leq \int_{\Omega} F \cdot \nabla T_{k}\left(u_{n}\right) d x .
$$

For $n>k$, we obtain

$$
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}\right) d x \leq \int_{\Omega} F \cdot \nabla T_{k}\left(u_{n}\right) d x
$$

using (2.2) gives

$$
\int_{\Omega} h^{p-1}\left(\left|T_{k}\left(u_{n}\right)\right|\right)\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x \leq \int_{\Omega} F \cdot \nabla T_{k}\left(u_{n}\right) d x
$$

being h deacrising function and using Hölder's inequality, it follows

$$
h^{p-1}(k) \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x \leq\left[\int_{\Omega}|F|^{p^{\prime}} d x\right]^{\frac{1}{p^{\prime}}}\left[\int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x\right]^{\frac{1}{p}},
$$

that is

$$
\begin{equation*}
\int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x \leq \frac{1}{h^{p}(k)}\|F\|_{L^{p^{\prime}(\Omega)}}^{p^{\prime}} \tag{4.21}
\end{equation*}
$$

We use now Sobolev inequality with exponents p and $p^{*}\left(p^{*}=\frac{N p}{N-p}\right)$, so there exist a constant C which doesn't depending on n such that

$$
\left\|T_{k}\left(u_{n}\right)\right\|_{L^{p^{*}}(\Omega)}^{p} \leq C\left\|\nabla T_{k}\left(u_{n}\right)\right\|_{L^{p}(\Omega)}^{p}
$$

hence, by (4.21) we deduce

$$
\int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{p^{*}} d x \leq \frac{C}{h^{p^{*}}(k)}\|F\|_{L^{p^{\prime}(\Omega)}}^{\frac{p^{*}}{p-1}} .
$$

Since the set $\left\{x \in \Omega:\left|u_{n}(x)\right|>k\right\} \subset \Omega$, we have

$$
\begin{equation*}
\left|\left\{\left|u_{n}\right|>k\right\}\right| \leq \frac{C}{k^{p^{*}} h^{p^{*}}(k)}\|F\|_{L^{p^{\prime}(\Omega)}}^{\frac{p^{*}}{p-1}} . \tag{4.22}
\end{equation*}
$$

For t and $\varepsilon>0$ we can write

$$
\begin{equation*}
\left\{\left|u_{n}-u_{m}\right|>t\right\} \subset\left\{\left|u_{n}\right|>k\right\} \cup\left\{\left|u_{m}\right|>k\right\} \cup\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>t\right\} . \tag{4.23}
\end{equation*}
$$

Since $\lim _{k \rightarrow \infty} \frac{1}{k h(k)}=0$, for sufficiently large k, by inequality (4.22)

$$
\begin{equation*}
\left|\left\{\left|u_{n}\right|>k\right\}\right|<\frac{\varepsilon}{3} \quad \text { and } \quad\left|\left\{\left|u_{m}\right|>k\right\}\right|<\frac{\varepsilon}{3} . \tag{4.24}
\end{equation*}
$$

By (4.21), the sequence $\left\{\left|T_{k}\left(u_{n}\right)\right|\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$, we can assume that it is a Cauchy sequence in measure. Thus the existence of some N such that for $n, m \geq N$, we have

$$
\begin{equation*}
\left|\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>t\right\}\right|<\frac{\varepsilon}{3} . \tag{4.25}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left|\left\{\left|u_{n}-u_{m}\right|>t\right\}\right|<\varepsilon, \quad \forall n, m \geq N . \tag{4.26}
\end{equation*}
$$

Then u_{n} is a Cauchy sequence in measure, thus there exists a subsequence still denoted u_{n} which converge almost everywhere to some measurable function u, and from (4.21) it follows that

$$
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \quad \text { weakly in } W_{0}^{1, p}(\Omega) \text { for every } k>0
$$

Lemma 4.2. Let u_{n} be a solution of (3.1). Then

$$
\begin{equation*}
\nabla u_{n} \longrightarrow \nabla u \quad \text { a.e. in } \Omega . \tag{4.27}
\end{equation*}
$$

To prove the precedent lemma, it is sufficient to show that

$$
\begin{equation*}
\nabla u_{n} \longrightarrow \nabla u \quad \text { in measure . } \tag{4.28}
\end{equation*}
$$

For this purpose, we will need the following estimates:

Lemma 4.3. There exists a constant $C>0$ such that, for every $k>0$, we have

$$
\begin{gather*}
|\{|u|>k\}| \leq \frac{C}{k p^{*} h^{p^{*}}(k)}\|F\|_{L^{p^{\prime}}(\Omega)}^{\frac{p^{*}}{p-1}}, \tag{4.29}\\
\left|\left\{\left|\nabla u_{n}\right|>k\right\}\right| \leq \frac{C}{k^{p^{*}} h^{p^{*}}(k)}\|F\|_{L^{p^{\prime}(\Omega)}}^{\frac{p^{*}}{p-1}}+\frac{1}{k^{p} h^{p}(k)}\|F\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}, \tag{4.30}
\end{gather*}
$$

and

$$
\begin{equation*}
|\{|\nabla u|>k\}| \leq \frac{C}{k^{p^{*}} h^{p^{*}}(k)}\|F\|_{L^{p^{\prime}(\Omega)}}^{\frac{p^{*}}{p-1}}+\frac{1}{k^{p} h^{p}(k)}\|F\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}} . \tag{4.31}
\end{equation*}
$$

Proof. The proof is entirely similar to the corresponding one of Lemma 3 in [4].
Proof of Lemma 4.2. Let $\lambda>0$, we set for some $k>0$ and $\varepsilon>0$

$$
\begin{aligned}
& E_{1}=\left\{x \in \Omega:\left|u_{n}\right|>k\right\} \cup\{x \in \Omega:|u|>k\} \cup\left\{x \in \Omega:\left|\nabla u_{n}\right|>k\right\} \cup\{x \in \Omega:|\nabla u|>k\}, \\
& E_{2}=\left\{x \in \Omega:\left|u_{n}-u\right|>\varepsilon\right\}, \\
& E_{3}=\left\{x \in \Omega:\left|u_{n}-u\right| \leq \varepsilon,\left|u_{n}\right| \leq k,|u| \leq k,\left|\nabla u_{n}\right| \leq k,|\nabla u| \leq k,\left|\nabla u_{n}-\nabla u\right| \geq \lambda\right\} .
\end{aligned}
$$

We have that:

$$
\begin{equation*}
\left\{x \in \Omega:\left|\nabla u_{n}-\nabla u\right| \geq \lambda\right\} \subset E_{1} \cup E_{2} \cup E_{3} . \tag{4.32}
\end{equation*}
$$

Fixed $\sigma>0$, we will prove that there exists N such that

$$
\begin{equation*}
\left|\left\{x \in \Omega:\left|\nabla u_{n}-\nabla u\right| \geq \lambda\right\}\right| \leq \sigma \quad \text { for avery } n \geq N . \tag{4.33}
\end{equation*}
$$

By virtue of the inequalities (4.22), (4.29), (4.30) and (4.31) and using the fact that $\lim _{k \rightarrow \infty} \frac{1}{k h(k)}=0$, we can conclude that there exists some k_{σ} such that

$$
\begin{equation*}
\left|E_{1}\right| \leq \frac{\sigma}{3} \quad \text { for all } n \text { and } k \geq k_{\sigma} \tag{4.34}
\end{equation*}
$$

On the other hand, since the sequence u_{n} is convergent in measure to u, guarantees that there exists N_{1} such that

$$
\begin{equation*}
\left|E_{2}\right| \leq \frac{\sigma}{3}, \quad \text { for all } n \geq N_{1} \tag{4.35}
\end{equation*}
$$

Now, we prove that there exists N_{2} depending on k and σ, and verifying

$$
\begin{equation*}
\left|E_{3}\right| \leq \frac{\sigma}{3}, \quad \text { for all } n \geq N_{2} \tag{4.36}
\end{equation*}
$$

In order to get (4.36) we need the following standard lemma:
Lemma 4.4. Let (X, T, m) a measurable space, such that $|X|<+\infty$. Let γ be a measurable function $\gamma: X \rightarrow$ $[0,+\infty[$ such that $|\{x \in X: \gamma(x)=0\}|=0$. Then for any $\sigma>0$ there exists $\delta>0$ such that:

$$
\int_{A} \gamma \mathrm{~d} m \leq \delta \Rightarrow|A| \leq \sigma
$$

Assumption (2.4) implies that there exists a real valued function $\gamma: \Omega \rightarrow[0,+\infty[$ such that

$$
\begin{equation*}
|\{x \in \Omega: \gamma(x)=0\}|=0, \tag{4.37}
\end{equation*}
$$

and

$$
\begin{equation*}
(a(x, s, \xi)-a(x, s, \eta)) \cdot(\xi-\eta) \geq \gamma(x) \quad \text { a.e. in } \Omega \tag{4.38}
\end{equation*}
$$

for every $s \in \mathbb{R}, \xi, \eta \in \mathbb{R}^{N}$ such that $|s| \leq k,|\xi| \leq k,|\eta| \leq k$ and $|\xi-\eta| \geq \lambda$. Thus, we get

$$
\int_{E_{3}} \gamma(x) d x \leq \int_{E_{3}}\left(a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x,
$$

in E_{3} we have $|u| \leq k$ and $\left|u_{n}-u\right| \leq \varepsilon$, so that

$$
\begin{aligned}
\int_{E_{3}} \gamma(x) d x \leq & \int_{E_{3}}\left(a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla T_{k}(u)\right)\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x \\
\leq & \int_{\Omega}\left(a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla T_{k}(u)\right)\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x \\
= & \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x \\
& -\int_{\Omega} a\left(x, u_{n}, \nabla T_{k}(u)\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x
\end{aligned}
$$

We evaluate the term

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x . \tag{4.39}
\end{equation*}
$$

Let $v=u_{n}-\tau T_{\varepsilon}\left(u_{n}-T_{k}(u)\right)$ where $\tau \geq 0$. For τ small enough, v is an admissible test function in (3.1). It follows that

$$
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x \leq \int_{\Omega} F \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x
$$

thus, for $n>k+\varepsilon$ we have

$$
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x \leq \int_{\Omega} F \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x
$$

passing to the limit as n tends to infinity

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x & \leq \int_{\Omega} F \cdot \nabla T_{\varepsilon}\left(u-T_{k}(u)\right) d x \\
& =\int_{k<|u| \leq k+\varepsilon} F \cdot \nabla T_{k+\varepsilon}(u) d x
\end{aligned}
$$

therfore

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \lim _{n \rightarrow \infty} \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x \leq 0 . \tag{4.40}
\end{equation*}
$$

Concerning the second integral

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x . \tag{4.41}
\end{equation*}
$$

Since we have the inclusion

$$
\left\{x \in \Omega:\left|u_{n}-T_{k}(u)\right| \leq \varepsilon\right\} \subset\left\{x \in \Omega:\left|u_{n}\right| \leq k+\varepsilon\right\},
$$

we can write

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{n},\right. & \left.\nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla T_{\varepsilon}\left(u_{n}-T_{k}(u)\right) d x \\
& =\int_{\left\{\left|u_{n}-T_{k}(u)\right| \leq \varepsilon\right\}} a\left(x, T_{k+\varepsilon}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla\left(T_{k+\varepsilon}\left(u_{n}\right)-T_{k}(u)\right) d x
\end{aligned}
$$

By (4.20) and using Vitali's theorem we can conclude that $\forall h, k>0$

$$
a\left(x, T_{h}\left(u_{n}\right), \nabla T_{k}(u)\right) \rightarrow a\left(x, T_{h}(u), \nabla T_{k}(u)\right) \quad \text { strongly in }\left(L^{p^{\prime}}(\Omega)\right)^{N}
$$

Therefore

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \int_{\left\{\left|u_{n}-T_{k}(u)\right| \leq \varepsilon\right\}} a\left(x, T_{k+\varepsilon}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla\left(T_{k+\varepsilon}\left(u_{n}\right)-T_{k}(u)\right) d x \\
& =\int_{\left\{\left|u-T_{k}(u)\right|<\varepsilon\right\}} a\left(x, T_{k+\varepsilon}(u), \nabla T_{k}(u)\right) \cdot \nabla\left(T_{k+\varepsilon}(u)-T_{k}(u)\right) d x \\
& =\int_{\{k<|u| \leq k+\varepsilon\}} a\left(x, u, \nabla T_{k}(u)\right) \cdot \nabla T_{k+\varepsilon}(u) d x \\
& =\int_{\{k<|u| \leq k+\varepsilon\}} a(x, u, 0) \cdot \nabla T_{k+\varepsilon}(u) d x \\
& =0
\end{aligned}
$$

Hence, there exists N_{2} (dependent on k and σ) such that

$$
\int_{E_{3}} \gamma(x) d x \leq \frac{\delta}{3} \quad \text { for every } n \geq N_{2}
$$

By Lemma 4.3, we conclude that

$$
\begin{equation*}
\left|E_{3}\right| \leq \frac{\sigma}{3}, \quad \text { for all } n \geq N_{2} \tag{4.42}
\end{equation*}
$$

We take $N=\max \left(N_{1}, N_{2}\right)$, then

$$
\left|\left\{x \in \Omega:\left|\nabla u_{n}-\nabla u\right| \geq \lambda\right\}\right| \leq \sigma \quad \text { for every } n \geq N
$$

this completes the proof of Lemma 4.2.
We can now pass to the limit in (3.1) to obtain a solution of (2.10). Let $v \in \mathcal{K}_{\psi} \cap L^{\infty}(\Omega)$; the function $u_{n}-T_{k}\left(u_{n}-v\right)$ is an admissible test function in (3.1). This choice yields

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{k}\left(u_{n}-v\right) d x \leq \int_{\Omega} F \cdot \nabla T_{k}\left(u_{n}-v\right) d x \tag{4.43}
\end{equation*}
$$

Taking into account the fact that the integral in (4.43) is on the subset of the set

$$
\left\{x \in \Omega,\left|u_{n}\right| \leq k+\|v\|_{L^{\infty}(\Omega)}\right\}
$$

we set $M=k+\|v\|_{L^{\infty}(\Omega)}$ and let $n>M$, we can rewrite (4.43) as

$$
\begin{equation*}
\int_{\left\{\left|u_{n}-v\right| \leq k\right\}} a\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right) \cdot \nabla T_{k}\left(u_{n}-v\right) d x \leq \int_{\left\{\left|u_{n}-v\right| \leq k\right\}} F \cdot \nabla T_{k}\left(u_{n}-v\right) d x \tag{4.44}
\end{equation*}
$$

The right-hand side of (4.44) converge to

$$
\begin{equation*}
\int_{\{|u-v| \leq k\}} F \cdot \nabla(u-v) d x \tag{4.45}
\end{equation*}
$$

In view of Fatou's Lemma and (4.18) and (4.27), we obtain

$$
\begin{equation*}
\int_{\{|u-v| \leq k\}} a(x, u, \nabla u) \cdot \nabla u d x \leq \liminf _{n \rightarrow \infty} \int_{\left\{\left|u_{n}-v\right| \leq k\right\}} a\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right) \cdot \nabla u_{n} d x . \tag{4.46}
\end{equation*}
$$

Since $T_{M}\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$, so as a consequence of $(2.3),\left|a\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right)\right|$ is bounded in $L^{p^{\prime}}(\Omega)$. Thus together with (4.19) and (4.27), $a\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right)$ is weakly convergent to $a\left(x, T_{M}(u), \nabla T_{M}(u)\right)$ in $\left(L^{p^{\prime}}(\Omega)\right)^{N}$. Therefore

$$
\begin{equation*}
\int_{\left\{\left|u_{n}-v\right| \leq k\right\}} a\left(x, T_{M}\left(u_{n}\right), \nabla T_{M}\left(u_{n}\right)\right) \cdot \nabla v d x \longrightarrow \int_{\{|u-v| \leq k\}} a(x, u, \nabla u) \cdot \nabla v d x . \tag{4.47}
\end{equation*}
$$

From (4.45)-(4.47), it is then possible to pass to the limit as n tends to infinity in (4.44) to obtain

$$
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_{k}(u-v) d x \leq \int_{\Omega} F \cdot \nabla T_{k}(u-v) d x
$$

4.3. Proof of theorem 2.4. In Order to prove Theorem 2.4 we need the following convergence

Lemma 4.5. let u_{n} be a solution of (3.1). Then

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \longrightarrow T_{k}(u) \quad \text { strongly in } W_{0}^{1, p}(\Omega) \text { for all } k>0 \tag{4.48}
\end{equation*}
$$

Proof. from Lemma 3.2, we have that $T_{k}\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$, so that

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \quad \text { weakly in } W_{0}^{1, p}(\Omega) \tag{4.49}
\end{equation*}
$$

Observe that for $n>k$, one has

$$
\begin{aligned}
& \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
&= \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
&-\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
&= \int_{\left\{\left|u_{n}\right|<k\right\}} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
&-\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
& -\int_{\left\{\left|u_{n}\right| \geq k\right\}} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
& -\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
= & \int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
& -\int_{\left\{\left|u_{n}\right| \geq k\right\}} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{k}(u) d x \\
& -\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x .
\end{aligned}
$$

We shall prove that the previous integral converges to zero. Indeed, on one hand, by choosing $v=$ $u_{n}-\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)$ as a test function in (3.1), which is an admissible test function, we obtain

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \leq \int_{\Omega} F \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \tag{4.50}
\end{equation*}
$$

Thanks to (4.49), we have

$$
\lim _{n \rightarrow \infty} \int_{\Omega} F \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x=0
$$

Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \leq 0 \tag{4.51}
\end{equation*}
$$

On the other hand, By the growth assumption (2.3), we get

$$
\begin{aligned}
\int_{\Omega}\left|a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)\right|^{p^{\prime}} d x & \leq \beta c \int_{\Omega}\left(j^{p^{\prime}}(x)+\left|u_{n}\right|^{p}+\left|\nabla u_{n}\right|^{p}\right) d x \\
& \leq \beta c\left(\|j\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}+\left\|u_{n}\right\|_{L^{p}(\Omega)}^{p}+\left\|u_{n}\right\|_{W_{0}^{1, p}(\Omega)}^{p}\right) .
\end{aligned}
$$

therefore the sequence $\left\{a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)\right\}$ is bounded in $\left(L^{p^{\prime}}(\Omega)\right)^{N}$. Then, it converges weakly to some l in $\left(L^{p^{\prime}}(\Omega)\right)^{N}$ and we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\left\{\left|u_{n}\right| \geq k\right\}} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{k}(u) d x=\int_{\{|u| \geq k\}} l \cdot \nabla T_{k}(u) d x=0 . \tag{4.52}
\end{equation*}
$$

By virtue of Lemma 3.2 and Vitali's theorem, we obtain

$$
a\left(x, T_{n}\left(u_{n}\right), \nabla T_{k}(u)\right) \rightarrow a\left(x, u, \nabla T_{k}(u)\right) \text { strongly in }\left(L^{p^{\prime}}(\Omega)\right)^{N},
$$

it follows from (4.49) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x=0 \tag{4.53}
\end{equation*}
$$

which with (4.51) and (4.52) allow us to get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left(a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \cdot \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x=0 \tag{4.54}
\end{equation*}
$$

Now we can apply Lemma 5 of [9] to conclude (4.48)

From the precedent lemma, we also have

$$
\begin{equation*}
\nabla u_{n} \longrightarrow \nabla u \quad \text { a.e. in } \Omega . \tag{4.55}
\end{equation*}
$$

We are now in position to prove Theorem 2.4. Choosing $v \in \mathcal{K}_{\psi}$ as test function in (3.1), we get

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla\left(u_{n}-v\right) d x \leq \int_{\Omega} F \cdot \nabla\left(u_{n}-v\right) d x \tag{4.56}
\end{equation*}
$$

The right-hand side of (4.56) converges as n tends to infinity to

$$
\begin{equation*}
\int_{\Omega} F \cdot \nabla(u-v) d x \tag{4.57}
\end{equation*}
$$

In view of Fatou's Lemma, we obtain

$$
\begin{equation*}
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla u d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla u_{n} d x . \tag{4.58}
\end{equation*}
$$

Combining (4.55) and the assumptions on the function $a(x, s, \xi)$, we have

$$
a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \rightharpoonup a(x, u, \nabla u) \quad \text { weakly in }\left(L^{p^{\prime}}(\Omega)\right)^{N} .
$$

Thus

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla v d x \longrightarrow \int_{\Omega} a(x, u, \nabla u) \cdot \nabla v d x . \tag{4.59}
\end{equation*}
$$

Then we passing to the limit thanks to the previous results, we prove the Theorem 2.4.
4.4. Proof of theorem 2.5. In virtue of Lemma 3.3, there exists a subsequence, still denoted by u_{n}, which is weakly convergent to some function u in $W_{0}^{1, q}(\Omega) \cap L^{r}(\Omega)$. Moreover,

$$
\begin{equation*}
u_{n} \rightarrow u \quad \text { a.e. in } \Omega . \tag{4.60}
\end{equation*}
$$

From (3.23), $T_{k}\left(u_{n}\right)$ belongs to $W_{0}^{1, p}(\Omega)$ for every $k>0$, which implies together with (4.60) that

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \quad \text { weakly in } W_{0}^{1, p}(\Omega) . \tag{4.61}
\end{equation*}
$$

Lemma 4.6. Let u_{n} be a sequence of solutions of the problems (3.1) with the same assumptions as in the statement of Theorem 2.5. Then there exists a subsequence, denoted by u_{n} such that

$$
\begin{equation*}
\nabla u_{n} \longrightarrow \nabla u \quad \text { a.e. in } \Omega . \tag{4.62}
\end{equation*}
$$

Proof. Fix λ such that $1<\lambda<\frac{q}{p}$, define

$$
\begin{equation*}
I_{n, \Omega}=\int_{\Omega}\left\{\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla u\right)\right)\left(\nabla u_{n}-\nabla u\right)\right\}^{\lambda} d x . \tag{4.63}
\end{equation*}
$$

We shall prove that the integral $I_{n, \Omega}$ converges to zero. We split it on the sets

$$
C_{k}=\{x \in \Omega:|u(x)|>k\} \quad \text { and } \quad \bar{C}_{k}=\{x \in \Omega:|u(x)| \leq k\},
$$

to get

$$
\begin{aligned}
I_{n, \Omega}= & \int_{C_{k}}\left\{\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla u\right)\right)\left(\nabla u_{n}-\nabla u\right)\right\}^{\lambda} d x \\
& +\int_{\bar{C}_{k}}\left\{\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla u\right)\right)\left(\nabla u_{n}-\nabla u\right)\right\}^{\lambda} d x \\
= & I_{n, C_{k}}+I_{n, \bar{C}_{k}} .
\end{aligned}
$$

Let $\gamma=\frac{q}{p \lambda}$, using assumption (2.3) then Hölder's inequality with exponents γ and γ^{\prime} in the first integral $I_{n, C_{k}}$, one has

$$
\begin{aligned}
I_{n, C_{k}} \leq & c\left(\int_{\Omega} j^{p^{\prime}}(x) d x\right)^{\lambda}\left|C_{k}\right|^{1-\lambda} \\
& +c\left(\int_{C_{k}}\left(\left|u_{n}\right|+\left|\nabla u_{n}\right|+|\nabla u|\right)^{q} d x\right)^{\frac{1}{\gamma}}\left|C_{k}\right|^{1-\frac{1}{\gamma}}
\end{aligned}
$$

thus, by means of estimate (3.12), we get

$$
I_{n, C_{k}} \leq c\left(\left|C_{k}\right|^{1-\lambda}+\left|C_{k}\right|^{1-\frac{1}{\gamma}}\right),
$$

we thus obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} I_{n, C_{k}}=0 \tag{4.64}
\end{equation*}
$$

Concerning the second integral $I_{n, \bar{C}_{k}}$, we have

$$
\begin{aligned}
I_{n, \bar{C}_{k}} & =\int_{\bar{C}_{k}}\left\{\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(\nabla u_{n}-\nabla T_{k}(u)\right)\right\}^{\lambda} d x \\
& \leq \int_{\Omega}\left\{\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(\nabla u_{n}-\nabla T_{k}(u)\right)\right\}^{\lambda} d x \\
& =J_{n, \Omega} .
\end{aligned}
$$

Again, we split the integral $J_{n, \Omega}$ on the sets

$$
D_{k, l}=\left\{x \in \Omega:\left|u_{n}-T_{k}(u)\right|>l\right\}, \quad \bar{D}_{k, l}=\left\{x \in \Omega: \mid u_{n}-T_{k}(u) \leq l\right\}, \quad(l \in \mathbb{N}),
$$

obtaining

$$
\begin{aligned}
J_{n, \Omega}= & \int_{D_{k, l}}\left\{\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(\nabla u_{n}-\nabla T_{k}(u)\right)\right\}^{\lambda} d x \\
& +\int_{\bar{D}_{k, l}}\left\{\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla T_{k}(u)\right)\right)\left(\nabla u_{n}-\nabla T_{k}(u)\right)\right\}^{\lambda} d x \\
& =J_{n, D_{k, l}}+J_{n, \bar{D}_{k, l}} .
\end{aligned}
$$

the measure of the set $D_{k, l}$ tends to zero as l tends to ∞ uniformly in n and k

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} J_{n, D_{k, l}}=0 \tag{4.65}
\end{equation*}
$$

Since on $\bar{D}_{k, l}$ we can write $\nabla\left(u_{n}-T_{k}(u)\right)=\nabla T_{l}\left(u_{n}-T_{k}(u)\right)$, we have

$$
J_{n, \bar{D}_{k, l}}=\int_{\Omega}\left\{\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \cdot \nabla T_{l}\left(u_{n}-T_{k}(u)\right)\right\}^{\lambda} d x
$$

therefore, using the Hölder inequality, we get

$$
\begin{aligned}
J_{n, \bar{D}_{k, l}} & \leq|\Omega|^{1-\lambda}\left[\int_{\Omega}\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \cdot \nabla T_{l}\left(u_{n}-T_{k}(u)\right) d x\right]^{\lambda} \\
& =|\Omega|^{1-\lambda}\left(J_{n, \bar{D}_{k, l}, 1}-J_{n, \bar{D}_{k, l}, 2}\right)^{\lambda},
\end{aligned}
$$

where

$$
J_{n, \bar{D}_{k, l}, 1}=\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla T_{l}\left(u_{n}-T_{k}(u)\right) d x
$$

and

$$
J_{n, \bar{D}_{k, l}, 2}=\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot \nabla T_{l}\left(u_{n}-T_{k}(u)\right) d x .
$$

The integral in $J_{n, \bar{D}_{k, l}, 2}$ is on the set $\left\{\left|u_{n}-T_{k}(u)\right| \leq l\right\}$, which is a subset of the set $\left\{\left|u_{n}\right| \leq l+k\right\}$; hence, if we take $n \geq l+k:=M$, we get

$$
J_{n, \bar{D}_{k, l}, 2}=\int_{\Omega} a\left(x, T_{M}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot \nabla T_{l}\left(u_{n}-T_{k}(u)\right) d x
$$

Using the almost everywhere convergence (4.60) and the Vitali theorem we get

$$
a\left(x, T_{M}\left(u_{n}\right), \nabla T_{k}(u)\right) \rightarrow a\left(x, T_{M}(u), \nabla T_{k}(u)\right) \quad \text { strongly in }\left(L^{p^{\prime}}(\Omega)\right)^{N}
$$

As consequence of (4.60) and(4.61), we have

$$
\begin{equation*}
\nabla T_{l}\left(u_{n}-T_{k}(u)\right) \rightharpoonup \nabla T_{l}\left(u-T_{k}(u)\right) \quad \text { weakly in }\left(L^{p^{\prime}}(\Omega)\right)^{N}, \tag{4.66}
\end{equation*}
$$

so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J_{n, \bar{D}_{k, l}, 2}=\int_{\Omega} a\left(x, T_{M}(u), \nabla T_{k}(u)\right) \cdot \nabla T_{l}\left(u-T_{k}(u)\right) d x=0 . \tag{4.67}
\end{equation*}
$$

To evaluate the integral $J_{n, \bar{D}_{k, l}, 1}$. Let $\tau \geq 0$, we choose $u_{n}-\tau T_{l}\left(u_{n}-T_{k}(u)\right)$ as test function in (3.1), to get

$$
J_{n, \bar{D}_{k, l}, 1} \leq \int_{\Omega} F \cdot \nabla T_{l}\left(u_{n}-T_{k}(u)\right) d x .
$$

using (4.66)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\Omega} F \cdot \nabla T_{l}\left(u_{n}-T_{k}(u)\right) d x & =\int_{\Omega} F \cdot \nabla T_{l}\left(u-T_{k}(u)\right) d x \\
& =\int_{\{|u|>k\}} F \cdot \nabla T_{l}(u) d x .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} J_{n, \bar{D}_{k, l}, 1}=0 \tag{4.68}
\end{equation*}
$$

Gathering results (4.64), (4.65), (4.68) and (4.67), we obtain

$$
\lim _{n \rightarrow \infty} I_{n}=0
$$

Since the integrand function in I_{n} is non-negative, we have

$$
\left\|\left\{\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla u\right)\right)\left(\nabla u_{n}-\nabla u\right)\right\}^{\lambda}\right\|_{L^{1}(\Omega)} \rightarrow 0,
$$

thus,there exist a subsequence still denoted by u_{n},

$$
\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)-a\left(x, T_{n}\left(u_{n}\right), \nabla u\right)\right)\left(\nabla u_{n}-\nabla u\right) \rightarrow 0
$$

Under our assumption on the function $a(x, s, \xi)$ and the previous limit, we conclude (4.62) as in [9].
Let $v \in \mathcal{K}_{\psi} \cap L^{\infty}(\Omega)$, and choose $u_{n}-T_{k}\left(u_{n}-v\right)$ as test function in (3.1). We get

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla\left(u_{n}-v\right) d x \leq \int_{\Omega} F \cdot \nabla\left(u_{n}-v\right) d x . \tag{4.69}
\end{equation*}
$$

Finally, we can pass to the limit in (4.69), this completes the proof of theorem 2.5.

References

[1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl. IV. Ser. 182 (2003), 53-79. https://doi . org/10.1007/s10231-002-0056-y.
[2] H. Ayadi, R. Souilah, Existence and regularity results for unilateral problems with degenerate coercivity, Math. Slovaca. 69 (2019), 1351-1366. https://doi.org/10.1515/ms-2017-0313.
[3] P. Bélinan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vasquez, An L^{1} theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273.
[4] A. Benkirane, A. Youssfi, Regularity for solutions of nonlinear elliptic equations with degenerate coercivity, Ricerche Mat. 56 (2007), 241-275. https://doi.org/10.1007/s11587-007-0019-0.
[5] L. Boccardo, R. Cirmi, Existence and uniqueness of solution of unilateral problems with L^{1} data, J. Convex Anal. 6 (1999), 195-206.
[6] L. Boccardo, R. Cirmi, Unilateral problems with degenerate coercivity, Le Matematiche, 54 (1999), 61-73.
[7] L. Boccardo, D. Giachetti, existence results via regularity for some nonlinear elliptic problems, Commun. Part. Diff. Equ. 14 (1989), 663-680. https://doi.org/10.1080/03605308908820624.
[8] L. Boccardo, D. Giachetti, Alcune osservazioni sulla regolarita delle soluzioni di problemi fortemente non linearie applicazioni, Ricerche Mat. 34 (1985), 309-323.
[9] L. Boccardo, F. Murat, J.P. Puel, Existence of bounded solutions for non linear elliptic unilateral problems, Ann. Mat. Pura Appl. 152 (1988), 183-196. https://doi.org/10.1007/bf01766148.
[10] L. Boccardo, A. Dall'Aglio, L. Orsina, Existence and regularity results for some nonlinear equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51-81.
[11] J.L. Lions, Quelques méthodes de resolution de problèmes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969.

