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Abstract. In this article, we describe an application of optimal control theory to evaluate the success of
controls on the dynamics of prey-predator systems of the Serengeti ecosystem, which includes wildebeest,
zebra, and lion. This is accomplished by suggesting control variables like education (to prevent retaliatory
killing), dam construction (to prevent drought), and treatment (to combat infections). Maximizing
population density is the major objective. For this aim, the Pontryagin’s maximum principle has been
applied. The optimal control are characterized in terms of optimality system and solved numerically for
several scenarios. Results shows that multiple optimal control measures is the most effective strategy in
management of wildlife populations. Results also shows that, if the ecosystem management decide to use
a single control, the construction of dams is the best control in maximizing the objective function.
2020 Mathematics Subject Classification. 93E20.
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1. Introduction

The core of mathematical ecology is the dynamics and interaction of species in the ecosystem, with
their complex behavior being a problem for many biological and ecological processes. All organism
in the ecosystem are interdependent [1], hence studying their behaviour and dynamics is vital for
scientific management of the ecosystem [9]. Serengeti ecosystem is extraordinary in species and is
one of the most well-known and remarkable wildlife reserves in the world [7]. However, numerous
biological species in the Serengeti ecosystem have perished as a result of outside factors like extinction,
overexploitation, illness, droughts, and poor ecosystem management. [11].
The ecosystem also has been the subject of various hazards such as pollution, fire, drought and
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catastrophes that lead to perturbations of the ecosystem. Some of the strong studied perturbation of
Serengeti ecosystem are the dry season drought of 1993 [11] and the eruption of rinderpest disease
in wildebeest as well as canine dispenser virus of 1994 [12]. Poaching also is considered by many to
threaten the population viability of prey-predator species in Serengeti ecosystem. Poaching and trophy
hunting have always contributed to the off-take of many species of the ecosystem. [5] mention 55% of
household around the ecosystem to use bush meat atleast once a year. Also lion killing due to cultural
practices [5] by Maasai, has been threatening the population of lion.
Hence if Serengeti ecosystem is to retain its diverse and abundant fauna, more efficient long-term
conservation is needed. Based on this understanding, formulating a mathematical model to study
how the ecosystem behave may well provide a way to achieve this. Prey-predator model has been
widely studied in literature. However very few studies are on optimal control of prey-predator systems.
Recently for example [11] studied the threat to lion-wildebeest prey-predator dynamics with optimal
control in Serengeti ecosystem. Other studies are [2], [3], [1] and [5]. But none of these has considered
the aspect of disease, drought and retaliatory killing as the threat to be controlled for the survival of
prey-predator system particularly wildebeest, zebra and lion in the Serengeti ecosystem. This study
intends to apply optimal control theory to maximize wildebeest, zebra and lion which the study regard
as keystone species of Serengeti ecosystem.

2. The Optimal Control Model Formulation

It is assumed that lion depends completely on wildebeest and zebra as the source of food where
wildebeest and zebra has unlimited sources of food. The dynamics therefore will follow the Holling
type II function response. In this case x(t), y(t) and z(t) represents the population of wildebeest, zebra
and lion respectively. In the absence of predator, droughts and disease, prey species are assumed to
grow logistically with carrying capacities k and l respectively. However the inter-specific competition
among wildebeest and zebra is exploitative. From the above assumptions we formulate the system of
model equation:

dx

dt
= rx(1− x

k
)− b12xy −

b13xz

1 + ax
− f1x− w1x

dy

dt
= sy(1− s

l
)− b21xy −

b23yz

1 + dy
− f2y − w2y

dz

dt
= −cz +

b31b13xz

1 + ax
+
b32b23yz

1 + dy
− ez − w3z

(1)

where x(0) ≥ 0, y(0) ≥ 0 and z(0) ≥ 0.
Then we introduce in the system (1) the time dependent control variables which are u1(t), u2(t) and
u3(t). Therefore the model become:
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dx

dt
= rx(1− x

k
)− b12xy −

b13xz

1 + ax
− (1− u1(t))f1x− (1− u3)(t)w1x

dy

dt
= sy(1− y

l
)− b21xy −

b23yz

1 + dy
− (1− u1(t))f2y − (1− u3(t))w2y

dz

dt
= −cz +

b31b13xz

1 + ax
+
b32b23yz

1 + dy
− (1− u2(t)ez)− (1− u3(t))w3z

(2)

where, u1(t), u2(t) and u3(t) are control variables, u1(t) is the construction of dams for drought, u2(t)
is education campaign for retaliatory killing and u3(t) is treatment for diseases. w1, w2 and w3 are the
disease induced death rates to wildebeest, zebra and lion respectively where as f1 and f2 are the death
rates of wildebeest and zebra respectively due to drought.

3. Analysis of Optimal Control

An objective function J is formulated and maximized subject to the number of affected species:

J = max

[
(A1x+A2y +A3z)−

∫ T

0
(B1

u21
2

+B2
u22
2

+B3
u23
2

)dt

]
(3)

where A1, A2 and A3 are positive constant weights for wildebeest, zebra and lion respectively. B1, B2

and B3 are positive constant weights balancing the cost elements attached to the control parameters u1,
u2 and u3. The weights used here are intended only for theoretical purpose to investigate the effect of
various control practices. Importantly the cost associated to any control scenario is presumed to be
non-linear and takes a quadratic form which is B1u21

2 refers to the cost of control efforts on construction
of dam to reduce the effects of drought, B2u22

2 refers to the cost of control efforts of education campaign
to reduce the effects of retaliatory killing, B3u3

2 is the cost of treatment for mitigating the effects of
diseases.
In the light of the objective function J(u1, u2, u3), the intention is to maximize J . Therefore it is required
to find numerically the optimal control u∗1, u∗2, u∗3 such that:

J(u∗1, u
∗
2, u
∗
3) = max

u∗1,u
∗
2,u

∗
3∈U

J(u1, u2, u3) (4)

for U = (u∗1, u
∗
2, u
∗
3) such that u∗1, u∗2, u∗3 are measurable with 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 and 0 ≤ u3 ≤ 1, for

t ∈ [0, T ].

3.1. Existence of Optimal control.

Theorem 1. An optimal control set (u∗1, u
∗
2, u
∗
3) ∈ U with corresponding non-negativity states (x, y, z) that

maximize the objective function J(u1(t), u2(t), u3(t)) exists.
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Proof : The positiveness and consistent boundness of the state variables alongside the controls on
[0, T ] suggests that the existence of a maximizing sequence J(un1 (t), un2 (t), un3 (t)) such that:

lim
n→∞

J(un1 (t), un2 (t), un3 (t)) = inf
(un1 (t),u

n
2 (t),u

n
3 (t))∈U

J(un1 (t), un2 (t), un3 (t)) (5)

The boundness of all the state and control parameters insinuates that all derivatives of the state variables
are bounded as well. Supposing the respective sequence of the state variables denoted by (x, y, z),
subsequently, all the state variable are Lipschitz continous with the same Lipschitz constant. This
means that, the sequence (x, y, z) is consistently equicontinous in [0, T ]. In accordance with the method
by [8], the state sequence has subsequence that converges steadly to (x, y, z) in [0, T ]. Also, it can be
taken that, the control sequence unn = (xn, yn, zn) has sequence that weakly converges in L2(0, T ). Let
(u∗1, u

∗
2, u
∗
3) ∈ U be in the form of uni → u∗i weakly in L2(0, T ) for i = 1, 2, 3, .... Implementing the lower

semi-continuity of norms in weak L2:

‖ u∗i ‖2 L2 ≤ lim
n→∞

inf ‖ uni (t) ‖2 L2, i = 1, 2, 3... (6)

This means that:

J(u∗1, u
∗
2, u
∗
3) ≥ lim

n→∞

∫ T

0
(A1x+A2y +A3z)−

∫ T

0

(
B1u

2
1

2
+
B2u

2
2

2
+
B3u

2
3

2

)
(7)

Therefore; the control set (u∗1, u
∗
2, u
∗
3) that maximize the objective function J(u1, u2, u3) exists.

3.2. Characterization of optimal control. In this section, we derive conditions required for optimal
control, characterizing optimal control using upper and lower bound technique and formulating
optimality system that characterize the optimal control. The asential requirement is that; the optimal
pair should satisfy the necessary conditions that come from Pontryagin Maximum Principle [8] and
which are also discussed in [4]. This principle converts state (2), objective function (3) and control (4)
into minimal value of Lagrangian of optimal problem. The Lagrangian of the optimal problem is given
by:

Γ = (A1x+A2y +A3z)−
(
B1u

2
1

2
+
B2u

2
2

2
+
B3u

2
3

2

)
(8)

In order to seek for maximum Lagrangian of optimal problem, we define the Hamilitonian H for the
control problem with respect to u1 and u2 as:

H = (A1x+A2y +A3z)−

(
B1u

2
1

2
+
B2u

2
2

2
+
B3u

2
3

2
+

3∑
i=1

λifi

)
(9)

where fi is the right hand side of the differential equation of ith state variable in system (2) and λi
for i = 1, 2, 3 is the set of adjoint functions. That means the Hamilitonian consists of integrand of
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objective functional and the inner product of right hand side of state equations and corresponding
adjoint variables λ1, λ2, λ3. The expanded expression form of Hamilitonian H in (9) is given by:

H = A1x(T ) +A2y(T ) +A3z(T )− (
B1u

2
1

2
+
B2u

2
2

2
+
B3u

2
3

2
) (10)

+ λ1

[
dx

dt
= rx(1− x

l
)− b12xy −

b13xz

1 + ax
− (1− u1(t))f1x− (1− u3)(t)w1x

]
+ λ2

[
dy

dt
= sy(1− y

l
)− b21xy −

b23yz

1 + dy
− (1− u1(t))f2y − (1− u3(t))w2y

]
+ λ3

[
dz

dt
= −cz +

b31b13xz

1 + ax
+
b32b23yz

1 + dy
− (1− u2(t)ez − (1− u3(t))w3z

]
Where λ1, λ2 and λ3 are adjoint co-state variables. Applying pontryagin maximum principle (cite) and
the existence results for the optimal control from (cite), the following preposition is obtained.

Theorem 2. For the optimal control u∗1, u∗2 and u∗3 that maximizes j(u1, u2, u3) over U , there exists adjoint

variables L1, L2, L3 satisfying:

−∂H
∂x

=
∂λ1
dt

= −A1 − λ1r +
2λ1rx

k
+ λ1b12y + λ2b21y +

λ1b13z

(1 + ax)2

+ λ1(1− u1)f1 + λ1(1− u2)w1 −
λ3b31b13z

(1 + ax)2

−∂H
∂y

=
∂λ2
dt

= −A2 − λ2s+
2λ2sy

l
+ λ1b12x+ b21λ2x+

λ2b23z

(1 + dy)2

+ λ2(1− u1)f2 + λ2(1− u2)w2 −
λ3b32b23z

(1 + ax)2

−∂H
∂z

=
∂λ3
dt

= −A3 +
λ1b13x

(1 + ax)2
+

λ2b23y

(1 + dy)2
− λ3c−

λ3b31b13x

(1 + ax)2

− λ3b32b23y

(1 + ax)2
− λ3(1− u3)e+ λ3(1− u2)w3

with transversality conditions λ1(T ) = A1, λ2(T ) = A2 and λ3(T ) = A3. The following characterization holds

on the interior of the control set:

u∗1 = min

{
1,max

(
0,
λ1f1x+ λ2f2y

B1

)}
u∗2 = min

{
1,max

(
0,
λ1w1x+ λ2w2y + λ3w3z

B2

)}
u∗3 = min

{
1,max

(
0,
λ3ez

B3

)}
where λ1, λ2, λ3 are solutions of the equation (10).

Proof : To prove this, the function (10) is differentiated partially w.r.t its state variables which gives
the adjoint system. With the Pontryagin’s Maximum Principle, we get the following adjoint system
evaluated at the optimal control pair corresponding to the state variables.
H = A1x+A2y +A3z −

B1u21
2 − B2u22

2 − B3u23
2 + λ1rx− λ1x2 − α1λ1xy − β1λ1(1−m)xz

1+λ1(1−m)x
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−λ1(1− u1(t))P1x− λ1(1− u3(t))w1x+ λ2sy − λ2s2 − α2λ2xy − β2λ2(1−m)yz
1+λ2(1−m)y

−λ2(1− u1(t))P2y − λ2(1− u3(t))w2y − λ3zc+ λ3µ1(1−m)xz
1+λ1(1−m)x + λ3µ2(1−m)yz

1+λ2(1−m)y

+(1− u2(t))λ3qz − (1− u3(t))w3λ3z

−∂H
∂x = ∂λ1

dt = −A1 + λ1r1 + 2λ1x+ α1λ1y + β1λ1(1−m)z
λ21(1−m)2

+(1− u1(t))λ1P1 + (1− u3(t))λ1w1 − µ1λ3(1−m)z
λ21(1−m)2

−∂H
∂y = ∂λ2

dt = −A2 − λ2s+ 2λ2s+ α2λ2x+ β2λ2(1−m)z
λ22(1−m)2

+(1− u1(t))λ2P2 + (1− u3(t))λ2w2 − µ2λ3(1−m)z
λ22(1−m)2

−∂H
∂z = ∂λ3

dt = −A3 + β1λ1(1−m)x
1+λ1(1−m)x + β2λ2(1−m)y

1+λ2(1−m)y + λ3c− µ1λ3(1−m)x
1+λ1(1−m)x

+ µ2L3(1−m)y
1+λ2(1−m)y − (1− u2(t))λ3q − (1− u3(t))λ3w3

Now to obtain the optimal control solution (ui, i = 1, 2, 3...) of our Lagrangian we differentiate partially
the Lagrangian L, with respect to u1, u2, u3 and set it to zero as follows;
∂H
∂u1

= −B1u1 + λ1f1x+ λ2f2y

∂H
∂u2

= −B2u2 + λ1w1x+ λ2w2y − λ3w3z

∂H
∂u3

= −B3u3 + λ3ez

Setting ∂λ
∂ui

= 0 for i = 1, 2, 3 and solving for the optimal control;
u∗1 = λ1f1x+λ2f2y

B1
, u∗2 = λ1w1x+λ2w2y+λ3w3z

B2
, u∗3 = λ3ez

B3

4. Numerical Simulation

In this section, we study numerically an optimal control of prey-predator system of Serengeti
ecosystem. By the virtue of the fact that, the Serengeti ecosystem is complex and extraordinary and
that a single control measure can not present all the threats, an investigation on the impacts of merging
a minimum of three control parameters over eight years period is done. Further more, estimation of the
objective functions real weight is extremely demanding and requires a bunch of information. In that
regard, the objective weights are chosen on theoretical basis as A1 = 60, A2 = 10, A3 = 90, B1 = 100,
B2 = 150, B3 = 80 just to grant the control parameters proposed in the paper and the initial state
variable are chosen as; x(0) = 40, y(0) = 30 and z(0) = 20. Other parameters are r = 2.09, s = 2.09,
k = 200, l = 100, b12 = 0.001, b21 = 0.002, b13 = 0.02, b23 = 0.03, c = 1, b31 = 1.5, a = 0.1, d = 0.2,
f1 = 0.15, f2 = 0.1, e = 0.05, w1 = 0.05, w2 = 0.05, w3 = 0.25. Next we investigate the of the following
optimal control strategies on the wildebeest, zebra and lion prey-predator population under threats.

4.1. Strategy A: Application of construction of dams to control drought. In this control scenario,
the construction of dams u1 is utilized to optimize the objective function J while treatment u2 and
education u3 are not practiced. Figure 1 indicates the significant difference in all populations with
optimal control strategy compared to prey and predator populations without control.



Asia Pac. J. Math. 2023 10:32 7 of 13

Figure 1. Simulation of the system (2) showing the effect of optimal application of
construction of dams

4.2. Strategy B: Treatment to Control Infections. Under this scheme, the application of treatment u2
is utilized to optimize the objective function J while construction of dams u1 and education u3 are not
implemented. Results in figure (2) shows a significant difference in the prey and predator populations
with optimal strategy compared to those without control. With this strategy, treatment u2 should full
be applied the entire period (10 years) as shown in the control profile in Figure 2(d).

Figure 2. Simulation of the system (2) showing the effect of optimal application of treatment
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4.3. Strategy C: Education to Control retaliatory killing. In this strategy, education, u3 is used to
optimize the objective function J while the set of application of treatment u2 and construction of dams
u1 are not taken into account. In figure (3), the results show a significant difference in the predator
population with optimal strategy compared to predator without control. With this strategy, education
u3 should full be applied the entire period (10 years) as shown by the control profile in Figure 3(d).

Figure 3. Simulation of the system (2) showing the effect of optimal application of education

4.4. Strategy D: Combination of contruction of dams and treatment. In this aspect, the application of
construction of dams u1 and treatment, u2 are utilized in optimization of the objective function whilst
education u3 is not taken into account. Figure 4 shows the significant difference between prey and
predator before and after control. With this strategy, construction of dams u1 should be full applied
throughout the entire period (10 years) while treatment u3 is at the peak for 6 years and then decline
to zero as shown by the control profile in Figure 5(d).
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Figure 4. Simulation of the system (2) showing the effect of optimal application of
construction of dams and treatment

4.5. Strategy E: Combination of Construction of dams and Education. The application of construction
of dams u1 and education u3 are implemented in optimization of the objective function whilst treatment
u2 is set to be zero. In figure 5, the results shows significant difference between prey and predator
population before and after control. With this strategy, construction of dams u1 and education u3
should be full applied throughout the entire period (10 years) as shown by the control profile in Figure
6(d).

Figure 5. Simulation of the system (2) showing the effect of optimal application of
construction of dams and education
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4.6. Strategy F: Combination of Treatment and Education. The application of treatment u2 and
education u3 are used in optimization of the objective function J while the construction of dams is set
to zero. In Figure 6, the results shows a significant difference in prey and predator populations before
and after control. With this strategy, treatment u2 and education u3 should be full applied throughout
the entire period (10 years) as shown by the control profile in Figure 6(d).

Figure 6. Simulation of the system (2) showing the effect of optimal application of
treatment and education

4.7. Strategy G: Combination of construction of dams, treatment and education. Here, the combina-
tion of all controls; construction of dams u1, treatment, u2 and education, u3 are utilized in optimization
of the objective function J . In Figure 7, the results show significant difference in prey and predator
populations before and after the control. With this practices, the contraction of dams u1 and education
u3 should be full applied throughout the entire period (10 years) while treatment u2 is at peak for 5
years and decrease to zero as shown by control profile in Figure 7(d).
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Figure 7. Simulation of the system (2) showing the effect of optimal application of
construction of dams, treatment and education

4.8. Comparison of Optimal control strategies. Figure 8 shows the comparison of various combina-
tions of the controls on wildebeest, zebra and lion populations. The combination of construction of
dams, treatment and education campaign seem to be the best combination in optimization of the objec-
tive function. However if the ecosystem management decide to use a single control, the construction of
dams is the best control in maximizing the objective function.

Figure 8. Comparison of optimal control strategies on wildebeest, zebra and lion populations



Asia Pac. J. Math. 2023 10:32 12 of 13

It is also observed from figure 8 that, the optimal solution of construction of dams is the same as the
optimal solution of the combination of construction of dams and treatment. Hence, for the purpose of
minimizing cost, the combination of construction of dams and treatment is not recommended in this
study.

5. Discussion and Conclusion

In this paper we presented a prey-predator model with optimal control and control variables was
introduced in the model where construction of dam was introduced to control drought, treatment was
introduced to control infections and education was introduced to control retaliatory killing in Serengeti
ecosystem. In investigating the use of optimal control, we use one control at a time, combination of two
at a time while setting others to zero to compare the effect of optimal strategies on elimination those
threats of the ecosystem. The use of all control were also considered. Numerical results suggests that,
the use of all control has the greatest impact in the control of the ecosystem. However, if the ecosystem
management decide to use a single control, the construction of dams is the best control in maximizing
the objective function.
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