

PROPERTIES OF NEW CLASSES OF ω - μ -SETS IN GTS

R. RAJALAKSHMI¹, C. CARPINTERO², N. RAJESH^{3,*}, E. ROSAS^{4,5}

¹Department of Mathematics, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamilnadu, India ²Corporación Universitaria del Caribe-CECAR, Sincelejo, Colombia ³Department of Mathematics, Rajah Serfoji Govt. College (Affiliated to Bharathidasan University), Thanjavur-613005, Tamilnadu, India ⁴Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, Barranquilla, Colombia ⁵Department of Mathematics, Universidad de Oriente, Cumana, Venezuela *Corresponding author: nrajesh_topology@yahoo.co.in

Received Sep. 14, 2023

ABSTRACT. The notions of ω - μ -closed sets and ω - μ -open sets in generalized topological space were introduced and studied by Al Ghour and Zareer. In this paper, we introduce new classes of ω - μ -open sets and continuous functions in topological spaces and study the characterizations of such ω - μ -open sets and continuous functions in detail. Finally we obtain some decomposition theorems.

2020 Mathematics Subject Classification. 54A05, 54C05, 54C08, 54C10.

Key words and phrases. ω - μ -open set; $\alpha(\omega, \mu)$ -open set; $\pi(\omega, \mu)$ set; $\beta(\omega, \mu)$ -open set; $t(\omega, \mu)$ -set; $\delta(\omega, \mu)$ -open set; semi*- ω - μ -closed set.

1. INTRODUCTION

In 2002, Császár [4] defined generalized topological spaces as follows: the pair (X, μ) is a generalized topological space if X is a nonempty set and μ is a collection of subsets of X such that $\emptyset \in \mu$ and μ is μ -closed under arbitrary unions. For a generalized topological space (X, μ) , the elements of μ are called μ -open sets, the complements of μ -open sets are called μ -closed sets. The notions of ω - μ -closed sets and ω - μ -open sets in generalized topological space were introduced and studied by Al Ghour and Zareer [1]. Several characterizations and properties of ω -closed sets were provided in [2,3]. In this paper, we introduce new classes of ω - μ -open sets and continuous functions in topological spaces and study the characterizations of such sets and continuous functions in detail. Finally we obtain some decomposition theorems.

DOI: 10.28924/APJM/10-34

2. Preliminaries

Definition 2.1. [1] Let *H* be a subset of a GT (X, μ) , a point *p* in *X* is called a condensation point of *H* if for each μ -open set *U* containing *p*, $U \cap H$ is uncountable.

Definition 2.2. [1] A subset H of a GT (X, μ) is called ω - μ -closed if it contains all its condensation points. The complement of an ω - μ -closed set is called ω - μ -open. It is well known that a subset W of a GT (X, μ) is ω - μ -open if and only if for each $x \in W$, there exists $U \in \mu$ such that $x \in U$ and U - W is countable. The family of all ω - μ -open sets, denoted by μ_{ω} , is a generalized topology on X, which is finer than μ . The interior and closure operator in (X, μ_{ω}) are denoted by i_{ω} and c_{ω} , respectively.

Lemma 2.3. [1] Let *H* be a subset of a GT (X, μ) . Then

- (1) *H* is ω - μ -closed in X if and only if $H = c_{\omega}(H)$.
- (2) $c_{\omega}(X \setminus H) = X \setminus i_{\omega}(H).$
- (3) $c_{\omega}(H)$ is ω - μ -closed in X.
- (4) $x \in c_{\omega}(H)$ if and only if $H \cap G \neq \emptyset$ for each ω - μ -open set G containing x.
- (5) $c_{\omega}(H) \subset c(H)$.
- (6) $i(H) \subset i_{\omega}(H)$.

Remark 2.4. For a subset of a GT (X, μ) , the following property holds: Every μ -closed set is ω - μ -closed but not conversely.

3. Some Subsets in GT

Using the notions of interior and closure operator in (X, μ) and the interior and closure operator in (X, μ_{ω}) , we introduce the $\alpha(\omega, \mu)$ -open set, $\pi(\omega, \mu)$ -open set, $\beta(\omega, \mu)$ -open set, $\sigma(\omega, \mu)$ -open set, $\delta(\omega, \mu)$ -open set, $\beta(\omega, \mu)$ -open set, $\sigma(\omega^*, \mu)$ -open set, ω^* -t-set, semi- ω -regular set, $r(\omega, \mu)$ -closed set, and find some of its properties and some relation between them.

Definition 3.1. A subset H of a GT (X, μ) is said to be

- (1) $\alpha(\omega, \mu)$ -open if $H \subset i_{\omega}(c(i_{\omega}(H)))$;
- (2) $\pi(\omega, \mu)$ -open if $H \subset i_{\omega}(c(H))$;
- (3) $\beta(\omega, \mu)$ -open if $H \subset c(i_{\omega}(c(H)))$.

Definition 3.2. A subset H of a GT (X, μ) is called an $t(\omega, \mu)$ -set if $i(H) = i_{\omega}(c(H))$.

Definition 3.3. A GT (X, μ) is called μ -submaximal if every μ -dense subset is μ -open.

Definition 3.4. A subset H of a GT (X, μ) is said to be

(1) $\sigma(\omega, \mu)$ -open if $H \subset c(i_{\omega}(H))$.

(2) $\sigma(\omega, \mu)$ -closed if $i(c_{\omega}(H)) \subset H$.

The complement of a $\sigma(\omega, \mu)$ *-open set is called* $\sigma(\omega, \mu)$ *-closed.*

Example 3.5. Let $X = \mathbb{R}$ and $\mu = \{\emptyset, all possible unions of members of <math>\mathcal{B}\}$, where $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}\}$. Let $H = \mathbb{R} \setminus \mathbb{Q}$. Observe that $i_{\omega}(H) = H$, $c_{\omega}(H) = \mathbb{R}$, $i(H) = \emptyset$ and $c(H) = \mathbb{R}$. In consequence:

- (1) *H* is $\alpha(\omega, \mu)$ -open set, because $H \subset i_{\omega}(c(i_{\omega}(H))) = \mathbb{R}$.
- (2) $W = \mathbb{Q}$ is $\pi(\omega, \mu)$ -open set, because $W \subset i_{\omega}(c(W)) = i_{\omega}(\mathbb{R}) = \mathbb{R}$.
- (3) *H* is $\beta(\omega, \mu)$ -open set, because $H \subset c(i_{\omega}(\mathbb{R})) = c(\mathbb{R}) = \mathbb{R}$.
- (4) *H* is $\sigma(\omega, \mu)$ -open set, because $H \subset c(i_{\omega}(H)) = c(H) = c(i_{\ell}H) = \mathbb{R}$.
- (5) $W = \mathbb{Q}$ is $\sigma(\omega, \mu)$ -closed set, because $\emptyset = i(W) = i(c_{\omega}(W)) \subset W$.

Theorem 3.6. Let *H* be a subset of a GT (X, μ) . Then *H* is $\alpha(\omega, \mu)$ -open if and only if it is $\sigma(\omega, \mu)$ -open and $\pi(\omega, \mu)$ -open.

Theorem 3.7. For a subset H of a submaximal $GT(X, \mu)$, the following properties are equivalent.

- (1) *H* is $\sigma(\omega, \mu)$ -open,
- (2) *H* is $\beta(\omega, \mu)$ -open.

Definition 3.8. A subset H of a GT (X, μ) is said to be

- (1) $\delta(\omega,\mu)$ -open if $i_{\omega}(c(H)) \subset c(i_{\omega}(H))$.
- (2) $\delta(\omega, \mu)$ -closed if $i(c_{\omega}(H)) \subset c_{\omega}(i(H))$.

The complement of a $\delta(\omega, \mu)$ *-open set is called* $\delta(\omega, \mu)$ *-closed.*

Definition 3.9. A subset *H* of a GT (X, μ) is said to be $\beta(\omega, \mu)$ -closed if $i(c_{\omega}(i(H))) \subset H$. The complement of a $\beta(\omega, \mu)$ -closed set is called $\beta(\omega, \mu)$ -open.

Theorem 3.10. For a subset H of a GT (X, μ) , the following properties are equivalent:

- (1) *H* is $\sigma(\omega, \mu)$ -closed.
- (2) *H* is $\beta(\omega, \mu)$ -closed and $\delta(\omega, \mu)$ -closed.

Theorem 3.11. A subset of X is $\alpha(\omega, \mu)$ -open if and only if it is both $\delta(\omega, \mu)$ -open and $\pi(\omega, \mu)$.

Definition 3.12. A subset H of a GT (X, μ) is said to be

- (1) $\sigma(\omega^{\star}, \mu)$ -open if $H \subset c_{\omega}(i(H))$.
- (2) $\sigma(\omega^{\star}, \mu)$ -closed if $i_{\omega}(c(H)) \subset H$.

The complement of a $\sigma(\omega^*, \mu)$ *-open set is called* $\sigma(\omega^*, \mu)$ *-closed.*

Example 3.13. According with Example 3.5,

(1) $W = \mathbb{Q}$ is $\beta(\omega, \mu)$ -closed set, because $\emptyset = i((W) = i(c_{\omega}(W)) \subset W$.

(2) $H = \mathbb{R} \setminus \mathbb{Q}$ is not a $\sigma(\omega^*, \mu)$ -open set.

Definition 3.14. A subset H of a GT (X, μ) is said to be ω^* -t-set if $i_{\omega}(c(H)) = i_{\omega}(H)$.

Theorem 3.15. A subset H of a GT (X, μ) is $\sigma(\omega^*, \mu)$ -closed if and only if H is a ω^* -t-set.

Definition 3.16. A subset *H* of a GT (X, μ) is said to be semi- ω -regular if *H* is $\sigma(\omega, \mu)$ -open and a ω^* -t-set.

Theorem 3.17. A subset H of a GT (X, μ) is semi- ω -regular if and only if H is both $\beta(\omega, \mu)$ -open and $\sigma(\omega^*, \mu)$ -closed.

Definition 3.18. A subset H of a GT (X, μ) is called $r(\omega, \mu)$ -closed if $H = c(i_{\omega}(H))$.

Example 3.19. Let $X = \mathbb{R}$ and $\mu = \{\emptyset, all \text{ possible unions of members of } \mathcal{B}\}$, where $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}\}$. Let $H = (0, 1) \cap \mathbb{Q}$. Then H is not $\sigma(\omega, \mu)$ -open, since $c(i_{\omega}(H)) = c(\emptyset) = \emptyset$.

Theorem 3.20. Let H be a subset of a GT (X, μ) . Then the following properties are equivalent

- (1) *H* is $r(\omega, \mu)$ -closed.
- (2) *H* is $\sigma(\omega, \mu)$ -open and μ -closed.
- (3) *H* is $\beta(\omega, \mu)$ -open and μ -closed.

Proof. (1) \Rightarrow (2): If *H* is $r(\omega, \mu)$ -closed, then $H = c(i_{\omega}(H))$ and $c(H) = c(i_{\omega}(H))$. Since $H \subset c(i_{\omega}(H))$, *H* is $\sigma(\omega, \mu)$ -open. Also H = c(H) and so *H* is μ -closed.

(2) \Rightarrow (3): It follows from the fact that every $\sigma(\omega, \mu)$ -open set is a $\beta(\omega, \mu)$ -open set.

(3) \Rightarrow (1): Suppose *H* is $\beta(\omega, \mu)$ -open and μ -closed. Then $H \subset c(i_{\omega}(c(H)))$ and H = c(H). Now $c(i_{\omega}(H)) \subset c(H) = H$. Also $H \subset c(i_{\omega}(H))$. Therefore $H = c(i_{\omega}(H))$ which implies that *H* is $r(\omega, \mu)$ -closed.

Example 3.21. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then $\{a\}$ is $\sigma(\omega, \mu)$ -open.

Example 3.22. Let $X = \mathbb{R}$ and $\mu = \{\emptyset, all possible unions of members of <math>\mathcal{B}\}$, where $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}\}$. Let $H = (0, 1) \cap \mathbb{Q}$. Then H is not $\sigma(\omega, \mu)$ -open, since $c(i_{\omega}(H)) = c(\emptyset) = \emptyset$.

Proposition 3.23. In a GT (X, μ) , every μ -semiopen subset is $\sigma(\omega, \mu)$ -open.

Proof. Let *H* be semi-open in (X, μ) . Then $H \subset c(i(H)) \subset c(i_{\omega}(H))$. This proves that *H* is $\sigma(\omega, \mu)$ -open.

Example 3.24. Consider (X, μ) as in Example 3.22. Let $H = \mathbb{R} \setminus \mathbb{Q}$ is $\sigma(\omega, \mu)$ -open for $c(i_{\omega}(H)) = c(H) = \mathbb{R}$ and $H \subset c(i_{\omega}(H))$. But H is not μ -semiopen.

Theorem 3.25. In a μ -antilocally countable space, an ω - μ -closed and a $\sigma(\omega, \mu)$ -open subset is μ -semiopen.

Proof. Let (X, μ) be a μ -antilocally countable space and H an ω - μ -closed and a $\sigma(\omega, \mu)$ -open subset of X. Since H is $\sigma(\omega, \mu)$ -open, $H \subset c(i_{\omega}(H))$. Since (X, μ) is μ -antilocally countable and H is ω - μ -closed, $i_{\omega}(H) = i(H)$. Hence $H \subset c(i_{\omega}(H)) = c(i(H))$ and thus H is μ -semiopen.

Definition 3.26. A subset H of a GT (X, μ) is called $b(\omega, \mu)$ -open if $H \subset i_{\omega}(c(H)) \cup c(i_{\omega}(H))$.

Theorem 3.27. For a GT (X, μ) , the following properties hold:

- (1) Every ω - μ -open set is $\sigma(\omega, \mu)$ -open.
- (2) Every $\alpha(\omega, \mu)$ -open set is $\sigma(\omega, \mu)$ -open.
- (3) Every $\sigma(\omega, \mu)$ -open set is $\beta(\omega, \mu)$ -open.
- (4) Every $\sigma(\omega, \mu)$ -open set is $b(\omega, \mu)$ -open.

Proof. (1). If *H* is an ω - μ -open set, then $H = i_{\omega}(H) \subset c(i_{\omega}(H))$. Therefore *H* is $\sigma(\omega, \mu)$ -open. (2). If *H* is an $\alpha(\omega, \mu)$ -open set, then $H \subset i_{\omega}(c(i_{\omega}(H))) \subset c(i_{\omega}(H))$. Therefore *H* is $\sigma(\omega, \mu)$ -open. (3). If *H* is an $\sigma(\omega, \mu)$ -open set, then $H \subset c(i_{\omega}(H)) \subset c(i_{\omega}(c(H)))$. Therefore *H* is $\beta(\omega, \mu)$ -open. (4). If *H* is an $\sigma(\omega, \mu)$ -open set, then $H \subset c(i_{\omega}(H)) \subset i_{\omega}(c(H)) \cup c(i_{\omega}(H))$. Therefore *H* is $b(\omega, \mu)$ -open.

The following Example support that the separate converses of the above Theorem are not true in general.

Example 3.28. Consider (X, μ) as in Example 3.22.

- (1) Let H = (0, 1]. Then H is $\sigma(\omega, \mu)$ -open set but not ω - μ -open, since $H = (0, 1] \neq (0, 1) = i_{\omega}(H)$.
- (2) Let H = (0, 1]. Then H is $\sigma(\omega, \mu)$ -open set but not $\alpha(\omega, \mu)$ -open, since $i_{\omega}(c(i_{\omega}(H))) = i_{\omega}(c(0, 1)) = i_{\omega}(c(0, 1)) = i_{\omega}(c(0, 1)) = (0, 1)$.
- (3) Let $H = [0,1] \cap \mathbb{Q}$. Then H is $\beta(\omega,\mu)$ -open set but not $\sigma(\omega,\mu)$ -open, since $c(i_{\omega}(H)) = c(\emptyset) = \emptyset$.
- (4) Let $H = \mathbb{Q}$. Then H is $b(\omega, \mu)$ -open set but not $\sigma(\omega, \mu)$ -open, since $c(i_{\omega}(H)) = c(\emptyset) = \emptyset$.

Theorem 3.29. A subset H of a GT (X, μ) is $\sigma(\alpha, \mu)$ -open if and only if it is $\sigma(\omega, \mu)$ -open and $\pi(\omega, \mu)$ -open.

Proof. Let H be an $\alpha(\omega, \mu)$ -open. Then $H \subset i_{\omega}(c(i_{\omega}(H)))$. It implies that $H \subset i_{\omega}(c(i_{\omega}(H))) \subset c(i_{\omega}(H))$ and $H \subset i_{\omega}(c(i_{\omega}(H))) \subset i_{\omega}(c(H))$. Thus H is $\sigma(\omega, \mu)$ -open and $\pi(\omega, \mu)$ -open. Conversely, let H be $\sigma(\omega, \mu)$ -open and $\pi(\omega, \mu)$ -open. Then we have $H \subset c(i_{\omega}(H))$ and $H \subset i_{\omega}(c(H))$. Hence $H \subset i_{\omega}(c(H)) \subset i_{\omega}(c(i_{\omega}(H)))$ which implies that H is $\alpha(\omega, \mu)$ -open. **Remark 3.30.** The concepts of $\sigma(\omega, \mu)$ -openness and $\pi(\omega, \mu)$ -openness are independent. Consider (X, μ) as in Example 3.22. Then the set H = (0, 1] is $\sigma(\omega, \mu)$ -open but not $\pi(\omega, \mu)$ -open, since $i_{\omega}(c(H)) = i_{\omega}([0, 1]) = (0, 1)$. Let $H = \mathbb{Q}$. Then H is $\pi(\omega, \mu)$ -open but not $\sigma(\omega, \mu)$ -open, since $c(i_{\omega}(H)) = c(\emptyset) = \emptyset$.

Proposition 3.31. *The intersection of a* $\sigma(\omega, \mu)$ *-open set and an open set is* $\sigma(\omega, \mu)$ *-open.*

Proof. Let *H* be a $\sigma(\omega, \mu)$ -open and *U* a μ -open set in *X*. Then $H \subset c(i_{\omega}(H))$ and i(U) = U. Then we have $U \cap H \subset U \cap c(i_{\omega}(H)) \subset c(U \cap i_{\omega}(H)) = c(i(U) \cap i_{\omega}(H)) \subset c(i_{\omega}(U) \cap i_{\omega}(H)) = c(i_{\omega}(U \cap H))$. Therefore $U \cap H$ is $\sigma(\omega, \mu)$ -open.

Remark 3.32. The intersection of two $\sigma(\omega, \mu)$ -open sets need not be $\sigma(\omega, \mu)$ -open. Consider (X, μ) as in *Example 3.22.* Let A = (0, 1] and B = [1, 2), then A and B are $\sigma(\omega, \mu)$ -open, but $A \cap B = \{1\}$ which is not $\sigma(\omega, \mu)$ -open, since $c(i_{\omega}(A \cap B)) = c(\emptyset) = \emptyset$.

Theorem 3.33. Let *H* be a subset of a GT (X, μ) . If *H* is both μ -closed and $\beta(\omega, \mu)$ -open, then *H* is $\sigma(\omega, \mu)$ -open.

Proof. Since *H* is a $\beta(\omega, \mu)$ -open set, $H \subset c(i_{\omega}(c(H))) = c(i_{\omega}(H))$, *H* being μ -closed. Therefore *H* is $\sigma(\omega, \mu)$ -open.

Theorem 3.34. Let *H* be a subset of a space (X, μ) . If *H* is both $\beta(\omega, \mu)$ -open and $t(\omega, \mu)$ -set, then *H* is $\sigma(\omega, \mu)$ -open.

Proof. Since *H* is a $t(\omega, \mu)$ -set, $i(H) = i_{\omega}(c(H))$. Since *H* is $\beta(\omega, \mu)$ -open also, $H \subset c(i_{\omega}(c(H))) \subset c(i(H)) \subset c(i_{\omega}(H))$. Therefore *H* is $\sigma(\omega, \mu)$ -open.

Theorem 3.35. Let *H* be a subset of a space (X, μ) . If *H* is both $b(\omega, \mu)$ -open and $t(\omega, \mu)$ -set, then *H* is $\sigma(\omega, \mu)$ -open.

Proof. Since H is $t(\omega, \mu)$ -set, $i_{\omega}(c(H)) = i(H) \subset i_{\omega}(H)$. Since H is $b(\omega, \mu)$ -open, $H \subset i_{\omega}(c(H)) \cup c(i_{\omega}(H)) \subset i_{\omega}(H) \cup c(i_{\omega}(H)) = c(i_{\omega}(H))$. Therefore H is $\sigma(\omega, \mu)$ -open.

Proposition 3.36. A subset H of a GT (X, μ) is $\sigma(\omega, \mu)$ -open if, and only if $c(H) = c(i_{\omega}(H))$.

Proof. Let H be $\sigma(\omega, \mu)$ -open. Then $H \subset c(i_{\omega}(H))$ and $c(H) \subset c(i_{\omega}(H))$. But always $c(i_{\omega}(H)) \subset c(H)$. Thus $c(H) = c(i_{\omega}(H))$. Conversely, let the condition hold. We have $H \subset c(H) = c(i_{\omega}(H))$, by the given condition. Thus $H \subset c(i_{\omega}(H))$ and hence H is $\sigma(\omega, \mu)$ -open.

Theorem 3.37. For a subset *H* of a μ -submaximal space (X, μ) , the following properties are equivalent.

- (1) *H* is $\sigma(\omega, \mu)$ -open,
- (2) *H* is $\beta(\omega, \mu)$ -open.

Proof. (1) \Rightarrow (2): It follows from the fact that every $\sigma(\omega, \mu)$ -open set is $\beta(\omega, \mu)$ -open.

(2) \Rightarrow (1): Let *H* be a $\beta(\omega, \mu)$ -open set in *X*. Then $H \subset c(i_{\omega}(c(H)))$ and $c(H) \subset c(i_{\omega}(c(H)))$. Thus, c(H) is $\sigma(\omega, \mu)$ -open. Put A = c(H) and $K = H \cup (X \setminus c(H))$. We have $H = c(H) \cap K$ and c(K) = X. This implies that $H = A \cap K$, where *A* is $\sigma(\omega, \mu)$ -open and *K* is μ -dense. Since *X* is μ -submaximal, then *K* is μ -open. Then $H = A \cap K$ is $\sigma(\omega, \mu)$ -open.

Theorem 3.38. A subset H of a GT (X, μ) is $\sigma(\omega, \mu)$ -open if and only if there exists an ω - μ -open set U such that $U \subset H \subset c(U)$.

Proof. Let H be $\sigma(\omega, \mu)$ -open. Then $H \subset c(i_{\omega}(H))$. Take $i_{\omega}(H) = U$. Then we have $U \subset H \subset c(U)$. Conversely, let $U \subset H \subset c(U)$ for some $U \in \mu_{\omega}$. Since $U \subset H$, $U \subset i_{\omega}(H)$ and hence $c(U) \subset c(i_{\omega}(H))$. Thus $H \subset c(i_{\omega}(H))$ and H is $\sigma(\omega, \mu)$ -open.

Corollary 3.39. If A is a $\sigma(\omega, \mu)$ -open set in a GT (X, μ) and $A \subset B \subset c(A)$, then B is $\sigma(\omega, \mu)$ -open in X.

Proof. Since A is $\sigma(\omega, \mu)$ -open, $A \subset c(i_{\omega}(A)) \subset c(i_{\omega}(B))$ for $A \subset B$. So $c(A) \subset c(i_{\omega}(B))$. Since $B \subset c(A)$, $B \subset c(i_{\omega}(B))$. Thus B is $\sigma(\omega, \mu)$ -open.

- **Example 3.40.** (1) Consider (X, μ) as in Example 3.22. Let $H = \mathbb{Q}$. Then H is not $\delta(\omega, \mu)$ -open, since $i_{\omega}(c(\mathbb{Q})) = i_{\omega}(\mathbb{R}) = \mathbb{R}$ and $c(i_{\omega}(\mathbb{Q})) = c(\emptyset) = \emptyset$.
 - (2) Let $X = \mathbb{R}$ and $\mu = \{\emptyset, all \text{ possible unions of members of } \mathcal{B}\}$, where $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}\}$. Let H = (0, 1]. Then H is $\delta(\omega, \mu)$ -open, since $i_{\omega}(c((0, 1])) = i_{\omega}([0, 1]) = (0, 1)$ and $c(i_{\omega}(H)) = c(0, 1) = [0, 1]$.

Proposition 3.41. *For a subset of a GT* (X, μ) *, the following properties hold:*

- (1) Every $\alpha(\omega, \mu)$ -open set is $\delta(\omega, \mu)$ -open.
- (2) Every $t(\omega, \mu)$ -set is $\delta(\omega, \mu)$ -open.

Proof. (1). Since *H* is $\alpha(\omega, \mu)$ -open, $H \subset i_{\omega}(c(i_{\omega}(H))) \subset c(i_{\omega}(H))$. Then $c(H) \subset c(i_{\omega}(H))$ and $i_{\omega}(c(H)) \subset c(H) \subset c(i_{\omega}(H))$. Hence *H* is $\delta(\omega, \mu)$ -open.

(2). Since *H* is an $t(\omega, \mu)$ -set, $i_{\omega}(c(H)) = i(H) \subset H$. Then $i_{\omega}(c(H)) \subset i_{\omega}(H) \subset c(i_{\omega}(H))$. Therefore *H* is $\delta(\omega, \mu)$ -open.

Example 3.42. Consider (X, μ) as in Example 3.22.

- (1) Let H = (0, 1]. Then H is $\delta(\omega, \mu)$ -open but not $\alpha(\omega, \mu)$ -open, since $i_{\omega}(c(H)) = (0, 1)$ and $c(i_{\omega}(H)) = [0, 1]$.
- (2) Let $H = \mathbb{Q}$. Then H is $\delta(\omega, \mu)$ -open but not $t(\omega, \mu)$ -set, since $i(\mathbb{Q}) = \emptyset$, $i_{\omega}(c(\mathbb{Q})) = \mathbb{R}$ and $c(i_{\omega}(\mathbb{Q})) = c(\mathbb{Q}) = \mathbb{R}$.

Proposition 3.43. Let H be a subset of a GT (X, μ) . Then H is $\beta(\omega, \mu)$ -closed if and only if $i(c_{\omega}(i(H))) = i(H)$.

Proof. Since *H* is $\beta(\omega, \mu)$ -closed set, $i(c_{\omega}(i(H))) \subset H$ and then we obtain $i(c_{\omega}(i(H))) \subset i(H)$. But $i(H) \subset i(c_{\omega}(i(H)))$. Thus we have $i(H) = i(c_{\omega}(i(H)))$. Conversely, let the condition hold. We have $i(c_{\omega}(i(H))) = i(H) \subset H$. Therefore *H* is $\beta(\omega, \mu)$ -closed.

Theorem 3.44. For a subset *H* of a GT (X, μ) , the following properties are equivalent:

- (1) *H* is $\sigma(\omega, \mu)$ -closed.
- (2) *H* is $\beta(\omega, \mu)$ -closed and $\delta(\omega, \mu)$ -closed.

Proof. (1) \Rightarrow (2): Let H be $\sigma(\omega, \mu)$ -closed. Then H is $\beta(\omega, \mu)$ -closed. Since H is $\sigma(\omega, \mu)$ -closed, $i(c_{\omega}(H)) \subset H$ and $i(c_{\omega}(H)) \subset i(H)$. Then $c_{\omega}(i(c_{\omega}(H))) \subset c_{\omega}(i(H))$. Thus $i(c_{\omega}(H)) \subset c_{\omega}(i(c_{\omega}(H))) \subset c_{\omega}(i(H))$ and so H is $\delta(\omega, \mu)$ -closed.

(2) \Rightarrow (1): Since *H* is $\delta(\omega, \mu)$ -closed, $i(c_{\omega}(H)) \subset c_{\omega}(i(H))$ and $i(c_{\omega}(H)) \subset i(c_{\omega}(i(H)))$. Since *H* is $\beta(\omega, \mu)$ -closed, $i(c_{\omega}(i(H))) \subset H$. Then $i(c_{\omega}(H)) \subset H$ and so *H* is $\sigma(\omega, \mu)$ -closed.

Remark 3.45. The concepts of $\beta(\omega, \mu)$ -closedness and $\delta(\omega, \mu)$ -closedness are independent.

Example 3.46. Let $X = \mathbb{R}$ and $\mu = \{\emptyset, X, \mathbb{Q}\}$.

(1) Let $H = \mathbb{Q}$. Then H is $\delta(\omega, \mu)$ -closed but not $\beta(\omega, \mu)$ -closed, since \mathbb{Q} is not $\beta(\omega, \mu)$ -open.

(2) Let $X = \mathbb{R}$ and $\mu = \{\emptyset, all possible unions of members of \mathcal{B}\}$, where $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}\}$. Let $H = \mathbb{Q}$. Then H is $\beta(\omega, \mu)$ -closed but not $\delta(\omega, \mu)$ -closed, since \mathbb{Q} is not $\delta(\omega, \mu)$ -open.

Theorem 3.47. A subset H of X is $\alpha(\omega, \mu)$ -open if and only if it is both $\delta(\omega, \mu)$ -open and $\pi(\omega, \mu)$ -open.

Proof. Let *H* be an $\alpha(\omega, \mu)$ -open set. Then $H \subset i_{\omega}(c(i_{\omega}(H)))$. It implies that $c(H) \subset c(i_{\omega}(H))$ and $i_{\omega}(c(H)) \subset i_{\omega}(c(i_{\omega}(H))) \subset c(i_{\omega}(H))$. Hence *H* is a $\delta(\omega, \mu)$ -open set. On the other hand, since *H* is an $\alpha(\omega, \mu)$ -open set, *H* is a $\pi(\omega, \mu)$ -open set. Conversely, let *H* be both $\delta(\omega, \mu)$ -open and $\pi(\omega, \mu)$ -open. Since *H* is $\delta(\omega, \mu)$ -open, $i_{\omega}(c(H)) \subset c(i_{\omega}(H))$ and hence $i_{\omega}(c(H)) \subset i_{\omega}(c(i_{\omega}(H)))$. Since *H* is $\pi(\omega, \mu)$ -open, $H \subset i_{\omega}(c(H))$. Hence $H \subset i_{\omega}(c(i_{\omega}(H)))$ which proves that *H* is an $\alpha(\omega, \mu)$ -open set.

Remark 3.48. The concepts of $\delta(\omega, \mu)$ -openness and $\pi(\omega, \mu)$ -openness are independent. Consider (X, μ) as in *Example 3.22. Clearly,* H = (0, 1] *is* $\delta(\omega, \mu)$ -open but not $\pi(\omega, \mu)$ -open and $H = \mathbb{Q}$ *is* $\pi(\omega, \mu)$ -open but not $\delta(\omega, \mu)$ -open.

Proposition 3.49. Let A and B be subsets of a GT (X, μ) . If $A \subset B \subset c(A)$ and A is $\delta(\omega, \mu)$ -open in X, then B is $\delta(\omega, \mu)$ -open in X.

Proof. Suppose that $A \subset B \subset c(A)$ and A is $\delta(\omega, \mu)$ -open in X. Then $i_{\omega}(c(A)) \subset c(i_{\omega}(A))$. Since $A \subset B$, $c(i_{\omega}(A)) \subset c(i_{\omega}(B))$ and $i_{\omega}(c(A)) \subset c(i_{\omega}(B))$. Since $B \subset c(A)$, we have $c(B) \subset c(c(A)) = c(A)$ and $i_{\omega}(c(B)) \subset i_{\omega}(c(A))$. Hence $i_{\omega}(c(B)) \subset c(i_{\omega}(B))$. This shows that B is a $\delta(\omega, \mu)$ -open set. \Box

Corollary 3.50. Let (X, μ) be a GT. If $A \subset X$ is $\delta(\omega, \mu)$ -open and dense in (X, μ) , then every subset of X containing A is $\delta(\omega, \mu)$ -open.

Proof. Clear.

Definition 3.51. A subset H of a GT (X, μ) is said to be

- (1) $\sigma(\omega^*, \mu)$ -open if $H \subset c_{\omega}(i(H))$.
- (2) $\sigma(\omega^{\star}, \mu)$ -closed if $i_{\omega}(c(H)) \subset H$.

Example 3.52. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, X, \{a\}, \{a, b\}\}$. (1) Let $H = \{a\}$. Then H is $\sigma(\omega^*, \mu)$ -open, since $i(H) = \{a\}$ and $c_{\omega}(i(H)) = \{a\}$. (2) Let $H = \{c\}$. Then H is not $\sigma(\omega^*, \mu)$ -open, since $i(H) = \emptyset$ and $c_{\omega}(i(H)) = \emptyset$.

Proposition 3.53. *For a subset of a* $GT(X, \mu)$ *, every* $\sigma(\omega^*, \mu)$ *-open set is* $\sigma(\omega, \mu)$ *-open.*

Proof. If *H* is $\sigma(\omega^*, \mu)$ -open set, then $H \subset c_{\omega}(i(H)) \subset c(i_{\omega}(H))$. Therefore *H* is $\sigma(\omega, \mu)$ -open.

Example 3.54. Consider (X, μ) as in Example 3.22. Let $H = \mathbb{Q}$. Then H is $\sigma(\omega, \mu)$ -open but not $\sigma(\omega, \mu)$ -open, since $c(i_{\omega}(H)) = c(\mathbb{Q}) = \mathbb{R}$ and $c_{\omega}(i(H)) = c_{\omega}(\emptyset) = \emptyset$.

Proposition 3.55. A subset H of a GT (X, μ) is $\sigma(\omega^*, \mu)$ -open if and only if $c_{\omega}(H) = c_{\omega}(i(H))$.

Proof. If H is $\sigma(\omega^*, \mu)$ -open set, then $H \subset c_{\omega}(i(H))$ and $c_{\omega}(H) \subset c_{\omega}(i(H))$. But $c_{\omega}(i(H)) \subset c_{\omega}(H)$. Hence $c_{\omega}(H) = c_{\omega}(i(H))$. Conversely, let the condition hold. We have $H \subset c_{\omega}(H)$ and $c_{\omega}(H) = c_{\omega}(i(H))$. Therefore H is $\sigma(\omega^*, \mu)$ -open.

Definition 3.56. A subset H of a GT (X, μ) is said to be $t(\omega^*, \mu)$ -set if $i_{\omega}(c(H)) = i_{\omega}(H)$.

Example 3.57. Consider (X, μ) as in Example 3.22. Then (0, 1] is a $t(\omega^*, \mu)$ -set and \mathbb{Q} is not a $t(\omega^*, \mu)$ -set.

Proposition 3.58. In a GT (X, μ) , every μ -closed set is a $t(\omega^*, \mu)$ -set.

Proof. Let *H* be a μ -closed set. Then H = c(H) and we have $i_{\omega}(c(H)) = i_{\omega}(H)$ which proves that *H* is a $t(\omega^*, \mu)$ -set.

Example 3.59. Consider (X, μ) as in Example 3.22. Then (0, 1] is $t(\omega^*, \mu)$ -set but not μ -closed.

Proposition 3.60. In a GT (X, μ) , every $t(\omega, \mu)$ -set is a $t(\omega^*, \mu)$ -set.

Proof. If *H* is a $t(\omega, \mu)$ -set, then $i_{\omega}(c(H)) = i(H) \subset i_{\omega}(H) \subset i_{\omega}(c(H))$. Thus we have $i_{\omega}(c(H)) = i_{\omega}(H)$ and hence *H* is a $t(\omega^{*}, \mu)$ -set.

Example 3.61. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then $H = \{c\}$ is a $t(\omega^*, \mu)$ -set but not a $t(\omega, \mu)$ -set. Since $i_{\omega}(H) = H$, $i(H) = \emptyset$ and $i_{\omega}(c(H)) = i_{\omega}(H) = H$, we have $i_{\omega}(c(H)) = i_{\omega}(H)$ and $i_{\omega}(c(H)) \neq i(H)$. This proves that H is a $t(\omega^*, \mu)$ -set but not a $t(\omega, \mu)$ -set.

Theorem 3.62. A subset H of a GT (X, μ) is $\sigma(\omega^*, \mu)$ -closed if and only if H is a $t(\omega^*, \mu)$ -set.

Proof. Let *H* be a $\sigma(\omega^*, \mu)$ -closed set in *X*. Then $X \setminus H$ is $\sigma(\omega^*, \mu)$ -open. Then we have $c_{\omega}(X \setminus H) = c_{\omega}(i(X \setminus H))$. It follows that $X \setminus i_{\omega}(H) = c_{\omega}(X \setminus c(H)) = X \setminus i_{\omega}(c(H))$. Thus, $i_{\omega}(c(H)) = i_{\omega}(H)$ and hence *H* is a $t(\omega^*, \mu)$ -set in *X*. Conversely, let *H* be a $t(\omega^*, \mu)$ -set. Then $i_{\omega}(c(H)) = i_{\omega}(H) \subset H$. Therefore *H* is $\sigma(\omega^*, \mu)$ -closed.

Proposition 3.63. If A and B are $t(\omega^*, \mu)$ -sets of a GT (X, μ) , then $A \cap B$ is a $t(\omega^*, \mu)$ -set.

Proof. Let *A* and *B* be $t(\omega^*, \mu)$ -sets. Then $i_{\omega}(A \cap B) \subset i_{\omega}(c(A \cap B)) \subset i_{\omega}(c(A) \cap c(B)) = i_{\omega}(c(A)) \cap i_{\omega}(c(B)) = i_{\omega}(A \cap B)$. Then $i_{\omega}(A \cap B) = i_{\omega}(c(A \cap B))$ and hence $A \cap B$ is an $t(\omega^*, \mu)$ -set.

Definition 3.64. A subset *H* of a GT (X, μ) is said to be $\sigma(\omega, \mu)$ -regular if *H* is $\sigma(\omega, \mu)$ -open and a $t(\omega^*, \mu)$ -set.

Example 3.65. Consider (X, μ) as in Example 3.22. Then (0, 1] is $\sigma(\omega, \mu)$ -regular and $\mathbb{R}\setminus\mathbb{Q}$ is not $\sigma(\omega, \mu)$ -regular, since $\mathbb{R}\setminus\mathbb{Q}$ is not $t(\omega^*, \mu)$ -set.

Theorem 3.66. A subset H is $\sigma(\omega, \mu)$ -regular if and only if H is both $\beta(\omega, \mu)$ -open and $\sigma(\omega^*, \mu)$ -closed.

Proof. If *H* is $\sigma(\omega, \mu)$ -regular, then *H* is both $\sigma(\omega, \mu)$ -open and a $t(\omega^*, \mu)$ -set. Since every $\sigma(\omega, \mu)$ -open set is $\beta(\omega, \mu)$ -open, *H* is both $\beta(\omega, \mu)$ -open and a $t(\omega^*, \mu)$ -set. Conversely, let *H* be $\sigma(\omega^*, \mu)$ -closed and $\beta(\omega, \mu)$ -open. Since *H* is a $\sigma(\omega^*, \mu)$ -closed, by Theorem 11, *H* is a $t(\omega^*, \mu)$ -set. Since *H* is $\beta(\omega, \mu)$ -open, $H \subset c(i_{\omega}(c(H))) = c(i_{\omega}(H))$. Therefore *H* is $\sigma(\omega, \mu)$ -open. Since *H* is both $\sigma(\omega, \mu)$ -open and a $t(\omega^*, \mu)$ -set, *H* is $\sigma(\omega, \mu)$ -regular.

Remark 3.67. The concepts of $\beta(\omega, \mu)$ -openness and $\sigma(\omega^*, \mu)$ -closedness are independent.

Example 3.68. Let $X = \mathbb{R}$ and $\mu = \{\emptyset, X, \mathbb{R} \setminus \mathbb{Q}\}.$

- (1) Then $H = \mathbb{Q}$ is $\sigma(\omega^*, \mu)$ -closed but not $\beta(\omega, \mu)$ -open. Since $i_{\omega}(c(H)) = i_{\omega}(H) = \emptyset \subset H$, H is $\sigma(\omega^*, \mu)$ -closed. Also H is not $\beta(\omega, \mu)$ -open.
- (2) Let $X = \mathbb{R}$ and $\mu = \{\emptyset, all possible unions of members of \mathcal{B}\}$, where $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}\}$. Let $H = \mathbb{Q}$. Then H is $\beta(\omega, \mu)$ -open but not $\sigma(\omega^*, \mu)$ -closed, since $i_{\omega}(c(H)) = i_{\omega}(\mathbb{R}) = \mathbb{R}$.

Theorem 3.69. Let (X, μ) be a GT and H a subset of X. Then the following properties are equivalent.

- (1) $H \neq \emptyset$ is $r(\omega, \mu)$ -closed.
- (2) There exists a non-empty ω - μ -open set G such that $G \subset H = c(G)$.
- (3) There exists a non-empty ω - μ -open set G such that $H = G \cup (c(G) \setminus G)$.

Proof. (1) \Rightarrow (2): Suppose $H \neq \emptyset$ is an $r(\omega, \mu)$ -closed set. Then $H = c(i_{\omega}(H))$. Let $G = i_{\omega}(H)$. Then G is the required ω - μ -open set such that $G \subset H = c(G)$.

(2) \Rightarrow (3): Since $H = c(G) = G \cup (c(G) \setminus G)$ where G is a nonempty ω - μ -open set, (3) follows.

(3) \Rightarrow (1): $H = G \cup c(G) \setminus G$ implies that $H = c(G) = c(i_{\omega}(G)) \subset c(i_{\omega}(H))$, since G is ω - μ -open and $G \subset H$. Again $i_{\omega}(H) \subset H$ implies that $c(i_{\omega}(H)) \subset c(H) = c(G) = H$. Therefore $H = c(i_{\omega}(H))$ which implies that H is $r(\omega, \mu)$ -closed.

Theorem 3.70. Let H be a subset of a GT (X, μ) . If H is $\beta(\omega, \mu)$ -open, then c(H) is $r(\omega, \mu)$ -closed.

Proof. Suppose *H* is $\beta(\omega, \mu)$ -open. Then $H \subset c(i_{\omega}(c(H)))$ and so $c(H) \subset c(i_{\omega}(c(H))) \subset c(H)$ which implies that $c(H) = c(i_{\omega}(c(H)))$. Therefore c(H) is $r(\omega, \mu)$ -closed.

Remark 3.71. (*i*) The concepts of $\sigma(\omega, \mu)$ -openness and μ -closedness are independent. (*ii*) The concepts of $\beta(\omega, \mu)$ -openness and μ -closedness are independent.

Example 3.72. Let $X = \mathbb{R}$ and $\mu = \{\emptyset, all possible unions of members of <math>\mathcal{B}\}$, where $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}\}$.

- (1) Let H = (0, 1]. Then H is $\sigma(\omega, \mu)$ -open but not μ -closed.
- (2) Let $X = \mathbb{R}$ and $\mu = \{\emptyset, R, \mathbb{Q}\}$. Let $H = \mathbb{Q}$. Then H is μ -closed but not $\sigma(\omega, \mu)$ -open.

Example 3.73. Let $X = \mathbb{R}$ and $\mu = \{\emptyset, all possible unions of members of <math>\mathcal{B}\}$, where $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}\}$.

(1) Let H = (0, 1]. Then H is $\beta(\omega, \mu)$ -open but not μ -closed.

(2) Let $X = \mathbb{R}$ and $\mu = \{\emptyset, R, \mathbb{Q}\}$. Let $H = \mathbb{Q}$. Then H is μ -closed but not $\beta(\omega, \mu)$ -open.

Definition 3.74. A GT (X, μ) is called ω - μ -submaximal if every ω - μ -dense subset of X is ω - μ -open.

Proposition 3.75. *Every* μ *-submaximal space is* ω *-* μ *-submaximal.*

Proof. Let $H \subset X$ be ω - μ -dense. Then $X = c_{\omega}(H) \subset c(H)$ and X = c(H). Thus H is μ -dense in X. Since X is μ -submaximal, H is μ -open and hence ω - μ -open in X. Therefore, X is ω - μ -submaximal. \Box

Example 3.76. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, X, \{c\}, \{b, c\}\}$. Set $H = \{a, c\}$. Then c(H) = X and $H \notin \mu$. Hence X is not μ -submaximal but it is ω - μ -submaximal, since the only ω - μ -dense set is X.

Definition 3.77. A subset H of a GT (X, μ) is called ω - μ -codense if $X \setminus H$ is ω - μ -dense.

Theorem 3.78. For a GT (X, μ) , the following are equivalent.

(1) X is ω - μ -submaximal,

Proof. (1) \Rightarrow (2): Let *H* be a ω - μ -codense subset of *X*. Then *X**H* is ω - μ -dense and therefore *X**H* is ω - μ -open, *X* being ω - μ -submaximal by assumption. Thus *H* is ω - μ -closed.

(2) \Rightarrow (1): Let *H* be a ω - μ -dense subset of *X*. Then *X**H* is ω - μ -codense in *X* and by assumption *X**H* is ω - μ -closed. Hence *H* is ω - μ -open and thus *X* is ω - μ -submaximal.

4. Some Decomposition Theorems

Using the sets defined in the above section, we define some new notions of continuous functions and find some characterizations of them.

Definition 4.1. A function $f : (X, \mu) \to (Y, \lambda)$ is said to be

- (1) pre- (ω, λ) -continuous if $f^{-1}(V)$ is $\pi(\omega, \mu)$ -open in X for each $V \in \lambda$,
- (2) α -(ω , λ)-continuous if $f^{-1}(V)$ is $\alpha(\omega, \mu)$ -open in X for each $V \in \lambda$,
- (3) semi- (ω, λ) -continuous if $f^{-1}(V)$ is $\sigma(\omega, \mu)$ -open in X for each $V \in \lambda$,
- (4) β - (ω, λ) -continuous if $f^{-1}(V)$ is $\beta(\omega, \mu)$ -open in X for each $V \in \lambda$,
- (5) δ - (ω, λ) -continuous if $f^{-1}(V)$ is $\delta(\omega, \mu)$ -open in X for each $V \in \lambda$,
- (6) contra-pre- (ω, λ) -continuous if $f^{-1}(V)$ is $\pi(\omega, \mu)$ -closed in X for each $V \in \lambda$,
- (7) contra- α -(ω , λ)-continuous if $f^{-1}(V)$ is $\alpha(\omega, \mu)$ -closed in X for each $V \in \lambda$,
- (8) contra-semi- (ω, λ) -continuous if $f^{-1}(V)$ is $\sigma(\omega, \mu)$ -closed in X for each $V \in \lambda$,
- (9) contra- β -(ω , λ)-continuous if $f^{-1}(V)$ is $\beta(\omega, \mu)$ -closed in X for each $V \in \lambda$,
- (10) contra- δ -(ω , λ)-continuous if $f^{-1}(V)$ is $\delta(\omega, \mu)$ -closed in X for each $V \in \lambda$,
- (11) $semi^*(\omega, \lambda)$ -continuous $f^{-1}(V)$ is $\sigma(\omega^*, \mu)$ -closed in X for each μ -closed set V in Y,
- (12) ω^* -t-continuous $f^{-1}(V)$ is ω^* -t-set in X for each μ -closed set V in Y,
- (13) ω -*R*-continuous $f^{-1}(V)$ is ω -*R*-closed in X for each μ -closed set V in Y.

Theorem 4.2. A function $f : (X, \mu) \to (Y, \lambda)$ is α - (ω, λ) -continuous if and only if it is semi- (ω, λ) -continuous and pre- (ω, λ) -continuous.

Proof. This is an immediate consequence of Theorem 3.6.

Theorem 4.3. A function $f : (X, \mu) \to (Y, \lambda)$ is is contra- α - (ω, λ) -continuous if and only if it is contra-semi- (ω, λ) -continuous and contra-pre- (ω, λ) -continuous.

Proof. This is an immediate consequence of Theorem 3.6.

Theorem 4.4. Let X be a μ -submaximal space. A function $f : (X, \mu) \to (Y, \lambda)$ is semi- (ω, λ) -continuous if and only if it is β - (ω, λ) -continuous.

Proof. This is an immediate consequence of Theorem 3.7.

Theorem 4.5. Let X be a μ -submaximal space. A function $f : (X, \mu) \to (Y, \lambda)$ is contra-semi- (ω, λ) -continuous if and only if it is contra- β - (ω, λ) -continuous.

Proof. This is an immediate consequence of Theorem 3.7.

Theorem 4.6. A function $f : (X, \mu) \to (Y, \lambda)$ is semi- (ω, λ) -continuous if and only if it is β - (ω, λ) -continuous and δ - (ω, λ) -continuous.

Proof. This is an immediate consequence of Theorem 3.10.

Theorem 4.7. A function $f : (X, \mu) \to (Y, \lambda)$ is contra-semi- (ω, λ) -continuous if and only if it is contra- β - (ω, λ) -continuous and contra- δ - (ω, λ) -continuous.

Proof. This is an immediate consequence of Theorem 3.10. \Box

Theorem 4.8. A function $f : (X, \mu) \to (Y, \lambda)$ is α - (ω, λ) -continuous if and only if it is δ - (ω, λ) -continuous and pre- (ω, λ) -continuous.

Proof. This is an immediate consequence of Theorem 3.11.

Theorem 4.9. A function $f : (X, \mu) \to (Y, \lambda)$ is contra- α - (ω, λ) -continuous if and only if it is contra- δ - (ω, λ) -continuous and contra-pre- (ω, λ) -continuous.

Proof. This is an immediate consequence of Theorem 3.11.

Definition 4.10. A function $f : (X, \mu) \to (Y, \lambda)$ is said to be semi- ω -regular continuous if $f^{-1}(V)$ is semi- ω -regular in X for each closed set V in Y.

Theorem 4.11. A function $f : (X, \mu) \to (Y, \lambda)$ is $semi^*(\omega, \lambda)$ -continuous if and only if it is ω^* -t-continuous.

Proof. This is an immediate consequence of Theorem 3.15.

Theorem 4.12. A function $f : (X, \mu) \to (Y, \lambda)$ is semi- ω -regular continuous if and only if it is contra- β - (ω, λ) -continuous and semi^{*}- (ω, λ) -continuous.

Proof. This is an immediate consequence of Theorem 3.17.

Theorem 4.13. For a function $f : (X, \mu) \to (Y, \lambda)$, the following are equivalent:

- (1) f is ω -R-continuous.
- (2) *f* is contra-semi- (ω, λ) -continuous and continuous.
- (3) *f* is contra- β -(ω , λ)-continuous and continuous.

Proof. This is an immediate consequence of Theorem 3.20.

References

- [1] S. Al Ghour, W. Zareer, Omega open sets in generalized topological spaces, J. Nonlinear Sci. Appl. 9 (2016), 3010–3017.
- [2] S. Al Ghour, Between the classes of soft open sets and soft omega open sets, Mathematics. 10 (2022), 719. https: //doi.org/10.3390/math10050719.
- [3] S. Al Ghour, S. Al-Zoubi, A new class between theta open sets and theta omega open sets, Heliyon. 7 (2021), e05996. https://doi.org/10.1016/j.heliyon.2021.e05996.
- [4] A. Császár, Generalized topology, generalized continuity, Acta Math. Hung. 96 (2002), 351–357. https://doi.org/10.
 1023/a:1019713018007.