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Abstract. In this paper, we introduce and study a modified Halpern iterative method for approximating
a common solution of finite families of the resolvents of convex functions and fixed point problems of
demicontractive-type mappings in Hadamard spaces. Under some mild assumptions, we prove a strong
convergence theorem of the sequence generated by the modified Halpern method to an element in the
intersection of the set of solutions of the aforementioned problems. We present some consequences and
applications of our main result. Our results improves and generalizes many recent results in the literature.
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1. Introduction

Let C be a nonempty, closed and convex subset of a Hadamard space X , and let T : C → C be a
nonlinear mapping. The fixed point problem (FPP) is to find a point x ∈ C such that

x = Tx. (1)

Throughout this article, we denote by Fix(T ) the fixed point sets of the mapping T . Fixed point theory
is an area of nonlinear analysis that has been extensively studied by mathematicians. Fixed point
theorem, in particular, applies in proving the existence of solutions of differential equations, and the
existence of solutions of optimization problems. For instance, a solution of an equilibrium problem
is a fixed point of the resolvent of the monotone operator associated with the monotone equilibrium
problems, also a solution of a minimization problem is the fixed point of resolvent of convex function
associated with the convex minimization problems. Thus, the fixed point theorem is very important
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tool for solving optimization problems.
Let X be an Hadamard space and f : X → (−∞,∞] be a proper, convex and lower-semicontinuous
function. One of the most important problems in convex analysis is the Convex Minimization Problem
(in short, CMP), which is to find x∗ ∈ X such that

f(x∗) = min
y∈X

f(y). (2)

We denote by argmin
y∈X

f(y) the set of minimizers of f in X . For λ > 0, the resolvent of a lower semi-
continuous function f in X is defined as

Jfλ (x) = argmin
y∈X

[
f(y) +

1

2λ
d2(y, x)

]
. (3)

It is also known that Fix(Jfλ ) coincides with argmin
y∈X

f(y). CMP provides us with algorithms for
solving a variety of problemwhich may appear in science and engineering, and one of the most popular
methods for approximation of a minimizer of a convex function is the proximal point algorithm (PPA),
which was introduced byMartinet [25] and Rockafellar [30] in Hilbert spaces. Indeed, let f be a proper,
convex and lower semicontinuous function on a real Hilbert space H which attains its minimum. The
PPA is find by x1 ∈ H such that

xn+1 = argmin
y∈H

(
f(y) +

1

2λn
‖y − xn‖2

)
, λn > 0, ∀n ≥ 1. (4)

It was proved that the sequence {xn} converges weakly to a minimizer of f provided
∞∑
n=1

λn = ∞.
However, as shown by Güer [16], the PPA does not necessarily converges strongly (i.e., convergence in
metric) in general. To obtain a strong convergence of the PPA, Xu [34], Kamimura and Takahashi [21]
introduced aHalpern-type regularization of the PPA inHilbert space. They proved a strong convergence
of Halpern PPA under some certain conditions on the parameters. Recently, many convergence results
of PPA for solving optimization problems have been extended from the classical linear spaces such as
Euclidean spaces, Hilbert spaces and Banach spaces to the setting of Hadamard spaces [1,5,15,24,28,33].
The minimizers of the objective convex functionals in the spaces with nonlinearity play a crucial role in
the branch of analysis and geometry.
In 2013, Bac̆ák [6] studied the MP (2) in CAT (0) spaces using the following iterative algorithm. Let
x1 ∈ X , then

xn+1 = argmin
y∈X

[
f(y) +

1

2λ
d2(y, xn)

]
, (5)

where λ > 0 for all n ∈ N. He proved that {xn} is ∆-convergent to the minimizer of f under the
conditions that f has a minimizer in X and

∞∑
n=1

λn = ∞. Suparatulatorn et al. [32] introduced the
following modified Halpern iteration process for solving CMP (2) and nonexpansive mapping in the
framework of CAT (0) spaces.
Suppose that u, x1 ∈ X are arbitrary chosen and {xn} is generated in the following manner:
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
yn = argmin

y∈X

[
f(y) + 1

2λn
d2(y, xn)

]
;

xn+1 = αnu⊕ (1− αn)Tyn;

(6)

for each n ∈ N,where {αn} is a sequence in (0, 1) satisfying the following conditions:
(1) lim

n→∞
αn = 0;

(2)
∞∑
n=1

αn =∞;

(3)
∞∑
n=1
|αn − αn+1| <∞;

(4)
∞∑
n=1
|λn − λn+1| <∞.

Then {xn} strongly converges to z ∈ Γ := Fix(T ) ∩ argmin
y∈X

f(y) 6= ∅, which is the nearest point of
Γ to u.

In 2015, Cholamjiak et al. [9] introduced the following modified PPA involving fixed point iterates
for two nonexpansive mappings and proved that the sequence generated by their iterative process
converges to aminimizer of a convex function and a fixed point problem of two nonexpansivemappings.
Let {xn} be generated in the following manner:

zn = argmin
y∈X

[
f(y) + 1

2λn
d2(y, xn)

]
;

yn =
(
1− βn

)
xn ⊕ βnT1zn;

xn+1 =
(
1− αn

)
T1xn ⊕ αnT2yn;

(7)

for each n ∈ N. Then, the sequence {xn} ∆-converges to an element of Ω, where Ω := Fix(T1) ∩

Fix(T2) ∩ argmin
y∈X

f(y).

In 2017, Asawathep Cuntavepanit and Withun Phuenggrattana [10] proposed on iterative method for
solving the common solution of convex minimization problem and fixed point problem for a finite
family of nonexpansive mappings in CAT (0) spaces. They proved the following theorem:
Theorem 1.1: Let C be a nonempty closed convex subset of a complete CAT (0) space (X, d) and
f : C → (−∞,∞] be a proper convex and lower semi-continuous function. Let {Ti}Ni=1 be a finite family
of nonexpansive mappings of C into itself with Ω =

N⋂
i=1

Fix(Ti) ∩ argmin
y∈C

f(y) is nonempty. Assume
that {λn} is a sequence such that λn > 0 for all n ∈ N. Let {xn} be generated in the following manner:

yn = argmin

[
f(y) +

1

2λn
d(y, xn)2

]
, (8)

zn =
N⊕
i=n

y(i)
n Tiyn,

xn+1 = (1− αn)xn ⊕ αnzn, n ∈ N,
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where T0 = I (identity mapping), {αn} ⊂ (0, 1), and {γ(i)
n } ⊂ (0, 1)for all i = 0, 1, · · · , N with

N∑
i=0

γ
(1)
n = 1 for all n ∈ N. Then lim

n→∞
d(xn, p) exists. In this article, we consider the following problem:

LetC be a nonempty, closed and convex subset of anHadamard spaceX andhj : X → R, j = 1, 2 · · · , N

be proper, convex and lower semi-continuous function. For λ > 0, define the Moreau-Yosida resolvent
of hj on C by

J
hj
λ (x) = argmin

y∈C
(hj(y) +

1

2λ
d2(y, x)), j = 1, 2, · · · , N, (9)

and denote by
N∏
j=1

J
hj
λ = J

hj
λ ◦ J

hj−1

λ ◦, · · · ◦, Jh2λ ◦ J
h1
λ , j = 1, 2, · · · , N. (10)

Let S : X → X be a µ-demicontractive-type mapping (see chapter 2 for definitions) with µ ∈ (−∞, γ]

and γ ∈ (0, 1) such that S is ∆-demiclosed at 0. The problem is to find:

x ∈ Fix(S) ∩
N⋂
j=1

Fix(J
hj
λ ). (11)

We denote by Ω, the solution set of (11) and it is assumed to be nonempty. Inspired by the
aforementioned results, using the fixed point approach, we propose a modified Halpern method
for solving finite families of resolvents of convex functions and fixed point of demicontractive type
mappings in the framework of an Hadamard space. We present some of the consequences of our
results and give applications for finding the Fréchet mean, mean of probability and convex feasibility
problems. The result discuss in this article extends and complements many related results in the
literature.

We highlight some of our contributions in this article as follows:
(1) The classes of mapping considered in this study generalized the classes of nonexpansive,

quasi-nonexpansive and demicontractive.
(2) The problem discussed in Suparatulatorn [32] and Cholamjiak [9] are special case of the

problem solved in this manuscript.
(3) We obtain a strong convergence result desirable to the weak counterpart obtained in Cholamjiak

[9] and Cuntavepanit [10].

2. Preliminaries

Let X be a metric space and x, y ∈ X . A geodesic from x to y is a map (or a curve) c from the closed
interval [0, d(x, y)] ⊂ R to X such that c(0) = x, c(d(x, y)) = y and d(c(t), c(t′)) = |t − t′| for all
t, t′ ∈ [0, d(x, y)]. The image of c is called a geodesic segment joining from x to y.When it is unique, this
geodesic segment is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two points
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of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic
joining x and y for each x, y ∈ X. A subset D of a geodesic space X is said to be convex, if for any two
points x, y ∈ D, the geodesic joining x and y is contained inD, that is, if c : [0, d(x, y)]→ X is a geodesic
such that x = c(0) and y = c(d(x, y)), then c(t) ∈ D ∀ t ∈ [0, d(x, y)]. A geodesic triangle ∆(x1, x2, x3)

in a geodesic metric space (X, d) consists of three vertices (points inX) with unparameterized geodesic
segments between each pair of vertices. For any geodesic triangle there is comparison (Alexandrov)
triangle ∆̄ ⊂ R2, such that d(xi, xj) = dR2(x̄i, x̄j), for i, j ∈ {1, 2, 3}. A geodesic space X is a CAT(0)
space if the distance between an arbitrary pair of points on a geodesic triangle ∆ does not exceed the
distance between its corresponding pair of points on its comparison triangle ∆̄. If ∆ and ∆̄ are geodesic
and comparison triangles inX respectively, then ∆ is said to satisfy the CAT(0) inequality for all points
x, y of ∆ and x̄, ȳ of ∆̄ if

d(x, y) = dR2(x̄, ȳ). (12)

Let x, y, z be points in X and y0 be the midpoint of the segment [y, z], then the CAT(0) inequality
implies

d2(x, y0) ≤ 1

2
d2(x, y) +

1

2
d2(x, z)− 1

4
d(y, z). (13)

Berg and Nikolaev [7] introduced the notion of quasi-linearization in a CAT(0) space as follows:
Let a pair (a, b) ∈ X × X denoted by −→ab, be called a vector. Then, the quasilinearization map 〈., .〉 :

(X ×X)× (X ×X)→ R is defined by

〈
−→
ab,
−→
cd〉 =

1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), for all a, b, c, d ∈ X. (14)

It is easy to see that 〈−→ab,−→ab〉 = d2(a, b), 〈
−→
ba,
−→
cd〉 = −〈

−→
ab,
−→
cd〉, 〈

−→
ab,
−→
cd〉 = 〈−→ae,

−→
cd〉+ 〈

−→
eb,
−→
cd〉 and 〈−→ab,−→cd〉 =

〈
−→
cd,
−→
ab〉, for all a, b, c, d, e ∈ X . Furthermore, a geodesic space X is said to satisfy the Cauchy-Schwartz

inequality, if
〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d),

for all a, b, c, d ∈ X . It is well known that a geodesically connected space is a CAT(0) space if and only
if it satisfies the Cauchy-Schwartz inequality [14]. Also, it is known that complete CAT(0) spaces are
called Hadamard spaces.
In 2010, Kakavandi and Amini [20] introduced the dual space of a Hadamard space X as follows:
Consider the map Θ : R×X ×X → C(X,R) define by

Θ(t, a, b)(x) = t〈
−→
ab,−→ax〉, (t ∈ R, a, b, x ∈ X),

where C(X,R) is the space of all continuous real-valued functions onX . Then the Cauchy-Schwartz in-
equality implies that Θ(t, a, b) is a Lipschitz function with Lipschitz semi-norm L(Θ(t, a, b)) = |t|d(a, b)
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(t ∈ R, a, b ∈ X),where L(φ) = sup{(φ(x)−φ(y))/d(x, y) : x, y ∈ X, x 6= y} is the Lipschitz semi-norm
for any function φ : X → R. A pseudometric D on R×X ×X is defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X).

In an Hadamard spaceX , the psuedometric space (R×X ×X,D) can be considered as a subset of the
pseudometric space of all real-valued Lipschitz functions (Lip(X,R), L). It is well known from [20]
that D((t, a, b), (s, c, d)) = 0 if and only if t〈−→ab,−→xy〉 = s〈

−→
cd,−→xy〉, for all x, y ∈ X. Thus, D induces an

equivalence relation on R×X ×X,where the equivalence class of (t, a, b) is defined as

[t
−→
ab] := {s

−→
cd : D((t, a, b), (s, c, d)) = 0}.

The set X∗ = {[t
−→
ab] : (t, a, b) ∈ R × X × X} is a metric space with the metric D([t

−→
ab], [s

−→
cd) :=

D((t, a, b), (s, c, d)). The pair (X∗,D) is called the dual space of the metric space (X, d). It is shown
in [20] that the dual of a closed and convex subset of a Hilbert space H with nonempty interior is H
and t(b− a) ≡ [t

−→
ab] for all t ∈ R, a, b ∈ H.We also note that X∗ acts on X ×X by

〈x∗,−→xy〉 = t〈
−→
ab,−→xy〉, (x∗ = [t

−→
ab] ∈ X∗, x, y ∈ X).

Let {xn} be a bounded sequence inX and r(., {xn}) : X → [0,∞) be a continuous mapping defined by

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius of {xn} is given by

r({xn}) : inf{r(x, xn) : x ∈ X},

while the asymptotic center of {xn} is the set

A({xn}) = x ∈ X : r(x, {xn}) = r({xn}).

It is well known from [12, 22] that in a complete CAT(0) space X, A({xn}) consists of exactly one
point. A sequence {xn} in X is said to be ∆-convergent to a point x ∈ X if A({xnk}) = {x} for every
subsequence {xnk} of {xn}. In this case, we write ∆− lim

n→∞
xn = x.

Definition 2.1 Let X be a Hadamard space. A nonlinear mapping T is said to be:

(1) a contraction, if there exists k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X,

if k = 1, then T is called nonexpansive,
(2) quasi-nonexpansive, if Fix(T ) 6= ∅ and

d(Tx, y) ≤ d(x, y),∀x ∈ X, y ∈ Fix(T ),
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(3) k-demicontractive, if Fix(T ) 6= ∅ and there exits k ∈ [0, 1) such that

d2(Tx, y) ≤ d2(x, y) + kd2(Tx, x) ∀x ∈ X, y ∈ Fix(T ).

Clearly, nonexpansive mappings (with nonempty fixed point set) ⊂ quasi-nonexpansive map-
pings ⊂ demicontractive mappings. There are several examples in literature which show that
these inclusion are proper ( see for example [8, 17], and the references therein). Furthermore,
the class of demicontractive mappings is known to be of central importance in optimization
theory since it contains many common types of operators that are useful in solving optimization
problems (see [3, 19, 26] and the reference therein).
Definition 2.2 [18] Let (X, d) be a metric space. A mapping T : X → X is called k-
demicontractive-type, if Fix(T ) 6= ∅ and there exists k ∈ (−∞, 1) such that

d2(Tx, y) ≤ d2(x, y) + kd2(Tx, x) ∀ x ∈ X, y ∈ Fix(T ). (15)

Also, by definition of quasilinearization mapping (see (14)), we obtain that

2〈−→xy,
−−→
xTx〉 = d2(x, y) + d2(Tx, x)− d2(Tx, y).

That is,

d2(Tx, y) = d2(x, y) + d2(Tx, x)− 2〈
−−→
xTx,−→xy〉,

which implies from (15) that

〈−→xy,
−−→
xTx〉 ≥ 1− k

2
d2(x, Tx). (16)

Example 2.1 [18] Let T : [0, 1] → R be defined by Tx = x − x2. Then T is k-demicontractive with
k = −1. Indeed, it is clear that Fix(T ) = {0}, and for all x ∈ [0, 1], we obtain that

|Tx− 0|2 = |x− x2|2 = |x|2 − 2|x||x2|+ |x2|2

≤ |x|2 − 2|x2||x2|+ |x2|2 = |x− 0|2 − |x− Tx|2.

Example 2.2 Let X be a geodesic space. A mapping f : X → (−∞,∞) is said to be convex, if

f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ X, λ ∈ (0, 1).

f is proper, if D(f) := {x ∈ X : f(x) < +∞} 6= ∅, where D denotes the domain of f . The mapping
f : D(f)→ (−∞,∞] is lower semicontinuous at a point x ∈ D, if

f(x) ≤ lim inf
n→∞

f(xn). (17)

Lemma 2.1 [11, 14] Let X be a CAT (0) space. Then for all w, x, y, z ∈ X and for all t ∈ [0, 1], we have
(1) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z),

(2) d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y),
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(3) d2(z, tx⊕ (1− t)y) ≤ t2d2(z, x) + (1− t)2d2(z, y) + 2t(1− t)〈−→zx,−→zy〉,

(4) d(tx⊕ (1− t)y, tw ⊕ (1− t)z) ≤ td(x,w) + (1− t)d(y, z).

Lemma 2.2 [4] Let X be a Hadamard space. Then, for all v, w, x, y, z ∈ X and α, β, γ ∈ (0, 1) with
α+ β + γ = 1 we have

d2(αx⊕ βy ⊕ γz, v) ≤ αd2(x, v) + βd2(y, v) + γd2(z, v).

Lemma 2.3 [23] Let X be a Hadamard space and h : X → (−∞,∞] be a proper, convex and semi-
continuous function. Then for all x, z ∈ X and λ > 0,we have

1

2λ
d2(Jhλx, z)−

1

2λ
d2(x, z) +

1

2λ
d2(x, Jhλx) + h(Jhλx) ≤ h(z).

Lemma 2.4 [18] Let X be a Hadamard space and T : X → X be a k-demicontrative mapping with
k ∈ (−∞, γ] and γ ∈ (0, 1). Let Tγx = γx⊕ (1− γ)Tx, then Tγ is quasi-nonexpansive and Fix(Tγ) =

Fix(T ).

Lemma 2.5 [31] Let {an} be a sequence of non-negative real number, {γn} be a sequence of real numbers
in (0, 1) with conditions

∞∑
n=1

γn and {dn} be a sequence of real numbers. Assume that

an+1 ≤ (1− γn)an + γndn, n ≥ 1. (18)

If lim sup
k→∞

dnk ≤ 0 for every subsquence {ank} of {an} satisfies the condition:

lim inf
k→∞

(ank+1
− ank) ≥ 0, then lim

n→∞
an = 0. (19)

Lemma 2.6 Let X be a complete CAT (0) space and fj : X → (−∞,∞], j = 1, 2, · · · ,m be finite family
of proper, convex and lower semi-continuous functions. For 0 < λ ≤ µ,we have that

Fix

( m∏
j=1

J (j)
µ

)
⊆
( m⋂
j=1

Fix(J
(j)
λ )

)
,

where
m∏
j=1

J
(j)
µ = J

(1)
µ ◦ J (2)

µ ◦ · · · ◦ J (m)
µ .

Lemma 2.7 [13] Let S : X → X be a nonexpansive mapping. Then the condition {xn}∆-converges to
p and d(xn, Sxn)→ 0 imply p = Sp.

Lemma 2.8 [14] Every bounded sequence in an Hadamard space has a ∆-convergence subsequence.
Lemma 2.9 [13] Let X be a Hadamard space and T : X → X be a nonexpansive mapping. Then, T is
∆-demiclosed.
Lemma 2.10 [29] Let X be a Hadamard space and {xn} be a subsequence in X . If there exists a
nonempty subset E in which

(i) lim
n→∞

d(xn, z) exists for every z ∈ E, and
(ii) If {xnk} is a subsequence of {xn}which is ∆-convergent to p ∈ E.
(iii) Then, there is p ∈ E such that {xn}which is ∆-convergent to p ∈ X.
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Lemma 2.11 [20] Let X be a Hadamard space, {xn} be a bounded sequence in X and x ∈ X . Then
{xn}∆-converges to x if and only if lim sup

n→∞
〈−−→xnx,−→yx〉 ≤ 0 ∀y ∈ X.

3. Main Results

In this article, we introduce a modified Halpern method to approximating finite families of resolvents
of convex functions. We also establish a strong convergence result and present some consequences of
our result. Our main result is stated as follows:
Theorem 3.1 Let X be an Hadamard space and X∗ be its dual space. Let hj : X → R, j = 1, 2, · · · , N

be a proper, convex and lower semi-continuous function, and S : X → X be a µ-demicontractive-
type mapping with µ ∈ (−∞, γ] and γ ∈ (0, 1) such that S is ∆ − demiclosed at 0. Assume that
Ω := Fix(S) ∩

N⋂
j=1

argmin hj(y) is nonempty, then sequence {xn} is generated for arbitrary x1 ∈ X by


un =

N∏
j=1

J
(hj)
λn

xn = J
(1)
λn
◦ J (2)

λn
◦ · · · ◦ J (N)

λn
xn

vn = (1− βn)un ⊕ βnSγun

xn+1 = αnu ⊕Θnvn ⊕ δnvn,

(20)

where Sγx = γx ⊕(1-γ)Sx, {λn} is a sequence in (0,∞), {αn}, {Θn}, {βn} and {δn} are sequences in
(0, 1) such that the following conditions are satisfied:

a) 0 < λ < λn, ∀ n ≥ 1,

b) 0 < a ≤ βn ≤ b < 1,

c) αn + Θn + δn = 1,

d) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞.

Then, {xn} converges strongly to an element z in Ω.
Proof: Let x∗ ∈ Ω, then by applying Lemma 2.1, Lemma 2.4 and (20), we have

d2(vn, x
∗) = d2((1− βn)un ⊕ βnSγun, x∗)

≤ (1− βn)d2(un, x
∗) + βnd

2(Sγun, x
∗)− βn(1− βn)d2(un, Sγun)

≤ (1− βn)d2(un, x
∗) + βnd

2(un, x
∗)− βn(1− βn)d2(un, Sγun)

= d2(un, x
∗)− βn(1− βn)d2(un, Sγun)

= d2
( N∏
j=1

J
(j)
λn
xn, x

∗)− βn(1− βn)d2(un, Sγun)

≤ d2
( N∏
j=2

J
(j)
λn
xn, x

∗)− βn(1− βn)d2(unSγun)
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...

≤ d2(xn, x
∗)− βn(1− βn)d2(un, Sγun) (21)

≤ d2(xn, x
∗). (22)

Thus, by using (20) and (22), we get

d(xn+1, x
∗) = d(αnu ⊕Θnvn ⊕ δnvn, x∗)

≤ αnd(u, x∗) + Θnd(vn, x
∗) + δnd(vn, x

∗)

= αnd(u, x∗) + (1− αn)d(vn, x
∗)

≤ αnd(u, x∗) + (1− αn)d(xn, x
∗)

≤ max{d(u, x∗), d(xn, x
∗)}

...

≤ max{d(u, x∗), d(x1, x
∗)}.

Hence, by induction, we have that {xn} is bounded. Consequently, {un} and {vn} are all bounded.
Let wn = Θn

1−αn vn + δn
1−αn vn, then from (22), we have that

d2(wn, x
∗) ≤ Θn

1− αn
d2(vn, x

∗) +
δn

1− αn
d2(vn, x

∗)

= d2(vn, x
∗) (23)

≤ d2(xn, x
∗). (24)

It is obvious that xn+1 in (20) can be re-written as xn+1 = αnu⊕ (1− αn)wn

From Lemma 2.1(3), (21),(23), we obtain

d2(xn+1, x
∗) ≤ d2(αnu⊕ (1− αn)wn, x

∗)

≤ α2
nd

2(u, x∗) + (1− αn)2d2(wn, x
∗) + 2αn(1− αn)〈

−−→
ux∗,

−−−→
x∗wn〉

≤ (1− αn)d2(wn, x
∗) + αn

(
αnd

2(u, x∗) + 2(1− αn)〈
−−→
ux∗,

−−−→
x∗wn〉

)
≤ (1− αn)d2(vn, x

∗) + αn
(
αnd

2(u, x∗) + 2(1− αn)〈
−−→
ux∗,

−−−→
x∗wn〉

)
≤ (1− αn)d2(xn, x

∗) + αn∆n − (1− αn)βn(1− βn)d2(un, Sγun) (25)

≤ (1− αn)d2(xn, x
∗) + αn∆n, (26)
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where ∆n = (αnd
2(u, x∗) + 2(1− αn)〈

−−→
ux∗,

−−−→
x∗wn〉) From Lemma 2.5 it suffices that

lim sup
k→∞

(d(xnk , x
∗)− d(xnk+1

, x∗)) ≤ 0, (27)

where {d(xnk , x
∗)} is a subsequence of {d(xn, x

∗)}, then from (27), we have

lim sup
k→∞

((1− αn)βnk(1− βnk)d2(unk , Sγunk)) ≤ lim sup
k→∞

((1− αnk)d2(xnk , x
∗)− d2(xnk+1

, x∗))

+ lim sup
k→∞

(αnk∆nk)

≤ lim sup
k→∞

((1− αnk)d2(xnk , x
∗))

= − lim inf
k→∞

(d2(xnk+1
, x∗)− d2(xnk , x

∗))

≤ 0. (28)

Thus form condition (b) and (c) of (20), we obtain that

lim
k→∞

d2(unk , Sγunk) = 0. (29)

Using Algorithm (20) and (29), we get

lim
k→∞

d(vnk , unk) ≤ (1− βnk)d(unk , unk) + βnkd(Sγunk , unk)→ 0 as k →∞. (30)

In a similar way as in (30), we also have that

d(xnk+1
, vnk) ≤ αnkd(u, vnk) + Θnkd(vnk , vnk) + δnkd(vnk , vnk)→ 0 as k →∞. (31)

From (30) and (31), we have that

lim
k→∞

d(xnk+1
, unk) = 0 (32)

On applying Lemma 2.3, we have that

d2
(
un,

N∏
j=2

J
(j)
λn
xn
)

= d2
( N∏
j=1

J
(j)
λn
xn,

N∏
j=2

J
(j)
λn
xn
)

≤ d2(

N∏
j=2

J
(j)
λn
xn, x

∗)− d2(un, x
∗)

≤ d2(xn, x
∗)− d2(un, x

∗)

≤ d2(xn, x
∗)− d2(vn, x

∗)

≤ d2(xn, x
∗)− d2(xn+1, x

∗) + d2(xn+1, x
∗)− d2(vn, x

∗)

≤ d2(xn, x
∗)− d2(xn+1, x

∗) + αnd
2(u, x∗) + (1− αn)d2(vn, x

∗)− d2(vn, x
∗). (33)
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Let {unk} and {vnk} be subsequences {un} and {vn} respectively, thus we have from (33)

lim sup
k→∞

d2
(
unk ,

N∏
j=2

J
(j)
λnk

xnk
)
≤ lim sup

k→∞
(d2(xnk , x

∗)− d2(xn
k+1

, x∗)) + lim sup
k→∞

(αnkd
2(u, x∗))

= − lim inf
k→∞

(d2(xnk+1
, x∗)− d2(xnk , x

∗)) ≤ 0. (34)

Thus,

lim
k→∞

d
(
unk ,

N∏
j=2

J
(j)
λnk

xnk
)

= 0. (35)

It follows from (34) that

lim
k→∞

(
d(unk ,

N∏
j=2

J
(j)
λnk

xnk)
)

= d
( N∏
j=1

J
(j)
λnk

xnk ,
N∏
j=2

J
(j)
λnk

xnk
)

= 0. (36)

By following the same process as in (35)-(36), we obtain that

lim
k→∞

(
d
( N∏
j=2

J
(j)
λnk

xnk ,
N∏
j=3

J
(j)
λnk

xnk
)

= d
( N∏
j=3

J
(j)
λnk

,
N∏
j=4

J
(j)
λnk

xnk
)

= · · · = d(J
(N)
λnk

xnk , xnk)

)
= 0. (37)

By summing (36) and (37), we have that

lim
k→∞

d(unk , xnk) = 0. (38)

Hence, from (30), (31) and (34), we obtain
lim
k→∞

d(vnk , xnk) = 0,

lim
k→∞

d(vnk+1
, xnk) = 0.

(39)

Since {xnk} is bounded, then by Lemma 2.8, there exist a subsequence {xnki} of {xnk} such that
∆ − lim

i→∞
xnki = q. Thus, we obtain from (38) and (39) that ∆ − lim

i→∞
unki = q and ∆ − lim

i→∞
vnki = q

for some subsequences {unki} and {vnki} of {unk} and {vnk} respectively. Since J
hj
λn
, j = 1, 2, · · · , N

is nonexpansive, we obtain from (38) and Lemma 2.6 that q ∈
N⋂
j=1

Fix(Jhjλn). Also, using (29) and
Lemma 2.7, we obtain that q ∈ Fix(Sγ) = Fix(S). Therefore q ∈ Ω. Next, we show {xnk} converges
strongly z ∈ Ω. Since {xnki} ∆-converges to z ∈ Ω, it follows from Lemma 2.10 that there exists z ∈ Ω

such that {xnki} ∆-converges to z.

Thus, by Lemma 2.11, we obtain that

lim sup
k→∞

〈−→uz,−−→xnkz〉 ≤ 0. (40)
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Hence, we obtain from (26), (40) and condition (a) of Algorithm (20) that lim sup
k→∞

∆nk ≤ 0. Also we
have from (24) that

d2(xnk+1
, z) ≤ (1− αnk)d2(xnk , z) + αnk∆nk . (41)

Thus, by Lemma 2.5 and condition of Algorithm (20), we obtain that {xnk} converges strongly to
z ∈ Ω.

We now state some consequences of our main result.

Corollary 3.2 Let X be an Hadamard space and X∗ be its dual space. Let hj : X → R, j = 1, 2, · · · , N

be a proper, convex and lower semi-continuous function, and S : X → X be a quasi-nonexpansive
mapping such that S is ∆− demiclosed at 0. Assume that Ω := Fix(S)∩

N⋂
j=1

argmin hj(y) is nonempty,
then sequence {xn} is generated for arbitrary x1 ∈ X by

un =
N∏
j=1

J
(hj)
λn

xn = J
(1)
λn
◦ J (2)

λn
◦ · · · ◦ J (N)

λn
xn

vn = (1− βn)un ⊕ βnSun

xn+1 = αnu ⊕Θnvn ⊕ δnvn,

(42)

where {λn} is a sequence in (0,∞), {αn}, {Θn}, {βn} and {δn} are sequences in (0, 1) such that the
following conditions are satisfied:

a) 0 < λ < λn, ∀n ≥ 1,

b) 0 < a ≤ βn ≤ b < 1,

c) αn + Θn + δn = 1,

d) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞.

Then, {xn} converges strongly to an element z in Ω.

Corollary 3.3 LetX be an Hadamard space andX∗ be its dual space. Let h : X → R be a proper, convex
and lower semi-continuous function, and S : X → X be a µ-demicontractive-type mapping with
µ ∈ (−∞, γ] and γ ∈ (0, 1) such that S is ∆− demiclosed at 0. Assume that Ω := Fix(S)∩ argmin h(y)

is nonempty, then sequence {xn} is generated for arbitrary x1 ∈ X by
un = Jhλnxn

vn = (1− βn)un ⊕ βnSγun

xn+1 = αnu ⊕Θnvn ⊕ δnvn,

(43)
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where Sγx = γx ⊕(1-γ)Sx, {λn} is a sequence in (0,∞), {αn}, {Θn}, {βn} and {δn} are sequences in
(0, 1) such that the following conditions are satisfied:

a) 0 < λ < λn, ∀n ≥ 1,

b) 0 < a ≤ βn ≤ b < 1,

c) αn + Θn + δn = 1,

d) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞.

Then, {xn} converges strongly to an element z in Ω.

Corollary 3.4 LetX be an Hadamard space andX∗ be its dual space. Let h : X → R be a proper, convex
and lower semi-continuous function and assume that Ω := argmin h(y) is nonempty, then sequence
{xn} is generated for arbitrary x1 ∈ X byun = Jhλnxn

xn+1 = αnu ⊕ (1− αn)un,
(44)

where {λn} is a sequence in (0,∞), {αn}, {Θn}, {βn} and {δn} are sequences in (0, 1) such that the
following conditions are satisfied:

a) 0 < λ < λn, ∀ n ≥ 1,

b) 0 < a ≤ βn ≤ b < 1,

c) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞.

Then, {xn} converges strongly to an element z in Ω.

4. Application

In this section, we apply our results to find Frechét mean of a finite elements of a Hadamard space, the
mean of a probability, and convex feasibility problem.

5. Computing Frechét mean and the mean of a probability

Let {vj}pj=1 ⊂ X and {αj}pj=1 be positive weights satisfying
p∑
j=1

αj = 1. Consider

h1(v) :=

p∑
j=1

αj(v, vj), for every v ∈ X. (45)

Suppose that µ ∈ P 2(V ) is a probability measure and takes

h2(v) :=

∫
d2(v, z)dµ(z), for every v ∈ X. (46)

Then the minimizers of h1 and h2 are the Frechét mean of {vi}pi=1 and mean of probability P , respec-
tively. The two mean play significant role in both science and engineering (see, e.g. [27]). Moreover,
it is not difficult to deduce using properties of metric d that h1and h2 are convex, proper and lower
semi-continuous functions on X . Hence we have the following results:
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Theorem 4.1 Let X be an Hadamard space and X∗ be its dual space. Let S : X → X be a µ-
demicontractive-type mapping with µ ∈ (−∞, γ] and γ ∈ (0, 1) such that S is ∆ − demiclosed at
0. Assume that Ω := Fix(S) ∩

N⋂
j=1

argmin hj(y) is nonempty, then sequence {xn} is generated for
arbitrary x1 ∈ X by 

un = Jh1λn

vn = (1− βn)un ⊕ βnSγun

xn+1 = αnu ⊕Θnvn ⊕ δnvn,

(47)

where Sγx = γx ⊕(1-γ)Sx, {λn} is a sequence in (0,∞), {αn}, {Θn}, {βn} and {δn} are sequences in
(0, 1) such that the following conditions are satisfied:

a) λn ≥ ` for some positive number `,
b) 0 < a ≤ βn ≤ b < 1,

c) αn + Θn + δn = 1,

d) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞.

Then, {xn} converges strongly to an element to the Frechét mean of {vj}pj=1.
Theorem 4.2 Let X be an Hadamard space and X∗ be its dual space. Let S : X → X be a µ-
demicontractive-type mapping with µ ∈ (−∞, γ] and γ ∈ (0, 1) such that S is ∆ − demiclosed at
0. Assume that Ω := Fix(S) ∩

N⋂
j=1

argmin hj(y) is nonempty, then sequence {xn} is generated for
arbitrary x1 ∈ X by 

un = Jh2λn

vn = (1− βn)un ⊕ βnSγun

xn+1 = αnu ⊕Θnvn ⊕ δnvn,

(48)

where Sγx = γx ⊕(1-γ)Sx, {λn} is a sequence in (0,∞), {αn}, {Θn}, {βn} and {δn} are sequences in
(0, 1) such that the following conditions are satisfied:

a) λn ≥ ` for some positive number `,
b) 0 < a ≤ βn ≤ b < 1,

c) αn + Θn + δn = 1,

d) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞.

Then, {xn} converges strongly to the mean of the probability P with respect to λ.

6. Convex Feasibility Problem.

Let {ψj}Nj=1 be a finite family of nonempty, closed and convex subsets of an Hadamard spaceX such

that
N⋂
j=1

ψj 6= ∅. The Convex Feasibility Problem (CFP) is to find x∗ ∈
N⋂
j=1

ψj . For a nonempty, closed
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and convex subset ψ of an Hadamard space X, the indicator function

iψ(x) =

0, x ∈ ψ

∞, x ∈ X \ ψ,

is proper and lower semi-continuous and J iψλ = Pψ. Therefore, by letting hj = iψ, (j = 1, 2, · · · ,m), we
have the following theorem:

Theorem 4.3 Let X be an Hadamard space and X∗ be its dual space. Let S : X → X be a µ-
demicontractive-type mapping with µ ∈ (−∞, γ] and γ ∈ (0, 1) such that S is ∆ − demiclosed at 0.
Assume that Φ := Fix(S) ∩

N⋂
j=1

Pψj is nonempty, then sequence {xn} is generated for arbitrary x1 ∈ X

by 
un = ∆N

j=1Pψxn = P
(1)
ψ ◦ P (2)

ψ ◦ · · · ◦ P (N)
ψ xn

vn = (1− βn)un ⊕ βnSγun

xn+1 = αnu ⊕Θnvn ⊕ δnvn,

(49)

where Sγx = γx ⊕(1-γ)Sx, {λn} is a sequence in (0,∞), {αn}, {Θn}, {βn} and {δn} are sequences in
(0, 1) such that the following conditions are satisfied:

a) 0 < λ < λn, ∀n ≥ 1,

b) 0 < a ≤ βn ≤ b < 1,

c) αn + Θn + δn = 1,

d) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞.

Then, {xn} converges strongly to an element z in PΦ,where PΦ is the metric projection of X onto Φ.
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