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Abstract. This paper delves into the analysis of the linear constrained regulation problem (LCRP) in
continuous-time delay dynamical systems. We assume that the control variable is subjected to symmetrical
constraints, with the equilibrium positioned on the boundary of the constraint domain. The objective is
to examine the conditions under which a state feedback law exists, ensuring constraint satisfaction and
asymptotic convergence to the origin for the system’s state when the initial states belong to the largest
positively invariant set. Both delay-independent and delay-dependent conditions are considered during
the investigation.
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1. Introduction

The regulator problem for linear continuous-time delay dynamical systems with non-symmetrical
constrained control was extensively investigated by many authors, such as [20], [16], [6], [8], [26], [18]
and [2]. In all these publications the regulation is made around an equilibrium situated in the interior
of a domain of attraction. So, for the regulation around an equilibrium situated on the boundary of the
domain of constraints results are needed. Recently, [4], [10], [11] and [24] have considered the linear
constrained regulation problem, for discrete system and continuous systems with the equilibrium
on the boundary of the domain of constraints. In this paper, we investigate the linear constrained
regulation problem for a continuous-time systems with delay and the equilibrium on the boundary of
the domain of attraction.
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We consider linear continuous-time systems with time delay described by the difference equation:ẋ(t) = A0x(t) +A1x(t− r) +Bu(t), t ≥ t0

x(θ) = ϕ(θ), θ ∈ [−r, 0]
(1)

where x ∈ Rn represents the state vector, u ∈ Rm represents the input vector, k ∈ T represents the time
variable, and r ∈ N represents the time delay.

The system is characterized by constant matrices A0 ∈ Rn×n, A1 ∈ Rn×n, and B ∈ Rn×m, which
satisfy the following conditions:

(a) In the case of independent delay, the pair (A0, B) is stabilizable.
(b) In the case of dependent delay, the pair (A0 +A1, B) is stabilizable.

The control vector, denoted by u, must satisfy linear constraints of the form:

−q ≤ u ≤ q, where q ∈ R+m (2)

The Linear Constrained Regulation Problem (LCRP) involves finding a linear state feedback control
law, represented as u = Fx, where F ∈ Rm×n, and determining a domain of attraction, denoted by D.
The objective is to ensure that for all initial states x(θ) ∈ D with θ ∈ [−r, 0], the trajectories x(k;x(θ)) of
the closed-loop system defined as:

ẋ(t) = (A0 +BF )x(t) +A1x(t− r), t ≥ 0 (3)

converge asymptotically to the equilibrium xe = 0, while respecting the control constraints. The set
D is said to be an admissible domain of attraction. Generally, the matrix F is chosen to satisfy the
following conditions:
(i) In the case of independent delay, the system defined in equation (3), which is asymptotically stable
when A1 = 0, i.e., satisfies:

<(λi(A0 +BF )) < 0, i = 1, ..., n (4)

additionally, is asymptotically stable independent of delay:

det(sI −A0 −BF − e−rsA1) 6= 0 for <(s) ≥ 0, ∀r ≥ 0 (5)

(ii) In the case of dependent delay, the system defined in equation (3), which is asymptotically stable
when r = 0, i.e., satisfies:

<(λi(A0 +A1 +BF )) < 0, i = 1, ..., n (6)

additionally, is asymptotically stable with delay dependence:

det(sI −A0 −BF − e−rsA1) 6= 0 for <(s) ≥ 0, with fixed r > 0 (7)

According to what wementioned above, the main results of this paper is to give necessary and sufficient
conditions under which the symmetrical region of initial states D(F, q, q) = {x ∈ Rn | −q ≤ Fx ≤ q}
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with the equilibrium state xe = 0 on its boundary is a domain of attraction for system (3). Since xe = 0

is on the boundary of D(F, q, q) this implies that at least one component of q is null. Without loss of
generality, we assume that

qj > 0, j = 1, ..., s and qj = 0 j = s+ 1, ...,m (8)

Indeed, if this is not the case, a suitable change in input variable coordinate will transform the system
(1) and constraints (2) to

ẋ(t) = A0x(t) +A1x(t− r) +B
′
v(t)

with −q′ ≤ v ≤ q′ where q′ satisfies relation (8).

In the following, we will denote q =

q∗
0

 with q∗ =


q1
...
qs

 and q∗ > 0.

The paper is organized as follows: In Section 2, we present some definitions and useful results for the
following. In Section 3, we establish sufficient conditions for u = Fx with F ∈ Rm×n, rankF = m,
and F verify (4) and (5) (or (6) and (7)), to be a solution to the linear constrained regulation problem.
Finally, an algorithm and example are given in section 4.

Notation

In this paper, capital letters are used to represent real matrices, while lowercase letters represent
column vectors or scalars. The notation Rn refers to the real n-space, Rn+ denotes the nonnegative
orthant of the real n-space, and Rn×p represents the set of real n × p matrices. For two real vectors
x = [x1 x2 ... xn]T and y = [y1 y2 ... yn]T , the notation x < y (x ≤ y) is equivalent to xi < yi (xi ≤ yi) for
i = 1, 2, ..., n. Similar notation is applied to real matrices. For a real matrix H = (hij), | H | represents
the matrix obtained by taking the absolute values of its components, i.e., | H |= (| hij |). The symbol
ρ(H) denotes the spectral radius of H , and H+ (or H−) is a matrix whose elements are defined as
h+ij = max(hij, 0) (or h−ij = max(−hij, 0), respectively).

2. Conditions of positive invariance

We consider linear continuous-time systems with time delay described by the difference equation:ż(t) = Hz(t) +Gz(t− r), t ≥ 0

z(θ) = ψ(θ), θ ∈ [−r, 0]
(9)

with z ∈ Rm, H ∈ Rm×m and G ∈ Rm×m.
Let us define the domain

D(Im, q, q) = {z ∈ Rm | −q ≤ z ≤ q}
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with q =

q∗
0

, q∗ > 0 and q∗ ∈ Rs.

Definition 2.1. A set D of Rm is said to be positively invariant with respect to motions of system (9), if
for every ψ(θ) ∈ D(θ ∈ [−r, 0]) the motion z(t;ψ) ∈ D for every t ≥ 0.

2.1. Positively invariant conditions independent of delay.

In [17] the author has considered the case where xe = 0 is in the interior of D(Im, q, q), that is q > 0

and has proved that D(Im, q, q) is positively invariant with respect to system (9) if and only if

(H+ | G |)q ≤ 0 (10)

with | G |= (| gij |)1≤i,j≤m

H = (hij)1≤i,j≤m, (hij = hii if i = j and hij =| hij | if i 6= j)

In this paper, where q =

q∗
0

, q∗ > 0, we prove the following result.

Theorem 2.2. The polyhedral set D(Im, q, q) with q =

q∗
0

, q∗ > 0 and q∗ ∈ Rs is positively invariant

independent of delay with respect to system (9) if and only if(H11+ | G11 |)q∗ ≤ 0

H21 = G21 = 0

with
H =

H11 H12

H21 H22

 and G =

G11 G12

G21 G22


H11, G11 ∈ Rs×s, H12, G12 ∈ Rs×(m−s), H21, G21 ∈ R(m−s)×s and H22, G22 ∈ R(m−s)×(m−s)

Proof.

If:) Let assume that (H11+ | G11 |)q∗ ≤ 0 and H21 = G21 = 0. Let z(.) the solution of system (9) with
z(t) ∈ D(Im, q, q), ∀t ∈ [−r, 0], that means

−

q∗
0

 ≤ z(t) ≤
q∗

0

 , ∀t ∈ [−r, 0] (11)

we can decompose z(t) into two vectors z1(t) and z2(t) with
−q∗ ≤ z1(t) ≤ q∗ and z2(t) = 0 for all t ∈ [−r, 0]. According to the above, we can decompose system (9)
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into two systems, so we haveż1(t)
ż2(t)

 =

H11 H12

H21 H22

z1(t)
z2(t)

 +

G11 G12

G21 G22

z1(t− r)
z2(t− r)


with H11, G11 ∈ Rs×s, H21, G21 ∈ R(m−s)×s, H12, G12 ∈ Rs×(m−s) and H22, G22 ∈ R(m−s)×(m−s)

Then ż1(t) = H11z1(t) +H12z2(t) +G11z1(t− r) +G12z2(t− r)

ż2(t) = H21z1(t) +H22z2(t) +G21z1(t− r) +G22z2(t− r)
(12)

Using H21 = G21 = 0 we obtain

ż1(t) = H11z1(t) +H12z2(t) +G11z1(t− r) +G21z2(t− r) (13)

and
ż2(t) = H22z2(t) +G21z2(t− r) (14)

The solution of system (14) can be written under the form

z2(t) = eH22tz2(0) +
∫ t
0 e

H22(t−τ)G22z2(τ − r)dτ

= eH22tz2(0) +
∫ t
0 e

H22µG22z2(t− µ− r)dµ

For 0 ≤ µ ≤ t and 0 ≤ t ≤ r we obtain −r ≤ t − µ − r ≤ 0 from z2(t) = 0, ∀t ∈ [−r, 0] we obtain
z2(t) = 0, ∀t ∈ [0, r]. Following the same reasoning we obtain z2(t) = 0 on the intervals [r, 2r], ..., finally
z2(t) = 0 , ∀t ≥ −r. To complete the proof we shall prove that z1(t) ≤ q∗ for all t ≥ −r. By using
z2(t) = 0, ∀t ≥ −r, we deduce from system (13) that

ż1(t) = H11z1(t) +G11z1(t− r) (15)

with −q∗ ≤ z1(t) ≤ q∗ , ∀t ≥ −r and q∗ > 0.
By replacing q by q∗ in (10), and system (9) by system (15), we deduce from [17] that D(Is, q

∗, q∗) is
positively invariant with respect to system (15), that is

−q∗ ≤ z1(t) ≤ q∗, ∀t ≥ −r

finally

−

q∗
0

 ≤ z(t) ≤
q∗

0

 , ∀t ≥ −r

this implies that the polyhedral setD(Im, q, q) is positively invariant independent of delay with respect
to system (9).
Only If:)

Assume that the polyhedral setD(Im, q, q) is positively invariant with respect to system (9). Let z(.) be
the solution of system (9) with

−q ≤ z(t) ≤ q, ∀t ∈ [−r, 0]
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The positive invariance of the set D(Im, q, q) implies that

−q ≤ z(t) ≤ q, ∀t ≥ −r

Therefore

−

q∗
0

 ≤
z1(t)
z2(t)

 ≤
q∗

0

 , ∀t ≥ −r

then z2(t) = 0 for all t ≥ −r.
From system (12) we obtain

ż2(t) = H21z1(t) +G21z1(t− r) = 0 , ∀t ≥ 0

then
H21z1(t) +G21z1(t− r) = 0 , ∀z1(t), z1(t− r) ∈ D(Is, q

∗, q∗)

which implies H21 = G21 = 0.
From system (12) and H21 = G21 = 0 we deduce that

ż1(t) = H11z1(k) +G11z1(k − r) (16)

with
−q∗ ≤ z1(t) ≤ q∗ , ∀t ≥ −r, q∗ > 0

this implies that the domainD(Is, q
∗, q∗), with q∗ > 0, is a positively invariant set respectively to system

(16). As mentioned at the beginning of the subsection we deduce from [17] that (H11+ | G11 |)q∗ ≤

0. �

2.2. Positively invariant conditions dependent of delay. It is easy to prove the solution of system (14)

verifies
z(t− r) = z(t)−

∫ 0
−r ż(t+ s)ds

= z(t)−
∫ 0
−r[Hz(t+ s) +Gz(t− r + s)]ds

(17)

If we return to system (14) using this expression for z(t− r), we obtain the equation

ż(t) = (H +G)z(t)−G
∫ 0

−r
[Hz(t+ s) +Gz(t− r + s)]ds, ∀t > 0 (18)

Then ż(t) = Mz(t)−
∫ 0
−r[V z(t+ s) +Wz(t− r + s)]ds, ∀t > 0

z(θ) = φ(θ), θ ∈ [−2r, 0]
(19)

with
M = H +G, V = GH, W = G2. (20)

For arbitrary initial data on [−2r, 0]. If the zero solution of (19) is asymptotically stable, then the zero
solution of (9) is asymptotically stable since (9) is a special case of (19)). Therefore, for simplicity, we
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shall use the system dynamics in (19) to obtain stability or positive invariance conditions for system
(9).
In the following, we will give necessary and sufficient condition to haveD(Im, q, q) positively invariant
with respect to motions of system (9) with delay dependence.

Remark 1. In [2] the author has proved thatD(Im, q, q), with q > 0, is positively invariant dependent of
delay with respect to system (9) if and only if

(M + r(| V | + |W |))q ≤ 0 (21)

In this paper, where q =

q∗
0

, q∗ > 0, we prove the following result.

Theorem 2.3. The polyhedral set D(Im, q, q) with q =

q∗
0

, q∗ > 0 and q∗ ∈ Rs is positively invariant

dependent of delay with respect to system (9) if and only if(M11 + r(| V11 | + |W11 |))q∗ ≤ 0

M21 = V21 = W21 = 0

with 

M =

M11 M12

M21 M22

 , V =

V11 V12

V21 V22

 and W =

W11 W12

W21 W22


M11, V11,W11 ∈ Rs×s and M12, V12,W12 ∈ Rs×(m−s)

M21, V21,W21 ∈ R(m−s)×s and M22, V22,W22 ∈ R(m−s)×(m−s)

Proof.

If:)

Let assume that (M11 + r(| V11 | + |W11 |))q∗ ≤ 0

M21 = V21 = W21 = 0

Let be z(.) be a solution of system (19) with

−

q∗
0

 ≤ z(t) ≤
q∗

0

 , ∀t ∈ [−2r, 0] (22)

we can decompose z(t) into two vectors z1(t) and z2(t) with −q∗ ≤ z1(t) ≤ q∗ and z2(t) = 0 for all
t ∈ [−2r, 0].
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According to the above we can decompose system (19) into two systems, so we have

ż1(t)
ż2(t)

 =

M11 M12

M21 M22


z1(t)
z2(t)

−
∫ 0
−r


V11 V12

V21 V22


z1(t+ s)

z2t+ s)

 +

W11 W12

W21 W22


z1(t− r + s)

z2(t− r + s)


 ds

z1(t)
z2(t)

 =

φ1(t)
φ2(t)


with M11, V11,W11 ∈ Rs×s and M12, V12,W12 ∈ Rs×(m−s)

M21, V21,W21 ∈ R(m−s)×s and M22, V22,W22 ∈ R(m−s)×(m−s)

Thus, we have 
ż1(t) = M11z1(t) +M12z2(t)−

∫ 0
−r[V11z1(t+ s) + V12z2(t+ s)

+W11z1(t− r + s) +W12z2(t− r + s)]ds

z1(θ) = φ1(θ), θ ∈ [−2r, 0]

(23)

and 
ż2(t) = M21z1(t) +M22z2(t)−

∫ 0
−r[V21z1(t+ s) + V22z2(t+ s)

+W21z1(t− r + s) +W22z2(t− r + s)]ds

z2(θ) = φ2(θ), θ ∈ [−2r, 0]

(24)

UsingM21 = V21 = W21 = 0 we obtainż2(t) = M22z2(t)−
∫ 0
−r[V22z2(t+ s) +W22z2(t− r + s)]ds

z2(θ) = φ2(θ), θ ∈ [−2r, 0]
(25)

the solution of system (25) can be written as

z2(t) = eH22tz2(0) +
∫ t
0 e

M22(t−τ)
∫ 0
−r[V22z2(τ + s) +W22z2(τ − r + s)]dsdτ

= eH22tz2(0) +
∫ t
0 e

M22µ
∫ 0
−r[V22z2(t− µ+ s) +W22z2(t− µ− r + s)]dsdµ

For 0 ≤ µ ≤ t, 0 ≤ t ≤ r and−r ≤ s ≤ 0 we obtain−r ≤ t−µ+ s ≤ 0 and−2r ≤ t−µ− r+ s ≤ −r, by
using z2(t) = 0 for all t ∈ [−2r, 0] then z2(t−µ+s) = 0 and z2(t−µ−r+s) = 0 thus, we have z2(t) = 0,
∀t ∈ [0, r]. In the same way we obtain z2(t) = 0 on the intervals [r, 2r], [2r, 3r],..., then z2(t) = 0, ∀t ≥ 0.
To complete the proof we shall prove that z1(t) ≤ q∗, ∀t ≥ 0. By using z2(t) = 0, ∀t ≥ −r, we deduce
from system (23) thatż1(t) = M11z1(t)−

∫ 0
−r[V11z1(t+ s) +W11z1(t− r + s)]ds

z1(θ) = φ1(θ), θ ∈ [−2r, 0]
(26)
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with

−q∗ ≤ z1(t) ≤ q∗, ∀t ∈ [−2r, 0] and q∗ > 0

since (M11 + r(| V11 | + |W11 |))q∗ ≤ 0, and by virtue of Remark 1 we deduce that

−q∗ ≤ z1(t) ≤ q∗, ∀t ≥ −2r

finally we have −q ≤ z(t) ≤ q, ∀t ≥ −2r. This implies that the polyhedral set D(Im, q, q) is positively
invariant dependent of delay with respect to system (9).
Only If:)

Assume that the polyhedral set D(Im, q, q) is positively invariant dependent of delay with respect to
system (9). Let z(.) the solution of system (19) with

−q ≤ z(t) ≤ q, ∀t ∈ [−2r, 0]

The positive invariance of the set D(Im, q, q) implies that

−q ≤ z(t) ≤ q, ∀k ≥ −2r

Therefore

−

q∗
0

 ≤
z1(t)
z2(t)

 ≤
q∗

0

 , ∀t ≥ −2r

then z2(t) = 0, ∀t ≥ −2r. From system (23) we obtain

ż2(t) = M21z1(t)−
∫ 0

−r
[V21z1(t+ s) +W21z1(t− r + s)]ds = 0, t ≥ −2r

for all z1(t), z1(t+ s) and z1(t− r + s) in D(Is, q
∗, q∗) with −r ≤ s ≤ 0, this implies thatM21 = V21 =

W21 = 0.
From system (24) andM21 = V21 = W21 = 0 we deduce thatż1(t) = M11z1(t)−

∫ 0
−r[V11z1(t+ s) +W11z1(t− r + s)]ds

z1(θ) = φ1(θ), θ ∈ [−2r, 0]
(27)

with

−q∗ ≤ z1(t) ≤ q∗, ∀t ≥ −2r

By virtue of Remark 1 we obtain (M11 + r(| V11 | + |W11 |))q∗ ≤ 0. �
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3. Main results

In this section, we will establish sufficient conditions for a linear state feedback control law u = Fx

with F ∈ Rm×n, rankF = m, and F verify (4) and (5) (or (6) and (7)) to be a solution to the linear
constrained regulation problem. For that, we need the two lemmas below.

Lemma 3.1 ( [16], Lemma 4.1). The setKerF with F ∈ Rm×n, and rankF = m is positively invariant with

respect to motions of system (3) if and only if there exist matrices H and G ∈ Rm×m satisfying:F (A0 +BF ) = HF (c1)

FA1 = GF (c2)

Lemma 3.2 ( [16], Lemma 4.2). If domain D(F, q, q) is positively invariant with respect to system (3), then

kerF is also positively invariant with respect to system (3).

Remark 2. The strict positivity of q in Lemma 3.2 is not necessary.

In the following, we apply the results established in section 2 and the results of Lemma 3.1 and
Lemma 3.2 to the problem of the constrained regulator described in section 1, we obtain the following
results.

3.1. Independent of delay case.

Theorem 3.3. The polyhedral set D(F, q, q) with F ∈ Rm×n, and rankF = m is positively invariant indepen-

dent of delay with respect to system (3) if and only if there exist matrices H and G ∈ Rm×m satisfying:
F (A0 +BF ) = HF (c1)

FA1 = GF (c2)

(H11+ | G11 |)q∗ ≤ 0 and H21 = G21 = 0 (c3)

with 

H =

H11 H12

H21 H22

 and G =

G11 G12

G21 G22


H11, G11 ∈ Rs×s,

H12, G12 ∈ Rs×(m−s), H21, G21 ∈ R(m−s)×s and H22, G22 ∈ R(m−s)×(m−s)

Proof.

Necessity:

Let domainD(F, q, q) be positively invariant with respect to system (3). By virtue of Lemma 3.2,KerF
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is also positively invariant with respect to system (3) and by Lemma 3.1 there exist matrices H and
G ∈ Rm×m satisfying: F (A0 +BF ) = HF (c1)

FA1 = GF (c2)

Consider the change in variables z(t) = Fx(t). By conditions (c1)-(c2), system (3) can be transformed
to system (9) and D(F, q, q) to domain D(Im, q, q) which is also positively invariant with respect to
system (9) and by virtue of Theorem 2.2 is equivalent to condition (c3).
Sufficiency:

Consider the change in variables z(t) = Fx(t). By conditions (c1)-(c2), system (3) can be transformed
to system (9) and domain D(F, q, q) to domain D(Im, q, q). By the use of Theorem 2.2, condition
(c3) ensures the domain D(Im, q, q) is positively invariant with respect to system (9), or equivalently
D(F, q, q) is positively invariant with respect to system (3). �

We are now in a position to establish conditions for a linear state feedback control law u = Fx to be
a solution to the linear constrained regulation problem.

Theorem 3.4. For a matrix F ∈ Rm×n with rankF = m if there exist matrices H and G ∈ Rm×m satisfying:
F (A0 +BF ) = HF (c1)

FA1 = GF (c2)

(H11+ | G11 |)q∗ < 0 and H21 = G21 = 0 (c3)

with
H =

H11 H12

H21 H22

 and G =

G11 G12

G21 G22


H11, G11 ∈ Rs×s, H12, G12 ∈ Rs×(m−s), H21, G21 ∈ R(m−s)×s and H22, G22 ∈ R(m−s)×(m−s)

then u = Fx is a stabilizing control and D(F, q, q) is an admissible domain of attraction for the system (3).

Proof. By virtue of Theorem 3.3, the first conditions (c1)-(c2) and (c3) imply the positive invariance of
the setD(F, q, q). To complete the proof we shall prove that u = Fx is a stabilizing control inD(F, q, q)).
Let us make the change in variables z(t) = Fx(t) and rankF = m, it follows thatż(t) = Hz(t) +Gz(t− r)

z(θ) = ψ(θ), θ ∈ [−r, 0]
(28)

Let x(θ) ∈ D(F, q, q) for θ ∈ [−r, 0], by positive invariance of D(F, q, q) we deduce x(t) ∈ D(F, q, q),
∀t ≥ 0 thus, we have z(t) ∈ D(Im, q, q), then we decompose the system (28) into two systems that we



Asia Pac. J. Math. 2023 10:37 12 of 20

have already established in section 1. So, we have z1(t) ∈ D(Is, q
∗, q∗) and z2(t) ∈ D(Im−s, 0, 0) with

z1 ∈ Rs and z2 ∈ Rm−s.
We are interested in the system ż1(t) = H11z1(t) +G11z1(t− r)

z1(θ) = ψ1(θ), θ ∈ [−r, 0]
(29)

with z1(t) ∈ D(Is, q
∗, q∗) for all t ≥ 0.

Let

V (z1(t)) = max
0≤i≤s

(max(
(z1)i(t)

q∗i
,
−(z1)i(t)

q∗i
))

where z1(t)denotes the trajectory of system (29), (z1)i the i-th component of z1 and q∗i the i-th component
of q∗. We shal prove that under condition (H11+ | G11 |)q∗ < 0 , the positive definite function V is a
Lyapunov function.
Let z1(.) be a solution of system (29) such that at time t the following inequality holds [14], [12]
and [21]

V (z1(t− r)) ≤ V (z1(t)) (30)

there exist i ∈ 1, ..., s such that

V (z1(t)) =
(z1)i(t)

q∗i
or V (z1(t)) =

−(z1)i(t)

q∗i

Let assume that V (z1(t)) =
(z1)i(t)

q∗i
, then

V̇ (z1(t)) =
1

q∗i
[
s∑
j=1

hij(z1)j(t) +
s∑
j=1

gij(z1)j(t− r)]

with hij the components of i-th row of matrix H11 and with gij the components of i-th row of matrix
G11.
Using hij = h+ij − h

−
ij

gij = g+ij − g
−
ij

we obtain
V̇ (z1(t)) =

1

q∗i
[hii(z1)i(t) +

∑
j 6=i h

+
ij(z1)j(t) +

∑
j 6=i h

−
ij(−(z1)j(t))

+
∑s

j=1 g
+
ij(z1)j(t− r) +

∑s
j=1 g

−
ij(−(z1)j(t− r))]

According to the definition of V :

(z1)j(t) ≤
q∗j
q∗i

(z1)i(t) and − (z1)j(t) ≤
q∗j
q∗i

(z1)i(t)
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and from inequality 30:

(z1)j(t− r) ≤
q∗j
q∗i

(z1)i(t) and − (z1)j(t− r) ≤
q∗j
q∗i

(z1)i(t)

it follows that

V̇ (z1(t)) ≤
1

q∗i
[hiiq

∗
i +

∑
j 6=i

h+ijq
∗
j +

∑
j 6=i

h−ijq
∗
j +

s∑
j=1

g+ijq
∗
j +

s∑
j=1

g−ijq
∗
j ]V (z1(t))

By using | gij |= g+ij + g−ij

hij = hii if i = j and hij =| hij | if i 6= j

we have
V̇ (z1(t)) ≤

1

q∗i
[
s∑
j=1

hijq
∗
j +

s∑
j=1

| gij | q∗j ]V (z1(t))

vectorial form is
V̇ (z1(t)) ≤

1

q∗i
[H11+ | G11 |]iq∗V (z1(t))

where, denotes [H11+ | G11 |]i the i-th row of the matrix H11+ | G11 |. From condition (H11+ | G11 |

)q∗ < 0, we have V̇ (z1(t)) < 0.
If V (z1(t)) =

−(z1)i
q∗i

, then a similar argument leads to the same conclusion. So, lim
t→+∞

(z1(t;ψ1(θ))) = 0

and z2(k) = 0, ∀t ≥ 0, therefore lim
t→+∞

(z(t;ψ(θ))) = 0. By rankF = mwe deduce that
lim

t→+∞
(x(t;ϕ(θ))) = 0. �

3.2. Dependent of delay case.

Theorem 3.5. The polyhedral setD(F, q, q) with F ∈ Rm×n and rankF = m is positively invariant dependent

of delay with respect to system (3) if and only if there exist matrices H and G ∈ Rm×m satisfying:
F (A0 +BF ) = HF (c1)

FA1 = GF (c2)

(M11 + r(| V11 | + |W11 |))q∗ ≤ 0 and M21 = V21 = W21 = 0 (c3)

with 

M =

M11 M12

M21 M22

 , V =

V11 V12

V21 V22

 and W =

W11 W12

W21 W22


M11, V11,W11 ∈ Rs×s and M12, V12,W12 ∈ Rs×(m−s)

M21, V21,W21 ∈ R(m−s)×s and M22, V22,W22 ∈ R(m−s)×(m−s)

Proof. This follows readily from Theorem 2.3 and Theorem 3.3. �
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Theorem 3.6. For a matrix F ∈ Rm×n with rankF = m if there exist matrices H and G ∈ Rm×m satisfying:
F (A0 +BF ) = HF (c1)

FA1 = GF (c2)

(M11 + r(| V11 | + |W11 |))q∗ < 0 and M21 = V21 = W21 = 0 (c3)

with 

M =

M11 M12

M21 M22

 , V =

V11 V12

V21 V22

 and W =

W11 W12

W21 W22


M11, V11,W11 ∈ Rs×s and M12, V12,W12 ∈ Rs×(m−s)

M21, V21,W21 ∈ R(m−s)×s and M22, V22,W22 ∈ R(m−s)×(m−s)

Then u = Fx is a stabilizing control and D(F, q, q) is an admissible domain of attraction for the system (3).

Proof. By virtue of Theorem 3.5, the first conditions (c1)-(c2) and (c3) imply the positive invariance of
the setD(F, q, q). To complete the proof, we shall prove that u = Fx is a stabilizing control inD(F, q, q).
The change in variable z(t) = Fx(t) transform the system (3) toż(t) = Hz(t) +Gz(t− r)

z(θ) = ψ(θ), θ ∈ [−r, 0]
(31)

The usual scheme used in the literature for obtaining delay-dependent stability is to use system (19)

instead of system (31) that isż(t) = Mz(t)−
∫ 0
−r[V z(t+ s) +Wz(t− r + s)]ds, ∀t > 0

z(θ) = φ(θ), θ ∈ [−2r, 0]
(32)

The asymptotic stability of (32) guarantees the asymptotic stability of (31) .
Let x(θ) ∈ D(F, q, q) for θ ∈ [−r, 0], by positive invariance ofD(F, q, q) we deduce that x(t) ∈ D(F, q, q),

∀t ≥ 0 thus, we have z(k) ∈ D(Im, q, q), ∀t ≥ 0 with q =

q∗
0

, then we decompose the system (32)

into two systems that we have already established in section 1. So, we have z1(t) ∈ D(Is, q
∗, q∗) and

z2(t) ∈ D(Im−s, 0, 0), ∀t ≥ 0 with z(t) =

z1(t)
z2(t)

. We are interested in the system

ż1(t) = M11z1(t)−
∫ 0
−r[V11z1(t+ µ) +W11z1(t− r + µ)]dµ

z1(θ) = φ1(θ), θ ∈ [−2r, 0]
(33)

with z1(t) ∈ D(Is, q
∗, q∗) for all t ≥ 0.

Let
V (z1(t)) = max

0≤i≤s
(max(

(z1)i(t)

q∗i
,
−(z1)i(t)

q∗i
))



Asia Pac. J. Math. 2023 10:37 15 of 20

where z1(t)denotes the trajectory of system (33), (z1)i the i-th component of z1 and q∗i the i-th component
of q∗. We shal prove that under condition (M11 + r(| V11 | + | W11 |))q∗ < 0 , the positive definite
function V is a Lyapunov function.
Let z1(.) be a solution of system (33) such that at time t the following inequality holds [14], [12]
and [21]

V (z1(t+ l)) ≤ V (z1(t)), for l ∈ [−2r, 0] (34)

there exist i ∈ 1, ..., s such that V (z1(t)) =
(z1)i
q∗i

or V (z1(t)) =
−(z1)i
q∗i

.

Let assume that V (z1(t)) =
(z1)i
q∗i

, then

V̇ (z1(t)) =
1

q∗i
[

s∑
j=1

mij(z1)j(t)−
∫ 0

−r

s∑
j=1

(vij(z1)j(t+ µ) + wij(z1)j(t− r + µ))dµ]

withmij the components of i-th row of matrixM11, vij the components of i-th row of matrix V11 and
wij the components of i-th row of matrixW11.
Using 

mij = m+
ij −m

−
ij

vij = v+ij − v
−
ij

wij = w+
ij − w

−
ij

we obtain

V̇ (z1(t)) =
1

q∗i
[mii(z1)i(t) +

∑
j 6=i(m

+
ij(z1)j(t) +m−ij(−(z1)j(t))) +

∫ 0
−r

∑s
j=1(v

+
ij(z1)j(t+ µ)

+v−ij(−(z1)j(t+ µ)) + w+
ij(z1)j(t− r + µ) + w−ij(−(z1)j)(t− r + µ))dµ]

According to the definition of V :

(z1)j(t) ≤
q∗j
q∗i

(z1)i(t) and − (z1)j(t) ≤
q∗j
q∗i

(z1)i(t)

and from inequality 34:

(z1)j(t+ l) ≤
q∗j
q∗i

(z1)i(t) and − (z1)j(t+ l) ≤
q∗j
q∗i

(z1)i(t), for l ∈ [−2r, 0]

it follows that

V̇ (z1(t)) ≤
1

q∗i
[miiq

∗
i +

∑
j 6=i

(m+
ijq
∗
j +m−ijq

∗
j ) +

∫ 0

−r

s∑
j=1

(v+ijq
∗
j + v−ijq

∗
j + w+

ijq
∗
j + w−ijq

∗
j )dµ]V (z1(t))

then

V̇ (z1(t)) ≤
1

q∗i
[miiq

∗
i +

∑
j 6=i

(m+
ijq
∗
j +m−ijq

∗
j ) + r

s∑
j=1

(v+ijq
∗
j + v−ijq

∗
j + w+

ijq
∗
j + w−ijq

∗
j )]V (z1(t))
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By using 
| vij |= v+ij + v−ij

| wij |= w+
ij + w−ij

mij = mii if i = j and mij =| mij | if i 6= j

we have
V̇ (z1(t)) ≤

1

q∗i
[
s∑
j=1

mijq
∗
j + r

s∑
j=1

(| vij | q∗j+ | wij | q∗j )]V (z1(t))

vectorial form is
V̇ (z1(t)) ≤

1

q∗i
[H11 + r(| V11 | + |W11 |)]iq∗V (z1(t))

where, denotes [H11 + r(| V11 | + |W11 |)]i the i-th row of the matrix
H11 + r(| V11 | + |W11 |). From condition [H11 + r(| V11 | + |W11 |)]q∗ < 0, we have V̇ (z1(t)) < 0.
If V (z1(t)) =

−(z1)i
q∗i

, then a similar argument leads to the same conclusion. So, lim
t→+∞

(z1(t;φ1(θ))) = 0

and z2(t) = 0, ∀t ≥ −2r, hence lim
t→+∞

(z(t;φ(θ))) = 0. By rankF = mwe deduce that
lim

t→+∞
(x(t; (θ))) = 0. �

4. Algorithm

The results presented in Section 3 rely on the existence of matricesH and G. It is evident that the
existence of these matrices is dependent on the matricesA0, A1,B, and F . To establish this dependency,
we introduce the following lemmas:

Lemma 4.1 (Hmamed et al [17]). There exists a matrix H ∈ Rm×m

(G ∈ Rm×m) solution of F (A0 +BF ) = HF

FA1 = GF
(35)

where F ∈ Rm×n and rankF = m,m ≤ n if and only if

rank

F (A0 +BF )

F

 = m (rank

FA1

F

 = m) (36)

Corollary 4.2 ( Porter [25]). If condition (36) is satisfied, then the solution of (35) is given by

H = [F1((A0)11 + F2((A0)21 +BF1)]F
−1
1 (37)

and

G = [F1(A1)11 + F2(A1)21]F
−1
1 (38)

with F =
[
F1 F2

]
, F1 ∈ Rm×m, F2 ∈ Rm×n−m, rankF1 = m,

B ∈ Rn×m, A0 =

(A0)11 (A0)12

(A0)21 (A0)22

, A1 =

(A1)11 (A1)12

(A1)21 (A1)22

,
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(A0)11, (A1)11 ∈ Rm×m, (A0)12, (A1)21 ∈ Rm×n−m,

(A0)21, (A1)21 ∈ Rn−m×m and (A0)22, (A1)22 ∈ Rn−m×n−m.

The search for such a matrix F the solution of the LCRP problem can be done according to the
following algorithm:
Algorithm 1: (Independent of delay case)
Step1: Given a setΣ = {λ1, ..., λn}with<(λi) < 0, i = 1, ..., n. ComputeF which satisfiesσ(A0+BF ) =

Σ (see [28]).
Step2: If rankF = m, go to Step3, else go to Step1 and change set Σ.

Step3: If rank
F (A0 +BF )

F

 = m and rank
FA1

F

 = m, else go to Step1 and change set Σ.

Step4: Compute H and G .
Step5: Compute H and | G |.
Step6: If H and | G | satisfying the condition c3 of theorem 3.4, else go to Step1 and change set Σ.
Algorithm 2: (Dependent of delay case)
Step1: Given a setΣ = {λ1, ..., λn}with<(λi) < 0, i = 1, ..., n. ComputeF which satisfiesσ(A0+BF ) =

Σ (see [28]).
Step2: If rankF = m, go to Step3, else go to Step1 and change set Σ.

Step3: If rank
F (A0 +BF )

F

 = m and rank
FA1

F

 = m, else go to Step1 and change set Σ.

Step4: Compute H and G .
Step5: ComputeM , V andW by equationsM = H +G, V = GH andW = G2.
Step6: ComputeM , | V | and |W |.
Step7: IfM , | V | and |W | satisfying the condition c3 of theorem 3.6, else go to Step1 and change set Σ.

Example

Consider the linear discrete-time system with time delay described by the following

ẋ(t) = A0x(t) +A1x(t− r) +Bu(t) (39)

where A0 =


1 −0.125 0

0 0 −0.5

0 0 0.1

 , A1 =


0 0 0

0 0.1 0

0 0.05 0

, B =


0.5 0.5 0

0 0.25 0.5

0 0 0.5


The control vector u ∈ R2 is subject to constraints

−1 ≤ u1 ≤ 1, −2 ≤ u2 ≤ 2 and u3 = 0
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Note that A0 is unstable. The eigenvalues of A0 are λ1 = 1, λ2 = 0 and λ3 = 0.1.
Let

F =


−3 0 0

0 0.25 0

0 1 −2



in our case we choose H =


−0.5 0 0

0 −0.1875 0.1875

0 1.15 −1.5

 and G =


05 0 0

0 0.1 0

0 0 0

.

We can verify that H and G satisfy the hypothesis of Theorem 2.2

Then u1(k) = −3x1, u2(k) = 1
4x2 and u3(k) = x2 − 2x3 stabilizes the system on

D(F, q, q) = {x ∈ R3 | −1 ≤ −3x1 ≤ 1 ; −2 ≤ 1
4x2 ≤ 2 ; x2 − 2x3 = 0}

= {x ∈ R3 | −1
3 ≤ x1 ≤

1
3 ; −8 ≤ x2 ≤ 8 ; x3 = 1

2x2}

We will draw the solution of system (39), for the initial condition
ϕ1 = [13 , 8, 4]T in D(F, p, q) with a delay r = 2, we notice that the trajectories of our system converge
asymptotically to the equilibrium xe = 0. The same results are obtained for arbitrarily initial conditions
ϕ ∈ D(F, p, q).

Figure 1. The asymptotic stability of the closed-loop system for initial state ϕ1 =

[13 , 8, 4]T with r = 2.
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5. Conclusion

his paper focuses on the study of symmetrical constrained regulation in continuous-time delay
dynamical systems, specifically when the equilibrium point lies on the boundary of the constraint
domain. The investigation considers two cases: delay-independent and delay-dependent.
In each case, the properties of positive invariance are utilized to provide sufficient conditions for a
state feedback control law, represented as u = Fx, to be a solution to the linear constrained regulation
problem.

Furthermore, the paper concludes by presenting an example that demonstrates the practical applica-
tion of the obtained results.
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