BIPOLAR FUZZY IDEALS OF Г-SEMIRINGS

P. MADHU LATHA ${ }^{1,2}$, Y. BHARGAVI ${ }^{3}$, AIYARED IAMPAN ${ }^{4, *}$
${ }^{1}$ Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
${ }^{2}$ Department of Basic Sciences and Humanities, Dhanekula Institute of Engineering and Technology, Vijayawada, Andhra Pradesh, India
${ }^{3}$ Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
${ }^{4}$ Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand
*Corresponding author: aiyared.ia@up.ac.th

Received Sep. 15, 2023

Abstract

This article explores the notion of bipolar fuzzy ideals of Γ-semirings. Later, we characterize bipolar fuzzy ideals of Γ-semirings to crisp Γ-semirings. Further, the relation between bipolar fuzzy ideals of Γ-semirings and their level cuts is investigated. 2020 Mathematics Subject Classification. 03E72, 16Y60, 16 Y80.

Key words and phrases. Γ-semiring; bipolar fuzzy set; bipolar fuzzy ideal.

1. Introduction

In 1965, Zadeh [13] established the idea of fuzzy subsets of a set. Fuzzy sets have several extensions, including intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, neutrosophic sets, etc., which were developed. The idea of bipolar-valued fuzzy sets, which is a significant extension of fuzzy sets whose membership degree interval is extended from the interval $[0,1]$ to the interval $[-1,1]$, was first suggested by Zhang [14] in 1994. A generalization of both semirings and Γ-rings [2,11], the concept of Γ-semirings was first developed by Murali Krishna Rao [10] in 1995. The study of fuzzy ideals and bipolar fuzzy ideals continues as follows. In 1987, Mukherjee and Sen [9] studied fuzzy ideals of rings. In 1992, Malik and Mordeson [7] introduced the concept of fuzzy homomorphisms of rings. In 2009, Lee [6] introduced the notion of bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCIalgebras. In 2011, Ghosh and Samanta [3] studied the relation between the fuzzy left (resp., right)

DOI: 10.28924/APJM/10-38
ideals of Γ-semirings. In 2020, Ragamayi and Bhargavi [12] introduced the notion of homomorphism of vague ideals of Γ-nearrings. In 2022, Kalyani et al. [5] introduced and studied the theory of bipolar fuzzy sublattices and bipolar fuzzy ideals of lattices. Mohana Rupa et al. [8] introduced and studied the concept of bipolar fuzzy d-ideals of d-algebras and characterized bipolar fuzzy d-ideals to the crisp d-ideals. As a continuity of all these, we introduced the concept of bipolar fuzzy sets of Γ-semirings in 2023. Now, we are studying the concept of bipolar fuzzy ideals of Γ-semirings.

2. Preliminaries

First, we will review the definition of the Γ-semiring, which will be the space we will study in this article.

Definition 2.1. [1] Let M_{S} and Γ be two additive commutative semigroups. Then M_{S} is called a Γ-semiring if there exists a mapping $M_{S} \times \Gamma \times M_{S} \rightarrow M_{S},(j, \ddot{\alpha}, n) \mapsto j \ddot{\alpha} n$ for $j, n \in M_{S}$ and $\ddot{\alpha} \in \Gamma$, satisfying the following conditions:
(i) $j \ddot{\alpha}(n+u)=j \ddot{\alpha} n+j \ddot{\alpha} u$
(ii) $(j+n) \ddot{\alpha} u=j \ddot{\alpha} u+n \ddot{\alpha} u$
(iii) $j(\ddot{\alpha}+\ddot{\beta}) u=j \ddot{\alpha} u+j \ddot{\beta} u$
(iv) $j \ddot{\alpha}(n \ddot{\beta} u)=(j \ddot{\alpha} n) \ddot{\beta} u, \forall j, n, u \in M_{S}, \ddot{\alpha}, \ddot{\beta} \in \Gamma$.

Definition 2.2. [1] Let D be any non-empty set. A mapping $\digamma: D \rightarrow[0,1]$ is called a fuzzy subset of D.

Definition 2.3. [14] Let D be the universe of discourse. A bipolar-valued fuzzy set \digamma in D is an object having the form $\digamma:=\left\{\ddot{d}, \digamma^{-}(\ddot{d}), \digamma^{+}(\ddot{d}) \mid \ddot{d} \in D\right\}$, where $\digamma^{-}: D \rightarrow[-1,0]$ and $\digamma^{+}: D \rightarrow[0,1]$ are mappings.

For the sake of simplicity, we shall use the symbol $\digamma=\left\{D ; \digamma^{-}, \digamma^{+}\right\}$for the bipolar-valued fuzzy set $\digamma:=\left\{\ddot{d}, \digamma^{-}(\ddot{d}), \digamma^{+}(\ddot{d}) \mid \ddot{d} \in D\right\}$, and use the notion of bipolar fuzzy sets instead of the notion of bipolar-valued fuzzy sets.

Definition 2.4. [14] Let $\digamma=\left\{D ; \digamma^{-}, \digamma^{+}\right\}$be a bipolar fuzzy set and $s \times t \in[-1,0] \times[0,1]$, the sets $\digamma_{s}^{N}=\left\{\ddot{d} \in D \mid \digamma^{-}(\ddot{d}) \leq s\right\}$ and $\digamma_{t}^{P}=\left\{\ddot{d} \in D \mid \digamma^{+}(\ddot{d}) \geq t\right\}$ are called negative s-cut and positive t-cut, respectively. For $s \times t \in[-1,0] \times[0,1]$, the set $\digamma_{(s, t)}=\digamma_{s}^{N} \cap \digamma_{t}^{P}$ is called (s, t)-set of $\digamma=\left\{D ; \digamma^{-}, \digamma^{+}\right\}$.

Definition 2.5. [14] Let $\digamma=\left\{D ; \digamma^{-}, \digamma^{+}\right\}$and $\varphi=\left\{D ; \varphi^{-}, \varphi^{+}\right\}$be two bipolar fuzzy sets of a universe of discourse D. The intersection of \digamma and φ is defined as

$$
\left(\digamma^{-} \cap \varphi^{-}\right)(\ddot{d})=\min \left\{\digamma^{-}(\ddot{d}), \varphi^{-}(\ddot{d})\right\} \text { and }\left(\digamma^{+} \cap \varphi^{+}\right)(\ddot{d})=\min \left\{\digamma^{+}(\ddot{d}), \varphi^{+}(\ddot{d})\right\}, \forall \ddot{d} \in D .
$$

The union of \digamma and φ is defined as

$$
\left(\digamma^{-} \cup \varphi^{-}\right)(\ddot{d})=\max \left\{\digamma^{-}(\ddot{d}), \varphi^{-}(\ddot{d})\right\} \text { and }\left(\digamma^{+} \cup \varphi^{+}\right)(\ddot{d})=\max \left\{\digamma^{+}(\ddot{d}), \varphi^{+}(\ddot{d})\right\}, \forall \ddot{d} \in D \text {. }
$$

A bipolar fuzzy set \digamma is contained in another bipolar fuzzy set φ, written with $\digamma \subseteq \varphi$ if

$$
\digamma^{-}(\ddot{d}) \geq \varphi^{-}(\ddot{d}) \text { and } \digamma^{+}(\ddot{d}) \leq \varphi^{+}(\ddot{d}), \forall \ddot{d} \in D .
$$

Definition 2.6. [4] Let $g: C \rightarrow D$ be a homomorphism from a set C onto a set D and let $\digamma=$ $\left\{C ; \digamma^{-}, \digamma^{+}\right\}$be a bipolar fuzzy set of C and $\varphi=\left\{D ; \varphi^{-}, \varphi^{+}\right\}$be a bipolar fuzzy set of D, then the homomorphic image $g(\digamma)$ of \digamma is $g(\digamma)=\left\{(g(\digamma))^{-},(g(\digamma))^{+}\right\}$defined as for all $\ddot{d} \in D$,

$$
(g(\digamma))^{-}(\ddot{d})=\left\{\begin{array}{l}
\min \left\{\digamma^{-}(\ddot{u}) \mid \ddot{u} \in g^{-1}(\ddot{d})\right\}, \text { if } g^{-1}(\ddot{d}) \neq \emptyset \\
0, \text { otherwise }
\end{array}\right.
$$

and

$$
(g(\digamma))^{+}(\ddot{d})=\left\{\begin{array}{l}
\max \left\{\digamma^{+}(\ddot{u}) \mid \ddot{u} \in g^{-1}(\ddot{d})\right\}, \text { if } g^{-1}(\ddot{d}) \neq \emptyset \\
0, \text { otherwise } .
\end{array}\right.
$$

The pre-image $g^{-1}(\varphi)$ of φ under g is a bipolar fuzzy set defined as $\left(g^{-1}(\varphi)\right)^{-}(\ddot{u})=\varphi^{-}(g(\ddot{u}))$ and $\left(g^{-1}(\varphi)\right)^{+}(\ddot{u})=\varphi^{+}(g(\ddot{u})), \forall \ddot{u} \in C$.

Definition 2.7. [1] Let T be a subset of a Γ-semiring M_{S}. The characteristic function of T taking values in $[0,1]$ is a fuzzy set given by

$$
\delta_{T}(\ddot{t})=\left\{\begin{array}{l}
1, \text { if } \ddot{t} \in T \\
0, \text { otherwise } .
\end{array}\right.
$$

Then δ_{T} is a fuzzy characteristic function of T in $[0,1]$.

Definition 2.8. [1] Let T be a subset of a Γ-semiring M_{S}. The bipolar fuzzy characteristic function of T is given by

$$
\delta_{T}^{+}(\ddot{t})=\left\{\begin{array}{l}
1, \text { if } \ddot{t} \in T \\
0, \text { otherwise }
\end{array} \text { and } \delta_{T}^{-}(\ddot{t})=\left\{\begin{array}{l}
-1, \text { if } \ddot{t} \in T \\
0, \text { otherwise } .
\end{array}\right.\right.
$$

Then δ_{T} is a bipolar fuzzy characteristic function of T.
Definition 2.9. [1] A Bipolar fuzzy set $\digamma=\left\{M_{S} ; \digamma^{-}, \digamma^{+}\right\}$in M_{S} is called a bipolar fuzzy Γ-semiring of M_{S} if it satisfies the following properties: for all $\varrho, \varsigma \in M_{S}$ and $\ddot{\gamma} \in \Gamma$,
(i) $\digamma^{-}(\varrho+\varsigma) \leq \max \left\{\digamma^{-}(\varrho), \digamma^{-}(\varsigma)\right\}$
(ii) $\digamma^{-}(\varrho \ddot{\gamma} \varsigma) \leq \max \left\{\digamma^{-}(\varrho), \digamma^{-}(\varsigma)\right\}$
(iii) $\digamma^{+}(\varrho+\varsigma) \geq \min \left\{\digamma^{+}(\varrho), \digamma^{+}(\varsigma)\right\}$
(iv) $\digamma^{+}(\varrho \ddot{\gamma} \varsigma) \geq \min \left\{\digamma^{+}(\varrho), \digamma^{+}(\varsigma)\right\}$.

Definition 2.10. [4] An additive subsemigroup B of a Γ-semiring M_{S} is called a right (resp., left) ideal of M_{S} if $\varrho \ddot{\gamma} \varsigma \in B$ (resp., $\varsigma \ddot{\gamma} \varrho \in B$) for all $\varrho \in B, \ddot{\gamma} \in \Gamma$ and $\varsigma \in M_{S}$. A left and right ideal of M_{S} is called an ideal of M_{S}.

Definition 2.11. [1] Let \digamma be a fuzzy subset of a Γ-semiring M_{S}. Then \digamma is called a fuzzy left (resp., right) ideal of M_{S} if for all $\varrho, \varsigma \in M_{S}$ and $\ddot{\gamma} \in \Gamma$,
(i) $\digamma(\varrho+\varsigma) \geq \min \{\digamma(\varrho), \digamma(\varsigma)\}$
(ii) $\digamma(\varrho \ddot{\gamma} \varsigma) \geq \digamma(\varsigma)($ resp., $\geq \digamma(\varrho))$.

Also, \digamma is called a fuzzy ideal of M_{S} if it is both a fuzzy left ideal and a fuzzy right ideal of M_{S}.
Notations: Throughout the following session, we use the following notations:
(1) M_{S} for a Γ-semiring
(2) BF for bipolar fuzzy
(3) BFS for a bipolar fuzzy set
(4) BFGS for a bipolar fuzzy Γ-semiring
(5) BFI for a bipolar fuzzy ideal.

3. Bipolar Fuzzy Ideals of Γ-semirings

In this session, we introduce and study the notion of BFI of Γ-semirings, and we characterize and discuss a few properties related to BFI of Γ-semirings.

Definition 3.1. A BFS $\digamma=\left\{M_{S} ; \digamma^{-}, \digamma^{+}\right\}$in M_{S} is called a BF left (resp., right) ideal of M_{S} if it satisfies the following properties: for any $\varrho, \varsigma \in M_{S}$ and $\ddot{\gamma} \in \Gamma$,
(i) $\digamma^{-}(\varrho+\varsigma) \leq \max \left\{\digamma^{-}(\varrho), \digamma^{-}(\varsigma)\right\}$
(ii) $\digamma^{-}(\varrho \ddot{\gamma} \varsigma) \leq \digamma^{-}(\varsigma)\left(\right.$ resp., $\left.\leq \digamma^{-}(\varrho)\right)$
(iii) $\digamma^{+}(\varrho+\varsigma) \geq \min \left\{\digamma^{+}(\varrho), \digamma^{+}(\varsigma)\right\}$
(iv) $\digamma^{+}(\varrho \ddot{\gamma} \varsigma) \geq \digamma^{+}(\varsigma)\left(\right.$ resp., $\left.\geq \digamma^{+}(\varrho)\right)$.

Also, a BFS \digamma in M_{S} is called a BFI of M_{S} if it is both a BF left ideal and a BF right ideal of M_{S}.
Example 3.2. Let \mathbb{N} be the set of all natural numbers with zero, and let \mathbb{Z}^{+}be the set of all positive even integers. Then \mathbb{N} and \mathbb{Z}^{+}are additive commutative semigroups. Define the mapping $\mathbb{N} \times \mathbb{Z}^{+} \times \mathbb{N} \rightarrow \mathbb{N}$ by $\ddot{a} \ddot{\partial} \ddot{b}$ usual product of $\ddot{a}, \ddot{\partial}, \ddot{b}, \forall \ddot{a}, \ddot{b} \in \mathbb{N}, \ddot{\partial} \in \mathbb{Z}^{+}$. Then \mathbb{N} is a Γ-semiring.

Define a BFS $\digamma=\left\{\mathbb{N} ; \digamma^{-}, \digamma^{+}\right\}$, where $\digamma^{-}: \mathbb{N} \rightarrow[-1,0]$ and $\digamma^{+}: \mathbb{N} \rightarrow[0,1]$ as follows:

$$
\digamma^{-}(\varrho)=\left\{\begin{array}{l}
-0.8, \text { if } \varrho \text { is even or } 0 \\
-0.5, \text { otherwise }
\end{array} \text { and } \digamma^{+}(\varrho)=\left\{\begin{array}{l}
0.8, \text { if } \varrho \text { is even or } 0 \\
0.5, \text { otherwise }
\end{array}\right.\right.
$$

Then \digamma is a BFI of \mathbb{N}.
Theorem 3.3. A BFS $\digamma=\left\{M_{S} ; \digamma^{-}, \digamma^{+}\right\}$in M_{S} is a BFI of M_{S} if and only if the level cuts are ideals of M_{S}, i.e., for all $s \times t \in[-1,0] \times[0,1], \emptyset \neq \digamma_{s}^{N}$ and $\emptyset \neq \digamma_{t}^{P}$ are ideals of M_{S}.

Proof. Suppose $\digamma=\left\{M_{S} ; \digamma^{-}, \digamma^{+}\right\}$is a BFI of M_{S}. Let $s \times t \in[-1,0] \times[0,1]$ be such that $\digamma_{s}^{N} \neq \emptyset$ and $\digamma_{t}^{P} \neq \emptyset$. Let $v, \tau \in \digamma_{s}^{N}, \varrho, \varsigma \in \digamma_{t}^{P}$ and $\ddot{\gamma} \in \Gamma$. Then $\digamma^{-}(v) \leq s, \digamma^{-}(\tau) \leq s$ and $\digamma^{+}(\varrho) \geq t, \digamma^{+}(\varsigma) \geq t$. Since $\digamma=\left\{M_{S} ; \digamma^{-}, \digamma^{+}\right\}$is a BFI of M_{S}, we have
(i) $\digamma^{-}(v+\tau) \leq \max \left\{\digamma^{-}(v), \digamma^{-}(\tau)\right\} \leq s$
(ii) $\digamma^{-}(v \ddot{\gamma} \tau) \leq \digamma^{-}(\tau) \leq s$ (resp., $\left.\leq \digamma^{-}(v) \leq s\right)$
(iii) $\digamma^{+}(\varrho+\varsigma) \geq \min \left\{\digamma^{+}(\varrho), \digamma^{+}(\varsigma)\right\} \geq t$
(iv) $\digamma^{+}(\varrho \ddot{\gamma} \varsigma) \geq \digamma^{+}(\varsigma) \geq t$ (resp., $\left.\geq \digamma^{+}(\varrho) \geq t\right)$.

Then $(v+\tau) \in \digamma_{s}^{N}, v \ddot{\gamma} \tau \in \digamma_{s}^{N}$ and $\varrho+\varsigma \in \digamma_{t}^{P}, \varrho \ddot{\gamma} \varsigma \in \digamma_{t}^{P}$. Thus \digamma_{s}^{N} and \digamma_{t}^{P} are ideals of M_{S}.
Conversely, suppose that the level cuts \digamma_{s}^{N} and \digamma_{t}^{P} are ideals of M_{S}. Let $v, \tau \in \digamma_{s}^{N}, \varrho, \varsigma \in \digamma_{t}^{P}$ and $\ddot{\gamma} \in \Gamma$. Then $v+\tau \in \digamma_{s}^{N}, v \ddot{\gamma} \tau \in \digamma_{s}^{N}$ and $\varrho+\varsigma \in \digamma_{t}^{P}, \varrho \ddot{\gamma} \varsigma \in \digamma_{t}^{P}$. Choose $s=\max \left\{\digamma^{-}(v), \digamma^{-}(\tau)\right\}$ and $t=\min \left\{\digamma^{+}(\varrho), \digamma^{+}(\varsigma)\right\}$. Then
(i) $\digamma^{-}(v+\tau) \leq s=\max \left\{\digamma^{-}(v), \digamma^{-}(\tau)\right\}$.
(ii) $\digamma^{-}(v \ddot{\gamma} \tau) \leq s=\max \left\{\digamma^{-}(v), \digamma^{-}(\tau)\right\}$. If $\digamma^{-}(v)<\digamma^{-}(\tau)$, then $\digamma^{-}(v \ddot{\gamma} \tau) \leq s=$ $\max \left\{\digamma^{-}(v), \digamma^{-}(\tau)\right\}=\digamma^{-}(\tau)$. If $\digamma^{-}(\tau)<\digamma^{-}(v)$, then $\digamma^{-}(v \ddot{\gamma} \tau) \leq s=\max \left\{\digamma^{-}(v), \digamma^{-}(\tau)\right\}=\digamma^{-}(v)$. (iii) $\digamma^{+}(\varrho+\varsigma) \geq t=\min \left\{\digamma^{+}(\varrho), \digamma^{+}(\varsigma)\right\}$.
(iv) $\digamma^{+}(\varrho \ddot{\gamma} \varsigma) \geq t=\min \left\{\digamma^{+}(\varrho), \digamma^{+}(\varsigma)\right\}$. If $\digamma^{+}(\varsigma)<\digamma^{+}(\varrho)$, then $\digamma^{+}(\varrho \ddot{\gamma} \varsigma) \geq t=\min \left\{\digamma^{+}(\varrho), \digamma^{+}(\varsigma)\right\}=$ $\digamma^{+}(\varsigma)$. If $\digamma^{+}(\varrho)<\digamma^{+}(\varsigma)$, then $\digamma^{+}(\varrho \ddot{\gamma} \varsigma) \geq t=\min \left\{\digamma^{+}(\varrho), \digamma^{+}(\varsigma)\right\}=\digamma^{+}(\varrho)$. Thus $\digamma=\left\{M_{S} ; \digamma^{-}, \digamma^{+}\right\}$ is a BFI of M_{S}.

Theorem 3.4. If $\digamma=\left\{M_{S} ; \digamma^{-}, \digamma^{+}\right\}$and $\varphi=\left\{M_{S} ; \varphi^{-}, \varphi^{+}\right\}$are two BFIs of M_{S}, then $\digamma \cap \varphi$ is a BFI of M_{S}.
Proof. Assume that $\digamma=\left\{M_{S} ; \digamma^{-}, \digamma^{+}\right\}$and $\varphi=\left\{M_{S} ; \varphi^{-}, \varphi^{+}\right\}$are BFIs of M_{S}. Let $\varrho, \varsigma \in M_{S}$ and $\ddot{\gamma} \in \Gamma$. Then

$$
\begin{aligned}
\left(\digamma^{-} \cap \varphi^{-}\right)(\varrho+\varsigma) & =\min \left\{\digamma^{-}(\varrho+\varsigma), \varphi^{-}(\varrho+\varsigma)\right\} \\
& \leq \min \left\{\max \left\{\digamma^{-}(\varrho), \digamma^{-}(\varsigma)\right\}, \max \left\{\varphi^{-}(\varrho), \varphi^{-}(\varsigma)\right\}\right\} \\
& \leq \min \left\{\max \left\{\digamma^{-}(\varrho), \varphi^{-}(\varrho)\right\}, \max \left\{\digamma^{-}(\varsigma), \varphi^{-}(\varsigma)\right\}\right\} \\
& \leq \max \left\{\min \left\{\digamma^{-}(\varrho), \varphi^{-}(\varrho)\right\}, \min \left\{\digamma^{-}(\varsigma), \varphi^{-}(\varsigma)\right\}\right\} \\
& =\max \left\{\left(\digamma^{-} \cap \varphi^{-}\right)(\varrho),\left(\digamma^{-} \cap \varphi^{-}\right)(\varsigma)\right\}, \\
\left(\digamma^{-} \cap \varphi^{-}\right)(\varrho \ddot{\gamma} \varsigma)= & \min \left\{\digamma^{-}(\varrho \ddot{\gamma} \varsigma), \varphi^{-}(\varrho \ddot{\gamma} \varsigma)\right\} \\
& \leq \min \left\{\digamma^{-}(\varsigma), \varphi^{-}(\varsigma)\right\}\left(\text { resp., } \leq \min \left\{\digamma^{-}(\varrho), \varphi^{-}(\varrho)\right\}\right) \\
& =\left(\digamma^{-} \cap \varphi^{-}\right)(\varsigma), \\
\left(\digamma^{+} \cap \varphi^{+}\right)(\varrho+\varsigma) & =\min \left\{\digamma^{+}(\varrho+\varsigma), \varphi^{+}(\varrho+\varsigma)\right\} \\
& \geq \min \left\{\max \left\{\digamma^{+}(\varrho), \digamma^{+}(\varsigma)\right\}, \max \left\{\varphi^{+}(\varrho), \varphi^{+}(\varsigma)\right\}\right\} \\
& \geq \min \left\{\max \left\{\digamma^{+}(\varrho), \varphi^{+}(\varrho)\right\}, \max \left\{\digamma^{+}(\varsigma), \varphi^{+}(\varsigma)\right\}\right\} \\
& \geq \max \left\{\min \left\{\digamma^{+}(\varrho), \varphi^{+}(\varrho)\right\}, \min \left\{\digamma^{+}(\varsigma), \varphi^{+}(\varsigma)\right\}\right\} \\
& =\max \left\{\left(\digamma^{+} \cap \varphi^{+}\right)(\varrho),\left(\digamma^{+} \cap \varphi^{+}\right)(\varsigma)\right\},
\end{aligned}
$$

$$
\begin{aligned}
\left(\digamma^{+} \cap \varphi^{+}\right)(\varrho \ddot{\gamma} \varsigma) & =\min \left\{\digamma^{+}(\varrho \ddot{\gamma} \varsigma), \varphi^{+}(\varrho \ddot{\gamma} \varsigma)\right\} \\
& \geq \min \left\{\digamma^{+}(\varsigma), \varphi^{+}(\varsigma)\right\}\left(\text { resp., } \geq \min \left\{\digamma^{+}(\varrho), \varphi^{+}(\varrho)\right\}\right) \\
& =\left(\digamma^{+} \cap \varphi^{+}\right)(\varsigma) .
\end{aligned}
$$

Hence, $\digamma \cap \varphi$ is a BFI of M_{S}.
Corollary 3.5. The intersection of an arbitrary family of BFIs of M_{S} is a BFI of M_{S}. In general, the union of two BFIs of M_{S} is not a BFI of M_{S}.

Example 3.6. Consider the additive Abelian groups $Z_{4}=\{0,1,2,3\}$ and $\Upsilon=\{0,2\}$. Define $Z_{4} \times \Upsilon \times$ $Z_{4} \rightarrow Z_{4}$ by $\varrho \ddot{\alpha} \varsigma$ usual product of $\varrho, \ddot{\alpha}, \varsigma, \forall \varrho, \varsigma \in Z_{4}, \ddot{\alpha} \in \Upsilon$. Then Z_{4} is a Γ-semiring. Define a BFS $\digamma=\left\{Z_{4} ; \digamma^{-}, \digamma^{+}\right\}$, where $\digamma^{-}: Z_{4} \rightarrow[-1,0]$ and $\digamma^{+}: Z_{4} \rightarrow[0,1]$ as follows:

$$
\digamma^{-}(\varrho)=\left\{\begin{array}{l}
-0.8, \text { if } \varrho=0 \\
-0.6, \text { if } \varrho=1 \\
-0.4, \text { otherwise }
\end{array} \quad \text { and } \digamma^{+}(\varrho)=\left\{\begin{array}{l}
0.9, \text { if } \varrho=0 \\
0.7, \text { if } \varrho=1 \\
0.5, \text { otherwise }
\end{array}\right.\right.
$$

Define a BFS $\varphi=\left\{Z_{4} ; \varphi^{-}, \varphi^{+}\right\}$, where $\varphi^{-}: Z_{4} \rightarrow[-1,0]$ and $\varphi^{+}: Z_{4} \rightarrow[0,1]$ as follows:

$$
\varphi^{-}(\varrho)=\left\{\begin{array}{l}
-0.7, \text { if } \varrho=0 \\
-0.6, \text { if } \varrho=2 \\
-0.4, \text { otherwise }
\end{array} \quad \text { and } \varphi^{+}(\varrho)=\left\{\begin{array}{l}
0.8, \text { if } \varrho=0 \\
0.6, \text { if } \varrho=2 \\
0.4, \text { otherwise }
\end{array}\right.\right.
$$

Then \digamma and φ are BFIs of Z_{4}, but $\digamma \cup \varphi$ is not a BFI of Z_{4}.
Theorem 3.7. Let \digamma and φ be two BFIs of M_{S}. If $\digamma \subseteq \varphi$ or $\varphi \subseteq \digamma$, then $\digamma \cup \varphi$ is a BFI of M_{S}.
Proof. Suppose $\digamma \subseteq \varphi$. Let $\varrho, \varsigma \in M_{S}$ and $\ddot{\gamma} \in \Gamma$. Then

$$
\begin{aligned}
\left(\digamma^{-} \cup \varphi^{-}\right)(\varrho+\varsigma) & =\max \left\{\digamma^{-}(\varrho+\varsigma), \varphi^{-}(\varrho+\varsigma)\right\} \\
& =\digamma^{-}(\varrho+\varsigma) \\
& \leq \max \left\{\digamma^{-}(\varrho), \digamma^{-}(\varsigma)\right\} \\
& =\max \left\{\max \left\{\digamma^{-}(\varrho), \varphi^{-}(\varrho)\right\}, \max \left\{\digamma^{-}(\varsigma), \varphi^{-}(\varsigma)\right\}\right\} \\
& =\max \left\{\left(\digamma^{-} \cup \varphi^{-}\right)(\varrho),\left(\digamma^{-} \cup \varphi^{-}\right)(\varsigma)\right\}, \\
\left(\digamma^{-} \cup \varphi^{-}\right)(\varrho \ddot{\gamma} \varsigma) & =\max \left\{\digamma^{-}(\varrho \ddot{\gamma} \varsigma), \sigma^{-}(\varrho \ddot{\gamma} \varsigma)\right\} \\
& =\digamma^{-}(\varrho \ddot{\gamma} \varsigma) \\
& \leq \digamma^{-}(\varsigma)\left(\operatorname{resp} ., \leq \digamma^{-}(\varrho)\right) \\
& =\max \left\{\digamma^{-}(\varsigma), \varphi^{-}(\varsigma)\right\} \\
& =\left(\digamma^{-} \cup \varphi^{-}\right)(\varsigma),
\end{aligned}
$$

$$
\begin{aligned}
\left(\digamma^{+} \cup \varphi^{+}\right)(\varrho+\varsigma) & =\max \left\{\digamma^{+}(\varrho+\varsigma), \varphi^{+}(\varrho+\varsigma)\right\} \\
& =\varphi^{+}(\varrho+\varsigma) \\
& \geq \min \left\{\varphi^{+}(\varrho), \varphi^{+}(\varsigma)\right\} \\
& =\min \left\{\max \left\{\digamma^{+}(\varrho), \varphi^{+}(\varrho)\right\}, \max \left\{\digamma^{+}(\varsigma), \varphi^{+}(\varsigma)\right\}\right\} \\
& =\min \left\{\left(\digamma^{+} \cup \varphi^{+}\right)(\varrho),\left(\digamma^{+} \cup \varphi^{+}\right)(\varsigma)\right\}, \\
\left(\digamma^{+} \cup \varphi^{+}\right)(\varrho \ddot{\gamma} \varsigma) & =\max \left\{\digamma^{+}(\varrho \ddot{\gamma} \varsigma), \varphi^{+}(\varrho \ddot{\gamma} \varsigma)\right\} \\
& =\varphi^{+}(\varrho \ddot{\gamma} \varsigma) \\
& \geq \varphi^{+}(\varsigma)\left(\operatorname{resp} ., \geq \varphi^{+}(\varrho)\right) \\
& =\max \left\{\digamma^{+}(\varsigma), \varphi^{+}(\varsigma)\right\} \\
& =\left(\digamma^{+} \cup \varphi^{+}\right)(\varsigma) .
\end{aligned}
$$

Hence, $\digamma \cup \varphi$ is a BFI of M_{S}. Similarly, if $\varphi \subseteq \digamma$, we get $\digamma \cup \varphi$ is a BFI of M_{S}.

Theorem 3.8. Let κ be a homomorphism from a Γ-semiring M_{S} onto a Γ-semiring N_{S}. If φ is a BFI of N_{S}, then the pre-image $\kappa^{-1}(\varphi)$ of φ is a BFI of M_{S}.

Proof. Assume that φ is a BFI of N_{S}. Let $\varrho, \varsigma \in M_{S}$ and $\ddot{\gamma} \in \Gamma$. Then

$$
\begin{aligned}
\left(\kappa^{-1}(\varphi)^{-}\right)(\varrho+\varsigma) & =\varphi^{-}(\kappa(\varrho+\varsigma)) \\
& =\varphi^{-}(\kappa(\varrho)+\kappa(\varsigma)) \\
& \leq \max \left\{\varphi^{-}(\kappa(\varrho)), \varphi^{-}(\kappa(\varsigma))\right\} \\
& =\max \left\{\kappa^{-1}\left(\varphi^{-}(\varrho)\right), \kappa^{-1}\left(\varphi^{-}(\varsigma)\right)\right\}, \\
\left(\kappa^{-1}(\varphi)^{-}\right)(\varrho \ddot{\gamma} \varsigma) & =\varphi^{-}(\kappa(\varrho \ddot{\gamma} \varsigma)) \\
& =\varphi^{-}(\kappa(\varrho) * \kappa(\varsigma)) \\
& \leq \varphi^{-}(\kappa(\varsigma))\left(\text { resp., } \leq \varphi^{-}(\kappa(\varrho))\right) \\
& =\left(\kappa^{-1}(\varphi)^{-}\right)(\varsigma), \\
\left(\kappa^{-1}(\varphi)^{+}\right)(\varrho+\varsigma) & =\varphi^{+}(\kappa(\varrho+\varsigma)) \\
& =\varphi^{+}(\kappa(\varrho)+\kappa(\varsigma)) \\
& \geq \min \left\{\varphi^{+}(\kappa(\varrho)), \varphi^{+}(\kappa(\varsigma))\right\} \\
& =\min \left\{\kappa^{-1}\left(\varphi^{+}(\varrho)\right), \kappa^{-1}\left(\varphi^{+}(\varsigma)\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
\left(\kappa^{-1}(\varphi)^{+}\right)(\varrho \ddot{\gamma} \varsigma) & =\varphi^{+}(\kappa(\varrho \ddot{\gamma} \varsigma)) \\
& =\varphi^{+}(\kappa(\varrho) * \kappa(\varsigma)) \\
& \geq \varphi^{+}(\kappa(\varsigma))\left(\text { resp., } \geq \varphi^{+}(\kappa(\varrho))\right) \\
& =\left(\kappa^{-1}(\varphi)^{+}\right)(\varsigma) .
\end{aligned}
$$

Hence, $\kappa^{-1}(\varphi)$ is a BFI of M_{S}.
Theorem 3.9. Let κ be a homomorphism from a Γ-semiring M_{S} onto a Γ-semiring N_{S}. If \digamma is a BFI of M_{S}, then the homomorphic image $\kappa(\digamma)$ of \digamma is a BFI of N_{S}.

Proof. Assume that \digamma is a BFI of M_{S}. Let $\varrho, \varsigma \in N_{S}$ and $\ddot{\gamma} \in \Gamma$. Suppose neither $\kappa^{-1}(\varrho)$ nor $\kappa^{-1}(\varsigma)$ is non-empty. Since κ is onto, there exist $v, \tau \in M_{S}$ such that $\kappa(v)=\varrho$ and $\kappa(\tau)=\varsigma$ and it follows that $v+\tau \in \kappa^{-1}(\varrho+\varsigma)$ and $v \ddot{\gamma} \tau \in \kappa^{-1}(\varrho \ddot{\gamma} \varsigma)$. Thus

$$
\begin{aligned}
(\kappa(\digamma))^{-}(\varrho+\varsigma)= & \min \left\{\digamma^{-}(\ddot{z}) \mid \ddot{z} \in \kappa^{-1}(\varrho+\varsigma)\right\} \\
& =\min \left\{\digamma^{-}(v+\tau) \mid v \in \kappa^{-1}(\varrho), \tau \in \kappa^{-1}(\varsigma)\right\} \\
& \leq \min \left\{\max \left\{\digamma^{-}(v), \digamma^{-}(\tau)\right\} \mid v \in \kappa^{-1}(\varrho), \tau \in \kappa^{-1}(\varsigma)\right\} \\
& =\min \left\{\max \left\{\digamma^{-}(v) \mid v \in \kappa^{-1}(\varrho)\right\}, \max \left\{\digamma^{-}(\tau) \mid \tau \in \kappa^{-1}(\varsigma)\right\}\right\} \\
& \leq \max \left\{\min \left\{\digamma^{-}(v) \mid v \in \kappa^{-1}(\varrho)\right\}, \min \left\{\digamma^{-}(\tau) \mid \tau \in \kappa^{-1}(\varsigma)\right\}\right\} \\
& =\max \left\{(\kappa(\digamma))^{-}(\varrho),(\kappa(\digamma))^{-}(\varsigma)\right\}, \\
(\kappa(\digamma))^{-}(\varrho \ddot{\gamma} \varsigma)= & \min \left\{\digamma^{-}(\ddot{z}) \mid \ddot{z} \in \kappa^{-1}(\varrho \ddot{\gamma} \varsigma)\right\} \\
= & \min \left\{\digamma^{-}(v \ddot{\gamma} \tau) \mid v \in \kappa^{-1}(\varrho), \tau \in \kappa^{-1}(\varsigma)\right\} \\
\leq & \min \left\{\digamma^{-}(\tau) \mid \tau \in \kappa^{-1}(\varsigma)\right\}\left(\operatorname{resp} ., \leq \min \left\{\digamma^{-}(v) \mid v \in \kappa^{-1}(\varrho)\right\}\right) \\
= & (\kappa(\digamma))^{-}(\varsigma), \\
(\kappa(\digamma))^{+}(\varrho+\varsigma)= & \max \left\{\digamma^{+}(\ddot{z}) \mid \ddot{z} \in \kappa^{-1}(\varrho+\varsigma)\right\} \\
& =\max \left\{\digamma^{+}(v+\tau) \mid v \in \kappa^{-1}(\varrho), \tau \in g^{-1}(\varsigma)\right\} \\
& \geq \max \left\{\min \left\{\digamma^{+}(v), \digamma^{+}(\tau)\right\} \mid v \in \kappa^{-1}(\varrho), \tau \in \kappa^{-1}(\varsigma)\right\} \\
& \geq \min \left\{\max \left\{\digamma^{+}(v) \mid v \in \kappa^{-1}(\varrho)\right\}, \max \left\{\digamma^{+}(\tau) \mid \tau \in \kappa^{-1}(\varsigma)\right\}\right\} \\
& =\min \left\{(\kappa(\digamma))^{+}(\varrho),(\kappa(\digamma))^{+}(\varsigma)\right\}, \\
(\kappa(\digamma))^{+}(\varrho \ddot{\gamma} \varsigma)= & \max \left\{\digamma^{+}(\ddot{z}) \mid \ddot{z} \in \kappa^{-1}(\varrho \ddot{\gamma} \varsigma)\right\} \\
= & \max \left\{\digamma^{+}(v \ddot{\gamma} \tau) \mid v \in \kappa^{-1}(\varrho), \tau \in \kappa^{-1}(\varsigma)\right\} \\
\geq & \max \left\{\digamma^{+}(\tau) \mid \tau \in \kappa^{-1}(\varsigma)\right\}\left(\operatorname{resp} ., \geq \max \left\{\digamma^{+}(v) \mid v \in \kappa^{-1}(\varrho)\right\}\right) \\
= & (\kappa(\digamma))^{+}(\varsigma) .
\end{aligned}
$$

Hence, $\kappa(\digamma)$ is a BFI of N_{S}.

Theorem 3.10. Let \digamma be a non-empty subset of M_{S}. Then the BF characteristic set of $\digamma, \delta_{\digamma}$ is a BF left (resp., right) ideal of M_{S} if and only if \digamma is a left (resp., right) ideal of M_{S}.

Proof. Suppose δ_{\digamma} is a BF left ideal of M_{S}. Let $\varrho, \varsigma \in M_{S}$ and $\ddot{\gamma} \in \Gamma$. Then $\delta_{\digamma}^{+}(\varrho+\varsigma) \geq$ $\min \left\{\delta_{\digamma}^{+}(\varrho), \delta_{\digamma}^{+}(\varsigma)\right\}=1$ and $\delta_{\digamma}^{+}(\varrho \ddot{\gamma} \varsigma) \geq \delta_{\digamma}^{+}(\varsigma)=1$, so $\varrho+\varsigma \in \digamma$ and $\varrho \ddot{\gamma} \varsigma \in \digamma$. Hence, \digamma is a left ideal of M_{S}.

Conversely, suppose that \digamma is a left ideal of M_{S}. Let $\varrho, \varsigma \in \digamma$ and $\ddot{\gamma} \in \Gamma$.
If $\varrho, \varsigma \in \digamma$, then $\varrho+\varsigma \in \digamma$ and $\varrho \ddot{\gamma} \varsigma \in \digamma$. Now,
(i) $\delta_{\digamma}^{+}(\varrho+\varsigma)=1=\min \left\{\delta_{\digamma}^{+}(\varrho), \delta_{\digamma}^{+}(\varsigma)\right\}$
(ii) $\delta_{\digamma}^{+}(\varrho \ddot{\gamma} \varsigma)=1=\delta_{\digamma}^{+}(\varsigma)$
(iii) $\delta_{\digamma}^{-}(\varrho+\varsigma)=-1=\max \left\{\delta_{\digamma}^{-}(\varrho), \delta_{\digamma}^{-}(\varsigma)\right\}$
(iv) $\delta_{\digamma}^{-}(\varrho \ddot{\gamma} \varsigma)=-1=\delta_{\digamma}^{-}(\varsigma)$.

If $\varrho, \varsigma \notin \digamma$, then $\delta_{\digamma}^{+}(\varrho)=0=\delta_{\digamma}^{-}(\varrho)$ and $\delta_{\digamma}^{+}(\varsigma)=0=\delta_{\digamma}^{\bar{F}}(\varsigma)$. Now,
(i) $\delta_{\digamma}^{+}(\varrho+\varsigma)=0 \geq \min \left\{\delta_{\digamma}^{+}(\varrho), \delta_{\digamma}^{+}(\varsigma)\right\}$
(ii) $\delta_{\digamma}^{+}(\varrho \ddot{\gamma} \varsigma)=0=\delta_{\digamma}^{+}(\varsigma)$
(iii) $\delta_{\digamma}^{-}(\varrho+\varsigma)=0 \leq \max \left\{\delta_{\digamma}^{-}(\varrho), \delta_{\digamma}^{-}(\varsigma)\right\}$
(iv) $\delta_{\digamma}^{-}(\varrho \ddot{\gamma} \varsigma)=0=\delta_{\digamma}^{-}(\varsigma)$.

If $\varrho \notin \digamma$ and $\varsigma \in \digamma$, then $\delta_{\digamma}^{+}(\varrho)=0=\delta_{\digamma}^{-}(\varrho), \delta_{\digamma}^{+}+(\varsigma)=1$ and $\delta_{\digamma}^{-}(\varsigma)=-1$. Now,
(i) $\delta_{\digamma}^{+}(\varrho+\varsigma) \geq \min \left\{\delta_{\digamma}^{+}(\varrho), \delta_{\digamma}^{+}(\varsigma)\right\}$
(ii) $\delta_{\digamma}^{+}(\varrho \ddot{\gamma} \varsigma) \geq \delta_{\digamma}^{+}(\varsigma)$
(iii) $\delta_{\digamma}^{-}(\varrho+\varsigma) \leq \max \left\{\delta_{\digamma}^{-}(\varrho), \delta_{\digamma}^{-}(\varsigma)\right\}$
(iv) $\delta_{\digamma}^{+}(\varrho \ddot{\gamma} \varsigma) \leq \delta_{B}^{-}(\varsigma)$.

A similar argument holds for $\varrho \in \digamma$ and $\varsigma \notin \digamma$.
Hence, δ_{\digamma} is a BF left ideal of M_{S}. In a similar pattern, we can prove the case of a BF right ideal of M_{S}.

Corollary 3.11. Let \digamma be a non-empty subset of M_{S}. Then the BF characteristic set of $\digamma, \delta_{\digamma}$ is a BFI of M_{S} if and only if \digamma is an ideal of M_{S}.

4. Conclusion

This paper introduces the concept of BFIs of Γ-semirings, and we established a one-to-one correspondence between the BFI of Γ-semirings and its level set. Further, we proved that the intersection of BFIs of a Γ-semiring is also a BFI. Also, we investigated that homomorphic and pre-image of a BFI of a Γ-semiring is also a BFI. We expect these structures to be useful in developing bipolar fuzzy normal ideals and maximal ideals of Γ-semirings.

Acknowledgment

This research project (Fuzzy Algebras and Applications of Fuzzy Soft Matrices in Decision-Making Problems) was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF67-UoE-Aiyared-Iampan).

References

[1] Y. Bhargavi, T. Eswarlal, Fuzzy 「-semirings, Int. J. Pure Appl. Math. 98 (2015), 339-349. https://doi.org/10.12732/ ijpam.v98i3.6.
[2] T.K. Dutta, T. Chanda, Structures of fuzzy ideals of Γ-ring, Bull. Malays. Math. Sci. Soc. 28 (2005), 9-18.
[3] J. Ghosh, T.K. Samanta, Fuzzy ideals in 「-semiring, Glob. J. Sci. Front. Res. 11 (2011), 14-21.
[4] H. Hedayati, K.P. Shum, An Introduction to Γ-semirings, Int. J. Algebra. 5 (2011), 709-726.
[5] U.V. Kalyani, T. Eswarlal, J. KaviKumar, A. Iampan, Bipolar fuzzy sublattices and ideals, Int. J. Anal. Appl. 20 (2022), 45. https://doi.org/10.28924/2291-8639-20-2022-45.
[6] K.J. Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays. Math. Sci. Soc. 32 (2009), 361-373.
[7] D.S. Malik, J.N. Mordeson, Fuzzy homomorphisms of rings, Fuzzy Sets Syst. 46 (1992), 139-146. https ://doi. org/10. 1016/0165-0114(92) 90275-9.
[8] S.V.D.M. Rupa, V.L. Prasannam, Y. Bhargavi, Bipolar valued fuzzy d-ideals of d-algebra, Math. Stat. Eng. Appl. 71 (2022), 632-638.
[9] T.K. Mukherjee, M.K. Sen, On fuzzy ideals of a ring I, Fuzzy Sets Syst. 21 (1987), 99-104. https://doi.org/10.1016/ 0165-0114 (87) 90155-2.
[10] M.M.K. Rao, Γ-semiring, Southeast Asian Bull. Math. 19 (1995), 49-54.
[11] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
[12] S. Ragamayi, Y. Bhargavi, Some results on homomorphism of vague ideal of a Gamma-nearring, Int. J. Sci. Technol. Res. 9 (2020), 3972-3975.
[13] L.A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65) 90241-X.
[14] W.R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, in: Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, IEEE, San Antonio, TX, USA, 1994: pp. 305-309. https://doi.org/10.1109/ IJCF. 1994.375115.

