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Abstract. This article explores the notion of bipolar fuzzy ideals of Γ-semirings. Later, we characterize
bipolar fuzzy ideals of Γ-semirings to crisp Γ-semirings. Further, the relation between bipolar fuzzy ideals
of Γ-semirings and their level cuts is investigated.
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1. Introduction

In 1965, Zadeh [13] established the idea of fuzzy subsets of a set. Fuzzy sets have several extensions,
including intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, neutrosophic sets, etc., which
were developed. The idea of bipolar-valued fuzzy sets, which is a significant extension of fuzzy sets
whose membership degree interval is extended from the interval [0, 1] to the interval [−1, 1], was first
suggested by Zhang [14] in 1994. A generalization of both semirings and Γ-rings [2,11], the concept
of Γ-semirings was first developed by Murali Krishna Rao [10] in 1995. The study of fuzzy ideals
and bipolar fuzzy ideals continues as follows. In 1987, Mukherjee and Sen [9] studied fuzzy ideals of
rings. In 1992, Malik and Mordeson [7] introduced the concept of fuzzy homomorphisms of rings. In
2009, Lee [6] introduced the notion of bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-
algebras. In 2011, Ghosh and Samanta [3] studied the relation between the fuzzy left (resp., right)
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ideals of Γ-semirings. In 2020, Ragamayi and Bhargavi [12] introduced the notion of homomorphism
of vague ideals of Γ-nearrings. In 2022, Kalyani et al. [5] introduced and studied the theory of bipolar
fuzzy sublattices and bipolar fuzzy ideals of lattices. Mohana Rupa et al. [8] introduced and studied
the concept of bipolar fuzzy d-ideals of d-algebras and characterized bipolar fuzzy d-ideals to the crisp
d-ideals. As a continuity of all these, we introduced the concept of bipolar fuzzy sets of Γ-semirings in
2023. Now, we are studying the concept of bipolar fuzzy ideals of Γ-semirings.

2. Preliminaries

First, we will review the definition of the Γ-semiring, which will be the space we will study in this
article.

Definition 2.1. [1] Let MS and Γ be two additive commutative semigroups. Then MS is called a
Γ-semiring if there exists a mappingMS × Γ ×MS → MS , (j, α̈, n) 7→ jα̈n for j, n ∈ MS and α̈ ∈ Γ,
satisfying the following conditions:
(i) jα̈(n+ u) = jα̈n+ jα̈u

(ii) (j + n)α̈u = jα̈u+ nα̈u

(iii) j(α̈+ β̈)u = jα̈u+ jβ̈u

(iv) jα̈(nβ̈u) = (jα̈n)β̈u, ∀j, n, u ∈MS , α̈, β̈ ∈ Γ.

Definition 2.2. [1] Let D be any non-empty set. A mapping z : D → [0, 1] is called a fuzzy subset of
D.

Definition 2.3. [14] Let D be the universe of discourse. A bipolar-valued fuzzy set z in D is an object
having the form z := {d̈,z−(d̈),z+(d̈) | d̈ ∈ D}, where z− : D → [−1, 0] and z+ : D → [0, 1] are
mappings.

For the sake of simplicity, we shall use the symbol z = {D;z−,z+} for the bipolar-valued fuzzy
set z := {d̈,z−(d̈),z+(d̈) | d̈ ∈ D}, and use the notion of bipolar fuzzy sets instead of the notion of
bipolar-valued fuzzy sets.

Definition 2.4. [14] Let z = {D;z−,z+} be a bipolar fuzzy set and s × t ∈ [−1, 0] × [0, 1], the sets
zN

s = {d̈ ∈ D | z−(d̈) ≤ s} and zP
t = {d̈ ∈ D | z+(d̈) ≥ t} are called negative s-cut and positive t-cut,

respectively. For s× t ∈ [−1, 0]× [0, 1], the set z(s,t) = zN
s ∩zP

t is called (s, t)-set of z = {D;z−,z+}.

Definition 2.5. [14] Letz = {D;z−,z+} and ϕ = {D;ϕ−, ϕ+} be two bipolar fuzzy sets of a universe
of discourse D. The intersection of z and ϕ is defined as

(z− ∩ ϕ−)(d̈) = min{z−(d̈), ϕ−(d̈)} and (z+ ∩ ϕ+)(d̈) = min{z+(d̈), ϕ+(d̈)}, ∀d̈ ∈ D.
The union of z and ϕ is defined as

(z− ∪ ϕ−)(d̈) = max{z−(d̈), ϕ−(d̈)} and (z+ ∪ ϕ+)(d̈) = max{z+(d̈), ϕ+(d̈)},∀d̈ ∈ D.
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A bipolar fuzzy set z is contained in another bipolar fuzzy set ϕ, written with z ⊆ ϕ if

z−(d̈) ≥ ϕ−(d̈) and z+(d̈) ≤ ϕ+(d̈), ∀d̈ ∈ D.

Definition 2.6. [4] Let g : C → D be a homomorphism from a set C onto a set D and let z =

{C;z−,z+} be a bipolar fuzzy set of C and ϕ = {D;ϕ−, ϕ+} be a bipolar fuzzy set of D, then the
homomorphic image g(z) of z is g(z) = {(g(z))−, (g(z))+} defined as for all d̈ ∈ D,

(g(z))−(d̈) =

 min{z−(ü) | ü ∈ g−1(d̈)}, if g−1(d̈) 6= ∅

0, otherwise

and

(g(z))+(d̈) =

 max{z+(ü) | ü ∈ g−1(d̈)}, if g−1(d̈) 6= ∅

0, otherwise.

The pre-image g−1(ϕ) of ϕ under g is a bipolar fuzzy set defined as (g−1(ϕ))
−

(ü) = ϕ−(g(ü)) and
(g−1(ϕ))

+
(ü) = ϕ+(g(ü)), ∀ü ∈ C.

Definition 2.7. [1] Let T be a subset of a Γ-semiringMS . The characteristic function of T taking values
in [0, 1] is a fuzzy set given by

δT (ẗ) =

 1, if ẗ ∈ T
0, otherwise.

Then δT is a fuzzy characteristic function of T in [0, 1].

Definition 2.8. [1] Let T be a subset of a Γ-semiringMS . The bipolar fuzzy characteristic function of
T is given by

δ+T (ẗ) =

 1, if ẗ ∈ T
0, otherwise

and δ−T (ẗ) =

 −1, if ẗ ∈ T
0, otherwise.

Then δT is a bipolar fuzzy characteristic function of T .

Definition 2.9. [1] A Bipolar fuzzy set z = {MS ;z−,z+} inMS is called a bipolar fuzzy Γ-semiring
ofMS if it satisfies the following properties: for all %, ς ∈MS and γ̈ ∈ Γ,
(i) z−(%+ ς) ≤ max{z−(%),z−(ς)}

(ii) z−(%γ̈ς) ≤ max{z−(%),z−(ς)}

(iii) z+(%+ ς) ≥ min{z+(%),z+(ς)}

(iv) z+(%γ̈ς) ≥ min{z+(%),z+(ς)}.

Definition 2.10. [4] An additive subsemigroupB of a Γ-semiringMS is called a right (resp., left) ideal
ofMS if %γ̈ς ∈ B (resp., ςγ̈% ∈ B) for all % ∈ B, γ̈ ∈ Γ and ς ∈MS . A left and right ideal ofMS is called
an ideal ofMS .



Asia Pac. J. Math. 2023 10:38 4 of 10

Definition 2.11. [1] Let z be a fuzzy subset of a Γ-semiringMS . Then z is called a fuzzy left (resp.,
right) ideal ofMS if for all %, ς ∈MS and γ̈ ∈ Γ,
(i) z(%+ ς) ≥ min{z(%),z(ς)}

(ii) z(%γ̈ς) ≥ z(ς) (resp., ≥ z(%)).
Also, z is called a fuzzy ideal ofMS if it is both a fuzzy left ideal and a fuzzy right ideal ofMS .

Notations: Throughout the following session, we use the following notations:
(1)MS for a Γ-semiring
(2) BF for bipolar fuzzy
(3) BFS for a bipolar fuzzy set
(4) BFGS for a bipolar fuzzy Γ-semiring
(5) BFI for a bipolar fuzzy ideal.

3. Bipolar Fuzzy Ideals of Γ-semirings

In this session, we introduce and study the notion of BFI of Γ-semirings, and we characterize and
discuss a few properties related to BFI of Γ-semirings.

Definition 3.1. A BFSz = {MS ;z−,z+} inMS is called a BF left (resp., right) ideal ofMS if it satisfies
the following properties: for any %, ς ∈MS and γ̈ ∈ Γ,
(i) z−(%+ ς) ≤ max{z−(%),z−(ς)}

(ii) z−(%γ̈ς) ≤ z−(ς) (resp., ≤ z−(%))
(iii) z+(%+ ς) ≥ min{z+(%),z+(ς)}

(iv) z+(%γ̈ς) ≥ z+(ς) (resp., ≥ z+(%)).
Also, a BFS z inMS is called a BFI ofMS if it is both a BF left ideal and a BF right ideal ofMS .

Example 3.2. Let N be the set of all natural numbers with zero, and let Z+ be the set of all positive even
integers. Then N and Z+ are additive commutative semigroups. Define the mapping N× Z+ × N→ N

by äöb̈ usual product of ä, ö, b̈,∀ä, b̈ ∈ N, ö ∈ Z+. Then N is a Γ-semiring.
Define a BFS z = {N;z−,z+}, where z− : N→ [−1, 0] and z+ : N→ [0, 1] as follows:

z−(%) =

 −0.8, if % is even or 0

−0.5, otherwise
and z+(%) =

 0.8, if % is even or 0

0.5, otherwise.
Then z is a BFI of N.

Theorem 3.3. A BFS z = {MS ;z−,z+} inMS is a BFI ofMS if and only if the level cuts are ideals ofMS ,

i.e., for all s× t ∈ [−1, 0]× [0, 1], ∅ 6= zN
s and ∅ 6= zP

t are ideals ofMS .

Proof. Suppose z = {MS ;z−,z+} is a BFI ofMS . Let s× t ∈ [−1, 0]× [0, 1] be such that zN
s 6= ∅ and

zP
t 6= ∅. Let υ, τ ∈ zN

s , %, ς ∈ zP
t and γ̈ ∈ Γ. Then z−(υ) ≤ s,z−(τ) ≤ s and z+(%) ≥ t,z+(ς) ≥ t.

Since z = {MS ;z−,z+} is a BFI ofMS , we have
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(i) z−(υ + τ) ≤ max{z−(υ),z−(τ)} ≤ s

(ii) z−(υγ̈τ) ≤ z−(τ) ≤ s (resp., ≤ z−(υ) ≤ s)
(iii) z+(%+ ς) ≥ min{z+(%),z+(ς)} ≥ t

(iv) z+(%γ̈ς) ≥ z+(ς) ≥ t (resp., ≥ z+(%) ≥ t).
Then (υ + τ) ∈ zN

s , υγ̈τ ∈ zN
s and %+ ς ∈ zP

t , %γ̈ς ∈ zP
t . Thus zN

s and zP
t are ideals ofMS .

Conversely, suppose that the level cuts zN
s and zP

t are ideals ofMS . Let υ, τ ∈ zN
s , %, ς ∈ zP

t and
γ̈ ∈ Γ. Then υ + τ ∈ zN

s , υγ̈τ ∈ zN
s and %+ ς ∈ zP

t , %γ̈ς ∈ zP
t . Choose s = max{z−(υ),z−(τ)} and

t = min{z+(%),z+(ς)}. Then
(i) z−(υ + τ) ≤ s = max{z−(υ),z−(τ)}.
(ii) z−(υγ̈τ) ≤ s = max{z−(υ),z−(τ)}. If z−(υ) < z−(τ), then z−(υγ̈τ) ≤ s =

max{z−(υ),z−(τ)} = z−(τ). If z−(τ) < z−(υ), thenz−(υγ̈τ) ≤ s = max{z−(υ),z−(τ)} = z−(υ).
(iii) z+(%+ ς) ≥ t = min{z+(%),z+(ς)}.
(iv) z+(%γ̈ς) ≥ t = min{z+(%),z+(ς)}. If z+(ς) < z+(%), then z+(%γ̈ς) ≥ t = min{z+(%),z+(ς)} =

z+(ς). If z+(%) < z+(ς), then z+(%γ̈ς) ≥ t = min{z+(%),z+(ς)} = z+(%). Thus z = {MS ;z−,z+}

is a BFI ofMS . �

Theorem 3.4. If z = {MS ;z−,z+} and ϕ = {MS ;ϕ−, ϕ+} are two BFIs ofMS , then z ∩ ϕ is a BFI ofMS .

Proof. Assume thatz = {MS ;z−,z+} and ϕ = {MS ;ϕ−, ϕ+} are BFIs ofMS . Let %, ς ∈MS and γ̈ ∈ Γ.
Then

(z− ∩ ϕ−)(%+ ς) = min{z−(%+ ς), ϕ−(%+ ς)}

≤ min{max{z−(%),z−(ς)},max{ϕ−(%), ϕ−(ς)}}

≤ min{max{z−(%), ϕ−(%)},max{z−(ς), ϕ−(ς)}}

≤ max{min{z−(%), ϕ−(%)},min{z−(ς), ϕ−(ς)}}

= max{(z− ∩ ϕ−)(%), (z− ∩ ϕ−)(ς)},

(z− ∩ ϕ−)(%γ̈ς) = min{z−(%γ̈ς), ϕ−(%γ̈ς)}

≤ min{z−(ς), ϕ−(ς)} (resp., ≤ min{z−(%), ϕ−(%)})

= (z− ∩ ϕ−)(ς),

(z+ ∩ ϕ+)(%+ ς) = min{z+(%+ ς), ϕ+(%+ ς)}

≥ min{max{z+(%),z+(ς)},max{ϕ+(%), ϕ+(ς)}}

≥ min{max{z+(%), ϕ+(%)},max{z+(ς), ϕ+(ς)}}

≥ max{min{z+(%), ϕ+(%)},min{z+(ς), ϕ+(ς)}}

= max{(z+ ∩ ϕ+)(%), (z+ ∩ ϕ+)(ς)},



Asia Pac. J. Math. 2023 10:38 6 of 10

(z+ ∩ ϕ+)(%γ̈ς) = min{z+(%γ̈ς), ϕ+(%γ̈ς)}

≥ min{z+(ς), ϕ+(ς)} (resp., ≥ min{z+(%), ϕ+(%)})

= (z+ ∩ ϕ+)(ς).

Hence, z ∩ ϕ is a BFI ofMS . �

Corollary 3.5. The intersection of an arbitrary family of BFIs ofMS is a BFI ofMS . In general, the union of

two BFIs ofMS is not a BFI ofMS .

Example 3.6. Consider the additive Abelian groups Z4 = {0, 1, 2, 3} and Υ = {0, 2}. Define Z4 ×Υ×

Z4 → Z4 by %α̈ς usual product of %, α̈, ς, ∀%, ς ∈ Z4, α̈ ∈ Υ. Then Z4 is a Γ-semiring. Define a BFS
z = {Z4;z−,z+}, where z− : Z4 → [−1, 0] and z+ : Z4 → [0, 1] as follows:

z−(%) =


−0.8, if % = 0

−0.6, if % = 1

−0.4, otherwise
and z+(%) =


0.9, if % = 0

0.7, if % = 1

0.5, otherwise.
Define a BFS ϕ = {Z4;ϕ

−, ϕ+}, where ϕ− : Z4 → [−1, 0] and ϕ+ : Z4 → [0, 1] as follows:

ϕ−(%) =


−0.7, if % = 0

−0.6, if % = 2

−0.4, otherwise
and ϕ+(%) =


0.8, if % = 0

0.6, if % = 2

0.4, otherwise.
Then z and ϕ are BFIs of Z4, but z ∪ ϕ is not a BFI of Z4.

Theorem 3.7. Let z and ϕ be two BFIs ofMS . If z ⊆ ϕ or ϕ ⊆ z, then z ∪ ϕ is a BFI ofMS .

Proof. Suppose z ⊆ ϕ. Let %, ς ∈MS and γ̈ ∈ Γ. Then

(z− ∪ ϕ−)(%+ ς) = max{z−(%+ ς), ϕ−(%+ ς)}

= z−(%+ ς)

≤ max{z−(%),z−(ς)}

= max{max{z−(%), ϕ−(%)},max{z−(ς), ϕ−(ς)}}

= max{(z− ∪ ϕ−)(%), (z− ∪ ϕ−)(ς)},

(z− ∪ ϕ−)(%γ̈ς) = max{z−(%γ̈ς), σ−(%γ̈ς)}

= z−(%γ̈ς)

≤ z−(ς) (resp., ≤ z−(%))

= max{z−(ς), ϕ−(ς)}

= (z− ∪ ϕ−)(ς),
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(z+ ∪ ϕ+)(%+ ς) = max{z+(%+ ς), ϕ+(%+ ς)}

= ϕ+(%+ ς)

≥ min{ϕ+(%), ϕ+(ς)}

= min{max{z+(%), ϕ+(%)},max{z+(ς), ϕ+(ς)}}

= min{(z+ ∪ ϕ+)(%), (z+ ∪ ϕ+)(ς)},

(z+ ∪ ϕ+)(%γ̈ς) = max{z+(%γ̈ς), ϕ+(%γ̈ς)}

= ϕ+(%γ̈ς)

≥ ϕ+(ς) (resp., ≥ ϕ+(%))

= max{z+(ς), ϕ+(ς)}

= (z+ ∪ ϕ+)(ς).

Hence, z ∪ ϕ is a BFI ofMS . Similarly, if ϕ ⊆ z, we get z ∪ ϕ is a BFI ofMS . �

Theorem 3.8. Let κ be a homomorphism from a Γ-semiringMS onto a Γ-semiringNS . If ϕ is a BFI ofNS , then

the pre-image κ−1(ϕ) of ϕ is a BFI ofMS .

Proof. Assume that ϕ is a BFI of NS . Let %, ς ∈MS and γ̈ ∈ Γ. Then

(κ−1(ϕ)−)(%+ ς) = ϕ−(κ(%+ ς))

= ϕ−(κ(%) + κ(ς))

≤ max{ϕ−(κ(%)), ϕ−(κ(ς))}

= max{κ−1(ϕ−(%)), κ−1(ϕ−(ς))},

(κ−1(ϕ)−)(%γ̈ς) = ϕ−(κ(%γ̈ς))

= ϕ−(κ(%) ∗ κ(ς))

≤ ϕ−(κ(ς)) (resp., ≤ ϕ−(κ(%)))

= (κ−1(ϕ)−)(ς),

(κ−1(ϕ)+)(%+ ς) = ϕ+(κ(%+ ς))

= ϕ+(κ(%) + κ(ς))

≥ min{ϕ+(κ(%)), ϕ+(κ(ς))}

= min{κ−1(ϕ+(%)), κ−1(ϕ+(ς))},
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(κ−1(ϕ)+)(%γ̈ς) = ϕ+(κ(%γ̈ς))

= ϕ+(κ(%) ∗ κ(ς))

≥ ϕ+(κ(ς)) (resp., ≥ ϕ+(κ(%)))

= (κ−1(ϕ)+)(ς).

Hence, κ−1(ϕ) is a BFI ofMS . �

Theorem 3.9. Let κ be a homomorphism from a Γ-semiringMS onto a Γ-semiring NS . If z is a BFI ofMS ,

then the homomorphic image κ(z) of z is a BFI of NS .

Proof. Assume that z is a BFI ofMS . Let %, ς ∈ NS and γ̈ ∈ Γ. Suppose neither κ−1(%) nor κ−1(ς) is
non-empty. Since κ is onto, there exist υ, τ ∈MS such that κ(υ) = % and κ(τ) = ς and it follows that
υ + τ ∈ κ−1(%+ ς) and υγ̈τ ∈ κ−1(%γ̈ς). Thus

(κ(z))−(%+ ς) = min{z−(z̈) | z̈ ∈ κ−1(%+ ς)}

= min{z−(υ + τ) | υ ∈ κ−1(%), τ ∈ κ−1(ς)}

≤ min{max{z−(υ),z−(τ)} | υ ∈ κ−1(%), τ ∈ κ−1(ς)}

= min{max{z−(υ) | υ ∈ κ−1(%)},max{z−(τ) | τ ∈ κ−1(ς)}}

≤ max{min{z−(υ) | υ ∈ κ−1(%)},min{z−(τ) | τ ∈ κ−1(ς)}}

= max{(κ(z))−(%), (κ(z))−(ς)},

(κ(z))−(%γ̈ς) = min{z−(z̈) | z̈ ∈ κ−1(%γ̈ς)}

= min{z−(υγ̈τ) | υ ∈ κ−1(%), τ ∈ κ−1(ς)}

≤ min{z−(τ) | τ ∈ κ−1(ς)} (resp., ≤ min{z−(υ) | υ ∈ κ−1(%)})

= (κ(z))−(ς),

(κ(z))+(%+ ς) = max{z+(z̈) | z̈ ∈ κ−1(%+ ς)}

= max{z+(υ + τ) | υ ∈ κ−1(%), τ ∈ g−1(ς)}

≥ max{min{z+(υ),z+(τ)} | υ ∈ κ−1(%), τ ∈ κ−1(ς)}

≥ min{max{z+(υ) | υ ∈ κ−1(%)},max{z+(τ) | τ ∈ κ−1(ς)}}

= min{(κ(z))+(%), (κ(z))+(ς)},

(κ(z))+(%γ̈ς) = max{z+(z̈) | z̈ ∈ κ−1(%γ̈ς)}

= max{z+(υγ̈τ) | υ ∈ κ−1(%), τ ∈ κ−1(ς)}

≥ max{z+(τ) | τ ∈ κ−1(ς)} (resp., ≥ max{z+(υ) | υ ∈ κ−1(%)})

= (κ(z))+(ς).
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Hence, κ(z) is a BFI of NS . �

Theorem 3.10. Let z be a non-empty subset ofMS . Then the BF characteristic set of z, δz is a BF left (resp.,

right) ideal ofMS if and only if z is a left (resp., right) ideal ofMS .

Proof. Suppose δz is a BF left ideal of MS . Let %, ς ∈ MS and γ̈ ∈ Γ. Then δ+z (% + ς) ≥

min{δ+z (%), δ+z (ς)} = 1 and δ+z (%γ̈ς) ≥ δ+z (ς) = 1, so % + ς ∈ z and %γ̈ς ∈ z. Hence, z is a left
ideal ofMS .

Conversely, suppose that z is a left ideal ofMS . Let %, ς ∈ z and γ̈ ∈ Γ.
If %, ς ∈ z, then %+ ς ∈ z and %γ̈ς ∈ z. Now,

(i) δ+z (%+ ς) = 1 = min{δ+z (%), δ+z (ς)}

(ii) δ+z (%γ̈ς) = 1 = δ+z (ς)

(iii) δ−z (%+ ς) = −1 = max{δ−z (%), δ−z (ς)}

(iv) δ−z (%γ̈ς) = −1 = δ−z (ς).
If %, ς /∈ z, then δ+z (%) = 0 = δ−z (%) and δ+z (ς) = 0 = δ=z (ς). Now,

(i) δ+z (%+ ς) = 0 ≥ min{δ+z (%), δ+z (ς)}

(ii) δ+z (%γ̈ς) = 0 = δ+z (ς)

(iii) δ−z (%+ ς) = 0 ≤ max{δ−z (%), δ−z (ς)}

(iv) δ−z (%γ̈ς) = 0 = δ−z (ς).
If % /∈ z and ς ∈ z, then δ+z (%) = 0 = δ−z (%), δ+z + (ς) = 1 and δ−z (ς) = −1. Now,

(i) δ+z (%+ ς) ≥ min{δ+z (%), δ+z (ς)}

(ii) δ+z (%γ̈ς) ≥ δ+z (ς)

(iii) δ−z (%+ ς) ≤ max{δ−z (%), δ−z (ς)}

(iv) δ+z (%γ̈ς) ≤ δ−B(ς).
A similar argument holds for % ∈ z and ς /∈ z.
Hence, δz is a BF left ideal ofMS . In a similar pattern, we can prove the case of a BF right ideal of

MS . �

Corollary 3.11. Let z be a non-empty subset ofMS . Then the BF characteristic set of z, δz is a BFI ofMS if

and only if z is an ideal ofMS .

4. Conclusion

This paper introduces the concept of BFIs of Γ-semirings, and we established a one-to-one corre-
spondence between the BFI of Γ-semirings and its level set. Further, we proved that the intersection of
BFIs of a Γ-semiring is also a BFI. Also, we investigated that homomorphic and pre-image of a BFI of a
Γ-semiring is also a BFI. We expect these structures to be useful in developing bipolar fuzzy normal
ideals and maximal ideals of Γ-semirings.
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