

BIPOLAR FUZZY IDEALS OF Γ **-SEMIRINGS**

P. MADHU LATHA^{1,2}, Y. BHARGAVI³, AIYARED IAMPAN^{4,*}

¹Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh,

India

²Department of Basic Sciences and Humanities, Dhanekula Institute of Engineering and Technology, Vijayawada, Andhra Pradesh, India

³Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India

⁴Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of

Phayao, Mae Ka, Mueang, Phayao 56000, Thailand

*Corresponding author: aiyared.ia@up.ac.th

Received Sep. 15, 2023

Abstract. This article explores the notion of bipolar fuzzy ideals of Γ -semirings. Later, we characterize bipolar fuzzy ideals of Γ -semirings to crisp Γ -semirings. Further, the relation between bipolar fuzzy ideals

of $\Gamma\mbox{-semirings}$ and their level cuts is investigated.

2020 Mathematics Subject Classification. 03E72, 16Y60, 16Y80.

Key words and phrases. Γ-semiring; bipolar fuzzy set; bipolar fuzzy ideal.

1. INTRODUCTION

In 1965, Zadeh [13] established the idea of fuzzy subsets of a set. Fuzzy sets have several extensions, including intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, neutrosophic sets, etc., which were developed. The idea of bipolar-valued fuzzy sets, which is a significant extension of fuzzy sets whose membership degree interval is extended from the interval [0, 1] to the interval [-1, 1], was first suggested by Zhang [14] in 1994. A generalization of both semirings and Γ -rings [2,11], the concept of Γ -semirings was first developed by Murali Krishna Rao [10] in 1995. The study of fuzzy ideals and bipolar fuzzy ideals continues as follows. In 1987, Mukherjee and Sen [9] studied fuzzy ideals of rings. In 1992, Malik and Mordeson [7] introduced the concept of fuzzy homomorphisms of rings. In 2009, Lee [6] introduced the notion of bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras. In 2011, Ghosh and Samanta [3] studied the relation between the fuzzy left (resp., right)

DOI: 10.28924/APJM/10-38

ideals of Γ -semirings. In 2020, Ragamayi and Bhargavi [12] introduced the notion of homomorphism of vague ideals of Γ -nearrings. In 2022, Kalyani et al. [5] introduced and studied the theory of bipolar fuzzy sublattices and bipolar fuzzy ideals of lattices. Mohana Rupa et al. [8] introduced and studied the concept of bipolar fuzzy d-ideals of d-algebras and characterized bipolar fuzzy d-ideals to the crisp d-ideals. As a continuity of all these, we introduced the concept of bipolar fuzzy sets of Γ -semirings in 2023. Now, we are studying the concept of bipolar fuzzy ideals of Γ -semirings.

2. Preliminaries

First, we will review the definition of the Γ -semiring, which will be the space we will study in this article.

Definition 2.1. [1] Let M_S and Γ be two additive commutative semigroups. Then M_S is called a Γ -semiring if there exists a mapping $M_S \times \Gamma \times M_S \to M_S$, $(j, \ddot{\alpha}, n) \mapsto j\ddot{\alpha}n$ for $j, n \in M_S$ and $\ddot{\alpha} \in \Gamma$, satisfying the following conditions:

(i)
$$j\ddot{\alpha}(n+u) = j\ddot{\alpha}n + j\ddot{\alpha}u$$

(ii) $(j+n)\ddot{\alpha}u = j\ddot{\alpha}u + n\ddot{\alpha}u$ (iii) $j(\ddot{\alpha}+\ddot{\beta})u = j\ddot{\alpha}u + j\ddot{\beta}u$ (iv) $j\ddot{\alpha}(n\ddot{\beta}u) = (j\ddot{\alpha}n)\ddot{\beta}u, \forall j, n, u \in M_S, \ddot{\alpha}, \ddot{\beta} \in \Gamma.$

Definition 2.2. [1] Let *D* be any non-empty set. A mapping $F : D \to [0, 1]$ is called a fuzzy subset of *D*.

Definition 2.3. [14] Let *D* be the universe of discourse. A bipolar-valued fuzzy set F in *D* is an object having the form $F := \{ \vec{a}, F^-(\vec{a}), F^+(\vec{a}) \mid \vec{a} \in D \}$, where $F^- : D \to [-1, 0]$ and $F^+ : D \to [0, 1]$ are mappings.

For the sake of simplicity, we shall use the symbol $F = \{D; F^-, F^+\}$ for the bipolar-valued fuzzy set $F := \{\vec{a}, F^-(\vec{a}), F^+(\vec{a}) \mid \vec{a} \in D\}$, and use the notion of bipolar fuzzy sets instead of the notion of bipolar-valued fuzzy sets.

Definition 2.4. [14] Let $\mathcal{F} = \{D; \mathcal{F}^-, \mathcal{F}^+\}$ be a bipolar fuzzy set and $s \times t \in [-1, 0] \times [0, 1]$, the sets $\mathcal{F}_s^N = \{\vec{a} \in D \mid \mathcal{F}^-(\vec{a}) \leq s\}$ and $\mathcal{F}_t^P = \{\vec{a} \in D \mid \mathcal{F}^+(\vec{a}) \geq t\}$ are called negative *s*-cut and positive *t*-cut, respectively. For $s \times t \in [-1, 0] \times [0, 1]$, the set $\mathcal{F}_{(s,t)} = \mathcal{F}_s^N \cap \mathcal{F}_t^P$ is called (s, t)-set of $\mathcal{F} = \{D; \mathcal{F}^-, \mathcal{F}^+\}$.

Definition 2.5. [14] Let $F = \{D; F^-, F^+\}$ and $\varphi = \{D; \varphi^-, \varphi^+\}$ be two bipolar fuzzy sets of a universe of discourse *D*. The intersection of *F* and φ is defined as

$$(F^- \cap \varphi^-)(\ddot{d}) = \min\{F^-(\ddot{d}), \varphi^-(\ddot{d})\} \text{ and } (F^+ \cap \varphi^+)(\ddot{d}) = \min\{F^+(\ddot{d}), \varphi^+(\ddot{d})\}, \forall \ddot{d} \in D.$$

The union of \digamma and φ is defined as

$$(\mathcal{F}^- \cup \varphi^-)(\vec{d}) = \max\{\mathcal{F}^-(\vec{d}), \varphi^-(\vec{d})\} \text{ and } (\mathcal{F}^+ \cup \varphi^+)(\vec{d}) = \max\{\mathcal{F}^+(\vec{d}), \varphi^+(\vec{d})\}, \forall \vec{d} \in D.$$

A bipolar fuzzy set *F* is contained in another bipolar fuzzy set φ , written with $F \subseteq \varphi$ if

$$\mathcal{F}^{-}(\ddot{d}) \ge \varphi^{-}(\ddot{d}) \text{ and } \mathcal{F}^{+}(\ddot{d}) \le \varphi^{+}(\ddot{d}), \forall \ddot{d} \in D.$$

Definition 2.6. [4] Let $g : C \to D$ be a homomorphism from a set C onto a set D and let $F = \{C; F^-, F^+\}$ be a bipolar fuzzy set of C and $\varphi = \{D; \varphi^-, \varphi^+\}$ be a bipolar fuzzy set of D, then the homomorphic image g(F) of F is $g(F) = \{(g(F))^-, (g(F))^+\}$ defined as for all $\ddot{d} \in D$,

$$(g(F))^{-}(\ddot{d}) = \begin{cases} \min\{F^{-}(\ddot{u}) \mid \ddot{u} \in g^{-1}(\ddot{d})\}, \text{ if } g^{-1}(\ddot{d}) \neq \emptyset \\ 0, \text{ otherwise} \end{cases}$$

and

$$(g(F))^{+}(\ddot{d}) = \begin{cases} \max\{F^{+}(\ddot{u}) \mid \ddot{u} \in g^{-1}(\ddot{d})\}, \text{ if } g^{-1}(\ddot{d}) \neq \emptyset \\ 0, \text{ otherwise.} \end{cases}$$

The pre-image $g^{-1}(\varphi)$ of φ under g is a bipolar fuzzy set defined as $(g^{-1}(\varphi))^{-}(\ddot{u}) = \varphi^{-}(g(\ddot{u}))$ and $(g^{-1}(\varphi))^{+}(\ddot{u}) = \varphi^{+}(g(\ddot{u})), \forall \ddot{u} \in C.$

Definition 2.7. [1] Let *T* be a subset of a Γ -semiring M_S . The characteristic function of *T* taking values in [0, 1] is a fuzzy set given by

$$\delta_T(\ddot{t}) = \begin{cases} 1, \text{ if } \ddot{t} \in T \\ 0, \text{ otherwise} \end{cases}$$

Then δ_T is a fuzzy characteristic function of *T* in [0, 1].

Definition 2.8. [1] Let *T* be a subset of a Γ -semiring M_S . The bipolar fuzzy characteristic function of *T* is given by

$$\delta_T^+(\ddot{t}) = \begin{cases} 1, \text{ if } \ddot{t} \in T \\ 0, \text{ otherwise} \end{cases} \text{ and } \delta_T^-(\ddot{t}) = \begin{cases} -1, \text{ if } \ddot{t} \in T \\ 0, \text{ otherwise} \end{cases}$$

Then δ_T is a bipolar fuzzy characteristic function of *T*.

Definition 2.9. [1] A Bipolar fuzzy set $F = \{M_S; F^-, F^+\}$ in M_S is called a bipolar fuzzy Γ -semiring of M_S if it satisfies the following properties: for all $\rho, \varsigma \in M_S$ and $\ddot{\gamma} \in \Gamma$,

(i)
$$F^{-}(\varrho + \varsigma) \leq \max\{F^{-}(\varrho), F^{-}(\varsigma)\}$$

(ii) $F^{-}(\varrho\ddot{\gamma}\varsigma) \leq \max\{F^{-}(\varrho), F^{-}(\varsigma)\}$
(iii) $F^{+}(\varrho + \varsigma) \geq \min\{F^{+}(\varrho), F^{+}(\varsigma)\}$
(iv) $F^{+}(\varrho\ddot{\gamma}\varsigma) \geq \min\{F^{+}(\varrho), F^{+}(\varsigma)\}.$

Definition 2.10. [4] An additive subsemigroup *B* of a Γ -semiring M_S is called a right (resp., left) ideal of M_S if $\varrho \ddot{\gamma} \varsigma \in B$ (resp., $\varsigma \ddot{\gamma} \varrho \in B$) for all $\varrho \in B, \ddot{\gamma} \in \Gamma$ and $\varsigma \in M_S$. A left and right ideal of M_S is called an ideal of M_S .

Definition 2.11. [1] Let F be a fuzzy subset of a Γ -semiring M_S . Then F is called a fuzzy left (resp., right) ideal of M_S if for all $\rho, \varsigma \in M_S$ and $\ddot{\gamma} \in \Gamma$,

(i)
$$F(\varrho + \varsigma) \ge \min\{F(\varrho), F(\varsigma)\}$$

(ii)
$$F(\varrho \ddot{\gamma} \varsigma) \ge F(\varsigma)$$
 (resp., $\ge F(\varrho)$).

Also, F is called a fuzzy ideal of M_S if it is both a fuzzy left ideal and a fuzzy right ideal of M_S .

Notations: Throughout the following session, we use the following notations:

- (1) M_S for a Γ -semiring
- (2) BF for bipolar fuzzy
- (3) BFS for a bipolar fuzzy set
- (4) BFGS for a bipolar fuzzy Γ -semiring
- (5) BFI for a bipolar fuzzy ideal.

3. Bipolar Fuzzy Ideals of Γ -semirings

In this session, we introduce and study the notion of BFI of Γ -semirings, and we characterize and discuss a few properties related to BFI of Γ -semirings.

Definition 3.1. A BFS $F = \{M_S; F^-, F^+\}$ in M_S is called a BF left (resp., right) ideal of M_S if it satisfies the following properties: for any $\rho, \varsigma \in M_S$ and $\ddot{\gamma} \in \Gamma$,

- (i) $F^{-}(\varrho + \varsigma) \leq \max\{F^{-}(\varrho), F^{-}(\varsigma)\}$
- (ii) $\mathcal{F}^{-}(\varrho\ddot{\gamma}\varsigma) \leq \mathcal{F}^{-}(\varsigma)$ (resp., $\leq \mathcal{F}^{-}(\varrho)$)
- (iii) $F^+(\varrho + \varsigma) \ge \min\{F^+(\varrho), F^+(\varsigma)\}$
- (iv) $F^+(\varrho\ddot{\gamma}\varsigma) \ge F^+(\varsigma)$ (resp., $\ge F^+(\varrho)$).

Also, a BFS \digamma in M_S is called a BFI of M_S if it is both a BF left ideal and a BF right ideal of M_S .

Example 3.2. Let \mathbb{N} be the set of all natural numbers with zero, and let \mathbb{Z}^+ be the set of all positive even integers. Then \mathbb{N} and \mathbb{Z}^+ are additive commutative semigroups. Define the mapping $\mathbb{N} \times \mathbb{Z}^+ \times \mathbb{N} \to \mathbb{N}$ by $\ddot{a}\ddot{o}\ddot{b}$ usual product of $\ddot{a}, \ddot{o}, \ddot{b}, \forall \ddot{a}, \ddot{b} \in \mathbb{N}, \ddot{o} \in \mathbb{Z}^+$. Then \mathbb{N} is a Γ -semiring.

Define a BFS
$$F = \{\mathbb{N}; F^-, F^+\}$$
, where $F^- : \mathbb{N} \to [-1, 0]$ and $F^+ : \mathbb{N} \to [0, 1]$ as follows

 $F^{-}(\varrho) = \begin{cases} -0.8, \text{ if } \varrho \text{ is even or } 0\\ -0.5, \text{ otherwise} \end{cases} \text{ and } F^{+}(\varrho) = \begin{cases} 0.8, \text{ if } \varrho \text{ is even or } 0\\ 0.5, \text{ otherwise.} \end{cases}$

Then \digamma is a BFI of \mathbb{N} .

Theorem 3.3. A BFS $\mathcal{F} = \{M_S; \mathcal{F}^-, \mathcal{F}^+\}$ in M_S is a BFI of M_S if and only if the level cuts are ideals of M_S , *i.e.*, for all $s \times t \in [-1, 0] \times [0, 1], \emptyset \neq \mathcal{F}_s^N$ and $\emptyset \neq \mathcal{F}_t^P$ are ideals of M_S .

Proof. Suppose $\mathcal{F} = \{M_S; \mathcal{F}^-, \mathcal{F}^+\}$ is a BFI of M_S . Let $s \times t \in [-1, 0] \times [0, 1]$ be such that $\mathcal{F}_s^N \neq \emptyset$ and $\mathcal{F}_t^P \neq \emptyset$. Let $v, \tau \in \mathcal{F}_s^N, \varrho, \varsigma \in \mathcal{F}_t^P$ and $\ddot{\gamma} \in \Gamma$. Then $\mathcal{F}^-(v) \leq s, \mathcal{F}^-(\tau) \leq s$ and $\mathcal{F}^+(\varrho) \geq t, \mathcal{F}^+(\varsigma) \geq t$. Since $\mathcal{F} = \{M_S; \mathcal{F}^-, \mathcal{F}^+\}$ is a BFI of M_S , we have

(i) $F^{-}(v+\tau) \leq \max\{F^{-}(v), F^{-}(\tau)\} \leq s$ (ii) $F^{-}(\upsilon \ddot{\gamma} \tau) \leq F^{-}(\tau) \leq s$ (resp., $\leq F^{-}(\upsilon) \leq s$) (iii) $F^+(\rho + \varsigma) \ge \min\{F^+(\rho), F^+(\varsigma)\} \ge t$ (iv) $F^+(\rho \ddot{\gamma} \varsigma) \ge F^+(\varsigma) \ge t$ (resp., $\ge F^+(\rho) \ge t$). Then $(v + \tau) \in F_s^N$, $v \ddot{\gamma} \tau \in F_s^N$ and $\varrho + \varsigma \in F_t^P$, $\varrho \ddot{\gamma} \varsigma \in F_t^P$. Thus F_s^N and F_t^P are ideals of M_s . Conversely, suppose that the level cuts F_s^N and F_t^P are ideals of M_S . Let $v, \tau \in F_s^N, \varrho, \varsigma \in F_t^P$ and $\ddot{\gamma} \in \Gamma$. Then $v + \tau \in F_s^N$, $v\ddot{\gamma}\tau \in F_s^N$ and $\varrho + \varsigma \in F_t^P$, $\varrho\ddot{\gamma}\varsigma \in F_t^P$. Choose $s = \max\{F^-(v), F^-(\tau)\}$ and $t = \min\{F^+(\varrho), F^+(\varsigma)\}$. Then (i) $F^{-}(v+\tau) \le s = \max\{F^{-}(v), F^{-}(\tau)\}.$ (ii) $F^{-}(v\ddot{\gamma}\tau) \leq s = \max\{F^{-}(v), F^{-}(\tau)\}$. If $F^{-}(v) < F^{-}(\tau)$, then $F^{-}(v\ddot{\gamma}\tau) \leq s =$ $\max\{F^{-}(v), F^{-}(\tau)\} = F^{-}(\tau)$. If $F^{-}(\tau) < F^{-}(v)$, then $F^{-}(v\ddot{\gamma}\tau) \le s = \max\{F^{-}(v), F^{-}(\tau)\} = F^{-}(v)$. (iii) $F^+(\rho + \varsigma) > t = \min\{F^+(\rho), F^+(\varsigma)\}.$ (iv) $F^+(\varrho\ddot{\gamma}\varsigma) \ge t = \min\{F^+(\varrho), F^+(\varsigma)\}$. If $F^+(\varsigma) < F^+(\varrho)$, then $F^+(\varrho\ddot{\gamma}\varsigma) \ge t = \min\{F^+(\varrho), F^+(\varsigma)\} = t$ $F^+(\varsigma)$. If $F^+(\rho) < F^+(\varsigma)$, then $F^+(\rho \ddot{\gamma} \varsigma) \ge t = \min\{F^+(\rho), F^+(\varsigma)\} = F^+(\rho)$. Thus $F = \{M_S; F^-, F^+\}$ is a BFI of M_S .

Theorem 3.4. If $F = \{M_S; F^-, F^+\}$ and $\varphi = \{M_S; \varphi^-, \varphi^+\}$ are two BFIs of M_S , then $F \cap \varphi$ is a BFI of M_S . *Proof.* Assume that $F = \{M_S; F^-, F^+\}$ and $\varphi = \{M_S; \varphi^-, \varphi^+\}$ are BFIs of M_S . Let $\varrho, \varsigma \in M_S$ and $\ddot{\gamma} \in \Gamma$. Then

$$(F^{-} \cap \varphi^{-})(\varrho + \varsigma) = \min\{F^{-}(\varrho + \varsigma), \varphi^{-}(\varrho + \varsigma)\}$$

$$\leq \min\{\max\{F^{-}(\varrho), F^{-}(\varsigma)\}, \max\{\varphi^{-}(\varrho), \varphi^{-}(\varsigma)\}\}$$

$$\leq \min\{\max\{F^{-}(\varrho), \varphi^{-}(\varrho)\}, \max\{F^{-}(\varsigma), \varphi^{-}(\varsigma)\}\}$$

$$\leq \max\{\min\{F^{-}(\varrho), \varphi^{-}(\varrho)\}, \min\{F^{-}(\varsigma), \varphi^{-}(\varsigma)\}\}$$

$$= \max\{(F^{-} \cap \varphi^{-})(\varrho), (F^{-} \cap \varphi^{-})(\varsigma)\},$$

$$(F^{-} \cap \varphi^{-})(\varrho \ddot{\gamma}\varsigma) = \min\{F^{-}(\varrho \ddot{\gamma}\varsigma), \varphi^{-}(\varrho \ddot{\gamma}\varsigma)\}$$

$$\leq \min\{F^{-}(\varsigma), \varphi^{-}(\varsigma)\} \text{ (resp., } \leq \min\{F^{-}(\varrho), \varphi^{-}(\varrho)\})$$

$$= (F^{-} \cap \varphi^{-})(\varsigma),$$

$$(F^{+} \cap \varphi^{+})(\varrho + \varsigma) = \min\{F^{+}(\varrho + \varsigma), \varphi^{+}(\varrho + \varsigma)\}$$

$$\geq \min\{\max\{F^{+}(\varrho), F^{+}(\varsigma)\}, \max\{\varphi^{+}(\varrho), \varphi^{+}(\varsigma)\}\}$$

$$\geq \min\{\max\{F^{+}(\varrho), \varphi^{+}(\varrho)\}, \max\{F^{+}(\varsigma), \varphi^{+}(\varsigma)\}\}$$

$$\geq \max\{\min\{F^{+}(\varrho), \varphi^{+}(\varrho)\}, \min\{F^{+}(\varsigma), \varphi^{+}(\varsigma)\}\}$$

$$= \max\{(F^{+} \cap \varphi^{+})(\varrho), (F^{+} \cap \varphi^{+})(\varsigma)\},$$

$$(F^{+} \cap \varphi^{+})(\varrho \ddot{\gamma}\varsigma) = \min\{F^{+}(\varrho \ddot{\gamma}\varsigma), \varphi^{+}(\varrho \ddot{\gamma}\varsigma)\}$$

$$\geq \min\{F^{+}(\varsigma), \varphi^{+}(\varsigma)\} \text{ (resp., } \geq \min\{F^{+}(\varrho), \varphi^{+}(\varrho)\})$$

$$= (F^{+} \cap \varphi^{+})(\varsigma).$$

Hence, $F \cap \varphi$ is a BFI of M_S .

Corollary 3.5. The intersection of an arbitrary family of BFIs of M_S is a BFI of M_S . In general, the union of two BFIs of M_S is not a BFI of M_S .

Example 3.6. Consider the additive Abelian groups $Z_4 = \{0, 1, 2, 3\}$ and $\Upsilon = \{0, 2\}$. Define $Z_4 \times \Upsilon \times Z_4 \to Z_4$ by $\rho \ddot{\alpha}\varsigma$ usual product of $\rho, \ddot{\alpha}, \varsigma, \forall \rho, \varsigma \in Z_4, \ddot{\alpha} \in \Upsilon$. Then Z_4 is a Γ -semiring. Define a BFS $F = \{Z_4; F^-, F^+\}$, where $F^- : Z_4 \to [-1, 0]$ and $F^+ : Z_4 \to [0, 1]$ as follows:

$$F^{-}(\varrho) = \begin{cases} -0.8, \text{ if } \varrho = 0\\ -0.6, \text{ if } \varrho = 1\\ -0.4, \text{ otherwise} \end{cases} \text{ and } F^{+}(\varrho) = \begin{cases} 0.9, \text{ if } \varrho = 0\\ 0.7, \text{ if } \varrho = 1\\ 0.5, \text{ otherwise.} \end{cases}$$

Define a BFS $\varphi = \{Z_4; \varphi^-, \varphi^+\}, \text{ where } \varphi^- : Z_4 \to [-1, 0] \text{ and } \varphi^+ : Z_4 \to [0, 1] \text{ as follows:}$
$$\varphi^-(\varrho) = \begin{cases} -0.7, \text{ if } \varrho = 0\\ -0.6, \text{ if } \varrho = 2\\ -0.4, \text{ otherwise} \end{cases} \text{ and } \varphi^+(\varrho) = \begin{cases} 0.8, \text{ if } \varrho = 0\\ 0.6, \text{ if } \varrho = 2\\ 0.4, \text{ otherwise.} \end{cases}$$

Then F and φ are BFIs of Z_4 , but $F \cup \varphi$ is not a BFI of Z_4 .

Theorem 3.7. Let F and φ be two BFIs of M_S . If $F \subseteq \varphi$ or $\varphi \subseteq F$, then $F \cup \varphi$ is a BFI of M_S .

Proof. Suppose $F \subseteq \varphi$. Let $\varrho, \varsigma \in M_S$ and $\ddot{\gamma} \in \Gamma$. Then

$$(F^{-} \cup \varphi^{-})(\varrho + \varsigma) = \max\{F^{-}(\varrho + \varsigma), \varphi^{-}(\varrho + \varsigma)\}$$
$$= F^{-}(\varrho + \varsigma)$$
$$\leq \max\{F^{-}(\varrho), F^{-}(\varsigma)\}$$
$$= \max\{\max\{F^{-}(\varrho), \varphi^{-}(\varrho)\}, \max\{F^{-}(\varsigma), \varphi^{-}(\varsigma)\}\}$$
$$= \max\{(F^{-} \cup \varphi^{-})(\varrho), (F^{-} \cup \varphi^{-})(\varsigma)\},$$

$$(F^{-} \cup \varphi^{-})(\varrho \ddot{\gamma}\varsigma) = \max\{F^{-}(\varrho \ddot{\gamma}\varsigma), \sigma^{-}(\varrho \ddot{\gamma}\varsigma)\}$$
$$= F^{-}(\varrho \ddot{\gamma}\varsigma)$$
$$\leq F^{-}(\varsigma) \text{ (resp., } \leq F^{-}(\varrho)\text{)}$$
$$= \max\{F^{-}(\varsigma), \varphi^{-}(\varsigma)\}$$
$$= (F^{-} \cup \varphi^{-})(\varsigma),$$

$$(F^{+} \cup \varphi^{+})(\varrho + \varsigma) = \max\{F^{+}(\varrho + \varsigma), \varphi^{+}(\varrho + \varsigma)\}$$

$$= \varphi^{+}(\varrho + \varsigma)$$

$$\geq \min\{\varphi^{+}(\varrho), \varphi^{+}(\varsigma)\}$$

$$= \min\{\max\{F^{+}(\varrho), \varphi^{+}(\varrho)\}, \max\{F^{+}(\varsigma), \varphi^{+}(\varsigma)\}\}$$

$$= \min\{(F^{+} \cup \varphi^{+})(\varrho), (F^{+} \cup \varphi^{+})(\varsigma)\},$$

$$(F^{+} \cup \varphi^{+})(\varrho\ddot{\gamma}\varsigma) = \max\{F^{+}(\varrho\ddot{\gamma}\varsigma), \varphi^{+}(\varrho\ddot{\gamma}\varsigma)\}$$

$$= \varphi^{+}(\varrho \ddot{\gamma}\varsigma)$$

$$\geq \varphi^{+}(\varsigma) \text{ (resp., } \geq \varphi^{+}(\varrho)\text{)}$$

$$= \max\{F^{+}(\varsigma), \varphi^{+}(\varsigma)\}$$

$$= (F^{+} \cup \varphi^{+})(\varsigma).$$

Hence, $F \cup \varphi$ is a BFI of M_S . Similarly, if $\varphi \subseteq F$, we get $F \cup \varphi$ is a BFI of M_S .

Theorem 3.8. Let κ be a homomorphism from a Γ -semiring M_S onto a Γ -semiring N_S . If φ is a BFI of N_S , then the pre-image $\kappa^{-1}(\varphi)$ of φ is a BFI of M_S .

Proof. Assume that φ is a BFI of N_S . Let $\varrho, \varsigma \in M_S$ and $\ddot{\gamma} \in \Gamma$. Then

$$(\kappa^{-1}(\varphi)^{-})(\varrho + \varsigma) = \varphi^{-}(\kappa(\varrho + \varsigma))$$
$$= \varphi^{-}(\kappa(\varrho) + \kappa(\varsigma))$$
$$\leq \max\{\varphi^{-}(\kappa(\varrho)), \varphi^{-}(\kappa(\varsigma))\}$$
$$= \max\{\kappa^{-1}(\varphi^{-}(\varrho)), \kappa^{-1}(\varphi^{-}(\varsigma))\}.$$

$$\begin{aligned} (\kappa^{-1}(\varphi)^{-})(\varrho\ddot{\gamma}\varsigma) &= \varphi^{-}(\kappa(\varrho\ddot{\gamma}\varsigma)) \\ &= \varphi^{-}(\kappa(\varrho) * \kappa(\varsigma)) \\ &\leq \varphi^{-}(\kappa(\varsigma)) \text{ (resp., } \leq \varphi^{-}(\kappa(\varrho))) \\ &= (\kappa^{-1}(\varphi)^{-})(\varsigma), \end{aligned}$$

$$(\kappa^{-1}(\varphi)^{+})(\varrho + \varsigma) = \varphi^{+}(\kappa(\varrho + \varsigma))$$
$$= \varphi^{+}(\kappa(\varrho) + \kappa(\varsigma))$$
$$\geq \min\{\varphi^{+}(\kappa(\varrho)), \varphi^{+}(\kappa(\varsigma))\}$$
$$= \min\{\kappa^{-1}(\varphi^{+}(\varrho)), \kappa^{-1}(\varphi^{+}(\varsigma))\},$$

$$(\kappa^{-1}(\varphi)^{+})(\varrho\ddot{\gamma}\varsigma) = \varphi^{+}(\kappa(\varrho\ddot{\gamma}\varsigma))$$
$$= \varphi^{+}(\kappa(\varrho) * \kappa(\varsigma))$$
$$\geq \varphi^{+}(\kappa(\varsigma)) \text{ (resp., } \geq \varphi^{+}(\kappa(\varrho)))$$
$$= (\kappa^{-1}(\varphi)^{+})(\varsigma).$$

Hence, $\kappa^{-1}(\varphi)$ is a BFI of M_S .

Theorem 3.9. Let κ be a homomorphism from a Γ -semiring M_S onto a Γ -semiring N_S . If F is a BFI of M_S , then the homomorphic image $\kappa(F)$ of F is a BFI of N_S .

Proof. Assume that F is a BFI of M_S . Let $\rho, \varsigma \in N_S$ and $\ddot{\gamma} \in \Gamma$. Suppose neither $\kappa^{-1}(\rho)$ nor $\kappa^{-1}(\varsigma)$ is non-empty. Since κ is onto, there exist $v, \tau \in M_S$ such that $\kappa(v) = \rho$ and $\kappa(\tau) = \varsigma$ and it follows that $v + \tau \in \kappa^{-1}(\rho + \varsigma)$ and $v\ddot{\gamma}\tau \in \kappa^{-1}(\rho\ddot{\gamma}\varsigma)$. Thus

$$(\kappa(F))^{-}(\varrho + \varsigma) = \min\{F^{-}(\ddot{z}) \mid \ddot{z} \in \kappa^{-1}(\varrho + \varsigma)\}$$

$$= \min\{F^{-}(\upsilon + \tau) \mid \upsilon \in \kappa^{-1}(\varrho), \tau \in \kappa^{-1}(\varsigma)\}$$

$$\leq \min\{\max\{F^{-}(\upsilon), F^{-}(\tau)\} \mid \upsilon \in \kappa^{-1}(\varrho), \tau \in \kappa^{-1}(\varsigma)\}\}$$

$$= \min\{\max\{F^{-}(\upsilon) \mid \upsilon \in \kappa^{-1}(\varrho)\}, \max\{F^{-}(\tau) \mid \tau \in \kappa^{-1}(\varsigma)\}\}$$

$$\leq \max\{\min\{F^{-}(\upsilon) \mid \upsilon \in \kappa^{-1}(\varrho)\}, \min\{F^{-}(\tau) \mid \tau \in \kappa^{-1}(\varsigma)\}\}$$

$$= \max\{(\kappa(F))^{-}(\varrho), (\kappa(F))^{-}(\varsigma)\},$$

$$(\kappa(F))^{-}(\varrho\ddot{\gamma}\varsigma) = \min\{F^{-}(\ddot{z}) \mid \ddot{z} \in \kappa^{-1}(\varrho\ddot{\gamma}\varsigma)\}$$

$$= \min\{F^{-}(\upsilon\ddot{\gamma}\tau) \mid \upsilon \in \kappa^{-1}(\varrho), \tau \in \kappa^{-1}(\varsigma)\}$$

$$\leq \min\{F^{-}(\tau) \mid \tau \in \kappa^{-1}(\varsigma)\} \text{ (resp., } \leq \min\{F^{-}(\upsilon) \mid \upsilon \in \kappa^{-1}(\varrho)\})$$

$$= (\kappa(F))^{-}(\varsigma),$$

$$(\kappa(F))^{+}(\varrho+\varsigma) = \max\{F^{+}(\ddot{z}) \mid \ddot{z} \in \kappa^{-1}(\varrho+\varsigma)\}$$

$$= \max\{F^{+}(\upsilon+\tau) \mid \upsilon \in \kappa^{-1}(\varrho), \tau \in g^{-1}(\varsigma)\}$$

$$\geq \max\{\min\{F^{+}(\upsilon), F^{+}(\tau)\} \mid \upsilon \in \kappa^{-1}(\varrho), \tau \in \kappa^{-1}(\varsigma)\}$$

$$\geq \min\{\max\{F^{+}(\upsilon) \mid \upsilon \in \kappa^{-1}(\varrho)\}, \max\{F^{+}(\tau) \mid \tau \in \kappa^{-1}(\varsigma)\}\}$$

$$= \min\{(\kappa(F))^{+}(\varrho), (\kappa(F))^{+}(\varsigma)\},$$

$$(\kappa(F))^{+}(\varrho\ddot{\gamma}\varsigma) = \max\{F^{+}(\ddot{z}) \mid \ddot{z} \in \kappa^{-1}(\varrho\ddot{\gamma}\varsigma)\}$$

$$= \max\{F^{+}(\upsilon\ddot{\gamma}\tau) \mid \upsilon \in \kappa^{-1}(\varrho), \tau \in \kappa^{-1}(\varsigma)\}$$

$$\geq \max\{F^{+}(\tau) \mid \tau \in \kappa^{-1}(\varsigma)\} \text{ (resp., } \geq \max\{F^{+}(\upsilon) \mid \upsilon \in \kappa^{-1}(\varrho)\}\}$$

$$= (\kappa(F))^{+}(\varsigma).$$

Hence, $\kappa(F)$ is a BFI of N_S .

Theorem 3.10. Let F be a non-empty subset of M_S . Then the BF characteristic set of F, δ_F is a BF left (resp., right) ideal of M_S if and only if F is a left (resp., right) ideal of M_S .

Proof. Suppose δ_F is a BF left ideal of M_S . Let $\varrho, \varsigma \in M_S$ and $\ddot{\gamma} \in \Gamma$. Then $\delta_F^+(\varrho + \varsigma) \ge \min\{\delta_F^+(\varrho), \delta_F^+(\varsigma)\} = 1$ and $\delta_F^+(\varrho \ddot{\gamma}\varsigma) \ge \delta_F^+(\varsigma) = 1$, so $\varrho + \varsigma \in F$ and $\varrho \ddot{\gamma}\varsigma \in F$. Hence, F is a left ideal of M_S .

Conversely, suppose that F is a left ideal of M_S . Let $\varrho, \varsigma \in F$ and $\ddot{\gamma} \in \Gamma$. If $\rho, \varsigma \in F$, then $\rho + \varsigma \in F$ and $\rho \ddot{\gamma} \varsigma \in F$. Now, (i) $\delta_F^+(\varrho + \varsigma) = 1 = \min\{\delta_F^+(\varrho), \delta_F^+(\varsigma)\}$ (ii) $\delta_F^+(\rho \ddot{\gamma} \varsigma) = 1 = \delta_F^+(\varsigma)$ (iii) $\delta_F^-(\varrho + \varsigma) = -1 = \max\{\delta_F^-(\varrho), \delta_F^-(\varsigma)\}$ (iv) $\delta_F(\varrho \ddot{\gamma} \varsigma) = -1 = \delta_F(\varsigma).$ If $\varrho, \varsigma \notin F$, then $\delta_F^+(\varrho) = 0 = \delta_F^-(\varrho)$ and $\delta_F^+(\varsigma) = 0 = \delta_F^-(\varsigma)$. Now, (i) $\delta_F^+(\varrho + \varsigma) = 0 \ge \min\{\delta_F^+(\varrho), \delta_F^+(\varsigma)\}$ (ii) $\delta_F^+(\varrho \ddot{\gamma} \varsigma) = 0 = \delta_F^+(\varsigma)$ (iii) $\delta_F^-(\varrho + \varsigma) = 0 \le \max\{\delta_F^-(\varrho), \delta_F^-(\varsigma)\}$ (iv) $\delta_F^-(\varrho \ddot{\gamma} \varsigma) = 0 = \delta_F^-(\varsigma).$ If $\varrho \notin F$ and $\varsigma \in F$, then $\delta_F^+(\varrho) = 0 = \delta_F^-(\varrho), \delta_F^+ + (\varsigma) = 1$ and $\delta_F^-(\varsigma) = -1$. Now, (i) $\delta_F^+(\varrho + \varsigma) \ge \min\{\delta_F^+(\varrho), \delta_F^+(\varsigma)\}$ (ii) $\delta_{E}^{+}(\varrho \ddot{\gamma} \varsigma) \geq \delta_{E}^{+}(\varsigma)$ (iii) $\delta_F^-(\varrho + \varsigma) \le \max\{\delta_F^-(\varrho), \delta_F^-(\varsigma)\}$ (iv) $\delta_F^+(\varrho \ddot{\gamma} \varsigma) \leq \delta_B^-(\varsigma)$.

A similar argument holds for $\rho \in F$ and $\varsigma \notin F$.

Hence, δ_F is a BF left ideal of M_S . In a similar pattern, we can prove the case of a BF right ideal of M_S .

Corollary 3.11. Let F be a non-empty subset of M_S . Then the BF characteristic set of F, δ_F is a BFI of M_S if and only if F is an ideal of M_S .

4. Conclusion

This paper introduces the concept of BFIs of Γ -semirings, and we established a one-to-one correspondence between the BFI of Γ -semirings and its level set. Further, we proved that the intersection of BFIs of a Γ -semiring is also a BFI. Also, we investigated that homomorphic and pre-image of a BFI of a Γ -semiring is also a BFI. We expect these structures to be useful in developing bipolar fuzzy normal ideals and maximal ideals of Γ -semirings.

Acknowledgment

This research project (Fuzzy Algebras and Applications of Fuzzy Soft Matrices in Decision-Making Problems) was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF67-UoE-Aiyared-Iampan).

References

- [1] Y. Bhargavi, T. Eswarlal, Fuzzy Γ-semirings, Int. J. Pure Appl. Math. 98 (2015), 339–349. https://doi.org/10.12732/ ijpam.v98i3.6.
- [2] T.K. Dutta, T. Chanda, Structures of fuzzy ideals of Γ-ring, Bull. Malays. Math. Sci. Soc. 28 (2005), 9–18.
- [3] J. Ghosh, T.K. Samanta, Fuzzy ideals in Γ-semiring, Glob. J. Sci. Front. Res. 11 (2011), 14–21.
- [4] H. Hedayati, K.P. Shum, An Introduction to Γ-semirings, Int. J. Algebra. 5 (2011), 709–726.
- [5] U.V. Kalyani, T. Eswarlal, J. KaviKumar, A. Iampan, Bipolar fuzzy sublattices and ideals, Int. J. Anal. Appl. 20 (2022), 45. https://doi.org/10.28924/2291-8639-20-2022-45.
- [6] K.J. Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays. Math. Sci. Soc. 32 (2009), 361–373.
- [7] D.S. Malik, J.N. Mordeson, Fuzzy homomorphisms of rings, Fuzzy Sets Syst. 46 (1992), 139–146. https://doi.org/10. 1016/0165-0114(92)90275-9.
- [8] S.V.D.M. Rupa, V.L. Prasannam, Y. Bhargavi, Bipolar valued fuzzy d-ideals of d-algebra, Math. Stat. Eng. Appl. 71 (2022), 632–638.
- [9] T.K. Mukherjee, M.K. Sen, On fuzzy ideals of a ring I, Fuzzy Sets Syst. 21 (1987), 99–104. https://doi.org/10.1016/ 0165-0114(87)90155-2.
- [10] M.M.K. Rao, Γ-semiring, Southeast Asian Bull. Math. 19 (1995), 49–54.
- [11] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81–89.
- [12] S. Ragamayi, Y. Bhargavi, Some results on homomorphism of vague ideal of a Gamma-nearring, Int. J. Sci. Technol. Res. 9 (2020), 3972–3975.
- [13] L.A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
- [14] W.R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, in: Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, IEEE, San Antonio, TX, USA, 1994: pp. 305–309. https://doi.org/10.1109/ IJCF.1994.375115.