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Abstract. In this work, it is proved a fixed point theorem for a Chandrabhan type multimap having a
weakly closed graph, and taking convex values only on some subset of its domain. After showing that
countably condensing multimaps are Chandrabhan type multimaps, the above result was applied to
countably condensing multimaps. These include the fixed point theorems of Mönch, Sadovskii, Darbo,
Dhage, and Agarwal and O’Regan as special cases.
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1. Introduction and Preliminaries

Introduced by Sadovskii [15] in 1967, condensing operators have been an important topic in nonlinear
functional analysis. He defined the condensing operator for single-valued functions and proved that
a condensing function from a closed bounded convex subset of a Banach space into itself has a fixed
point.

The concept of the condensing function was generalized by Daher [5] as that of a countable con-
densing function, which is condensing only in countable sets. And it was extended to multimaps (or
maps) by Himmelberg, Porter and Van Vleck [9].

On the other hand, Mönch [11] introduced a new class of single-valued functions to generalize the
fixed point theorem of Sadovskii. It is generalized as a class of multimaps called Mönch type maps by
O’Regan and Precup [12]. And the maps were relaxed to Chandrabhan type maps by Dhage [7].

Cardinali and Rubbioni [4] tried to prove the fixed point theorem for a countably condensing Mönch
type map having a weakly closed graph, and taking convex values only on some subset of its domain. In
this paper, we propose a new theorem that correct the result in [4] and extend it for Chandrabhan type
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maps. After showing that countably condensing multimaps are Chandrabhan type multimaps under
suitable assumptions, the fixed point theorem for Chandrabhan type maps was applied to countably
condensing multimaps.

Throughout this paper, we assume that maps have nonempty values otherwise explicitly stated or
obvious from the context.

Definition 1.1. A nonempty subset Y of a locally convex Hausdorff topological linear space E is said
to be quasi-convex (or almost convex) if for any V ∈ V , where V is a neighborhood system of the origin
0 in E, and for any finite set {y1, y2, ..., yn} ⊂ Y , there exists a finite set {z1, z2, ..., zn} ⊂ Y such that
zi − yi ∈ V for each i = 1, 2, ..., n and co{z1, z2, ..., zn} ⊂ Y .

For example, deleting a certain subset of the boundary of a closed convex set, we get a quasi-convex
set. For details, see [8, 13].

Definition 1.2. [3, 4] Let X be a nonempty subset of a locally convex Hausdorff topological linear
space E. It is said that a map G : X ( E has a weakly closed graph in X × E if for every net(xδ)δ
in X , xδ → x, x ∈ X , and for every net (yδ)δ, yδ ∈ G(xδ), yδ → y, then S(x, y) ∩ G(x) 6= ∅, where
S(x, y) = {x+ λ(y − x) : λ ∈ [0, 1]}.

Theorem 1.3 ( [3], Teorema I). Let E be a locally convex Hausdorff topological linear space,K be a nonempty

compact subset of E and G : K ( K be a map taking closed values and with the properties

(1) there exists a quasi-convex subset A ofK such that A = K and G(x) is convex for every x ∈ A; and

(2) G has a weakly closed graph.

Under these conditions, there exists an x ∈ K such that x ∈ G(x).

2. Fixed Point Theorems for Chandrabhan Type Maps

The following theorem is a main result of this paper:

Theorem 2.1. Let X be a closed convex subset of a Banach space E, B be a relatively compact subset of X and

Y be a subset of X such thatK ∩ Y is quasi-convex andK ∩ Y = K for any relatively compact convex subset

K of X . Assume that F : X ( X is a map with compact values satisfying the followings:

(1) F (x) is convex for every x ∈ Y ;

(2) F has a weakly closed graph;

(3) F maps compact sets into relatively compact sets; and

(C) For A ⊂ X , A is compact if A = co(B ∪ F (A)) and A = C with a countable subset C of A.

Then F has a fixed point.
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Proof. Put K0 = co(B), Kn+1 = co(B ∪ F (Kn)) for n = 0, 1, 2, · · · and K =
⋃∞
n=0Kn. The Mazur

Theorem implies thatK0 is relatively compact. By induction,K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ Kn+1 · · · andKn

is relatively compact. Note thatK is convex, sinceKn is convex for n = 0, 1, 2, · · · .
Furthermore we can show thatK = co(B ∪ F (K)). For each n, co(B ∪ F (Kn)) ⊆ co(B ∪ F (K)), so

K =
⋃∞
n=0 co(B ∪ F (Kn)) ⊆ co(B ∪ F (K)). On the other hand, K is a convex set containing B and⋃∞

n=0 F (Kn) = F (K), hence co(B ∪ F (K)) ⊆ K.

For everyn = 0, 1, 2, · · · , consider the space (Kn, d), where d is themetric induced onKn by themetric
generated by ||·||. The compactness ofKn implies that (Kn, d) is a separable space. Since every subspace
of a separable metric space is separable, there exists a countable set Cn ofKn with Cn(Kn,d)

= Kn. Put
C =

⋃∞
n=0Cn, then C = K, since K =

⋃∞
n=0Kn =

⋃∞
n=0Kn =

⋃∞
n=0Cn =

⋃∞
n=0Cn = C. Condition

(C) implies thatK is compact.
Now, we consider the map T : K ( K defined by T (x) = F (x) ∩K for all x ∈ K. Then the map T

has nonempty values. In fact, fixed x ∈ K, there exists a sequence (xn)n∈N inK such that xn → x. Let
us consider a sequence (yn)n∈N such that yn ∈ F (xn), n ∈ N. Since F (K) ⊂ K andK is compact, there
is an y ∈ K such that yn → y. By (2), S(x, y) ∩ F (x) 6= ∅. As the convexity ofK implies S(x, y) ⊂ K,
T (x) = F (x) ∩K 6= ∅.

The above discussion also shows that ∅ 6= S(x, y) ∩ F (x) = S(x, y) ∩ F (x) ∩K = S(x, y) ∩ T (x), so
T has a weakly closed graph inK ×K.

Furthermore Y ∩K is dense inK. As F takes closed values and satisfies hypothesis (1), T satisfies
all the assumptions of Theorem 1.3. Therefore, there exists x ∈ K such that x ∈ T (x) ⊂ F (x). �

Remark 2.2. The proof of Theorem 2.1 was followed a systematic basic idea of Theorem 3.1 in [4].
Theorem 1.3 was also used in the proof of [4], but the condition of Y was different as follows:

Y is a quasi-convex subset ofX and Y = X. (2.1)

The example below shows that condition (2.1) is insufficient to prove Theorem 2.1 using Theorem 1.3.
IfX = [0, 1]× [0, 1] has a usual topology and Y = (0, 1)× (0, 1) ∪ {(0, 0), (0, 1)}, then (2.1) holds but if
K = {0} × [0, 1], then Y ∩K = {(0, 0), (0, 1)} is neither a dense subset ofK nor a quasi-convex subset
of K.

Also, as the corollary below, F is a Mönch type maps (that is, B is a point) in [4]:

Corollary 2.3. Let X be a closed convex subset of a Banach space E and Y be a subset of X such thatK ∩ Y is

quasi-convex andK ∩ Y = K for any compact convex subsetK of X . Assume that F : X ( X is a map with

compact values satisfying the followings:

(1) F (x) is convex for every x ∈ Y ;

(2) F has a weakly closed graph;
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(3) F maps compact sets into relatively compact sets;

(M) there exists x0 ∈ X such that A ⊂ X , A is compact if A = co({x0} ∪ F (A)) and A = C with a

countable subset C of A.

Then F has a fixed point.

Corollary 2.4. [7] Let X be a closed convex subset of a Banach space E and B be a relatively compact subset

of X . Assume that F : X ( X is a upper semicontinuous map with convex, compact values satisfying the

following:

(C) For A ⊂ X , A is compact if A = co(B ∪ F (A)) and A = C with a countable subset C of A.

Then F has a fixed point.

Proof. The upper semicontinuity of F implies that F has a closed graph and maps compact sets into
compact sets. �

Corollary 2.5. Let X be a closed convex subset of a Banach space E. Assume that F : X ( X is a upper

semicontinuous map with convex, compact values satisfying the following:

(M) there exists x0 ∈ X such that A ⊂ X , A is compact if A = co({x0} ∪ F (A)) and A = C with a

countable subset C of A.

Then F has a fixed point.

Corollary 2.3 includes the following known results in the fixed point theory for single-valued
functions in Banach spaces. See [7]:

Corollary 2.6. Let X be a closed convex subset of a Banach space E and f : X → X a single-valued function

satisfying any one of the following conditions:

(1) f is continuous and α-condensing (Sadovskii [15]).

(2) f is continuous and a set-contraction (Darbo [6]).

(3) f is a compact and continuous map (Schauder).

Then f has a fixed point.

3. Fixed Point Theorems for Countably Condensing Maps

Definition 3.1. Let E be a Banach space with the norm ‖ · ‖, Pb(E) = {H ⊂ E : H 6= ∅, H bounded}.
A function β : Pb(E)( R+

0 is called a measure of noncompactness (MNC, for short) on E provided that
the following conditions hold for any A,B ∈ Pb(E):

(1) β(coA) = β(A);
(2) A is compact iff β(A) = 0; and
(3) β(A ∪B) =max{β(A), β(B)}.
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In [2, 10], a MNC was defined as satisfying only (1). However, we follow the definition of [14] such
that a MNC also satisfies (2) and (3). Note that a MNC β satisfies the property

(4) A ⊂ B implies β(A) ≤ β(B).

Definition 3.2. LetX be a nonempty subset of a Banach spaceE and let β be aMNC. Amap F : X ( E

is said to be countably condensing if
(I) F (X) is bounded; and
(II) β(F (A)) < β(A) for all countable bounded subsets A of X with β(A) > 0.

The condition (II) can be equivalently formulated as
(II′) for all countable bounded subsets A of X , the relation β(A) ≤ β(F (A)) implies that A is

compact.

Lemma 3.3. Let X be a closed convex subset of a Banach space E. Suppose that a countably condensing map

F : X ( X maps compact sets into relatively compact sets. Then F is a Chandrabhan type maps, that is, there

exists a relatively compact subset B of X such that A ⊂ X , A is compact if A = co(B ∪ F (A)) and A = C

with a countable subset C of A.

Proof. Suppose that for A = co(B ∪ F (A)), whose existence was shown in the proof of Theorem 2.1,
there exists a countable subset C of A such that A = C. Every point of C can be written as a finite
combination of points belonging to the set B ∪ F (A), so there exists a countable setM ⊂ A such that
C ⊂ co(B ∪ F (M)). By the definition of a countably condensing map, F (X) is bounded, and the sets
A, C andM are also bounded. Since β(B) = 0,

β(C) ≤ β(co(B ∪ F (M))) = β(B ∪ F (M)) = β(F (M)). (*)

First, we show that β(M) = 0. If not, then β(F (M)) < β(M), because F is countably condensing.
Combining above argument, we obtain

β(C) < β(M) ≤ β(A) = β(A) = β(C) = β(C),

a contradiction. ThereforeM is compact.
Now, we prove β(A) = 0. As F maps compact sets into relatively compact sets, β(F (M)) = 0. Hence

β(F (M)) = 0 and β(C) = 0 by (*), which implies that β(A) = β(C) = 0, that is, A is compact. �

By Lemma 3.3 and Theorem 2.1, we obtain the following theorem:

Theorem 3.4. Let X be a closed convex subset of a Banach space E, and Y be a subset of X such thatK ∩ Y is

quasi-convex andK ∩ Y = K for any compact convex subsetK of X . Assume that F : X ( X is a countably

condensing map with compact values satisfying hypotheses (1), (2), (3) of Theorem 2.1. Then F has a fixed

point.
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From Theorem 3.4, we also obtain the following corollary in [1]:

Corollary 3.5. Let X be a closed convex subset of a Banach space E. Assume that F : X ( X is a upper

semicontinuous, countably condensing map with convex, compact values. Then F has a fixed point.

Definition 3.6. Let X be a nonempty subset of a Banach space E and let β be a MNC. For k ∈ [0, 1), a
map F : X ( E is said to be countably k-condensing if

(I) F (X) is bounded; and
(II) β(F (A)) ≤ kβ(A) for all countable bounded subsets A of X .

Since a countably k-condensing map is countably condensing, we obtain the following theorem:

Theorem 3.7. Let X be a closed convex subset of a Banach space E, and Y be a subset of X such thatK ∩ Y is

quasi-convex andK ∩ Y = K for any compact convex subsetK of X . Assume that F : X ( X is a countably

k-condensing map with compact values satisfying hypotheses (1), (2), (3) of Theorem 2.1. Then F has a fixed

point.

The following corollary is in [1]:

Corollary 3.8. Let X be a closed convex subset of a Banach space E. Assume that F : X ( X is a upper

semicontinuous, countably k-condensing map with convex, compact values. Then F has a fixed point.
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