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1. Introduction

In [12], Swamy and Rao introduced the concept of an Almost Distributive Lattice (ADL). An ADL
(L,∧,∨, 0) satisfies all the axioms of distributive lattice, except possibly the commutativity of the
operations ∧ and ∨. In [15], Swamy et al. introduced pseudo-complementation on almost distributive
lattices and also in [16] studied Stone Almost Distributive Lattices. On the other hand, fuzzy set theory
was introduced by Zadeh [17]. Next, fuzzy groups were studied by Rosenfeld [10]. Swamy and Raju
introduced fuzzy ideals and congruences of lattices in [11]. In [7], Kumar studied the space of prime
fuzzy ideals of a ring topologically in different way and Hadji-Abadi and Zahedi [6] extended the
result of Kumar. In [13], [14] Swamy et al. studied fuzzy ideals and L-Fuzzy Filters of ADLs. [1], Abd
El-Mohsen Badawy and R. El-Fawal, introduced the concept of closure filters and characterized such
filters in terms of boosters. In this paper, we introduced the notion of fuzzy closure filters in a Stone
ADL. Characterized fuzzy closure filters in terms of its level subsets and characteristic functions. Also,
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characterized the fuzzy closure filters in terms of boosters. Proved that the set of all fuzzy closure filters
forms a complete distributive lattice. Also introduced the concepts of prime fuzzy filters and maximal
fuzzy filters in a Stone ADL. Proved that the existence of prime fuzzy closure filters in a Stone ADL.
Also derived that every proper fuzzy closure filter of L is the intersection of all prime fuzzy closure
filters containing it. Studied some properties on the set of all prime fuzzy closure filters of a Stone ADL.
We derived the properties of the set of all fuzzy closure filters of a Stone ADL topologically. In the last
decades, various generalization of Boolean algebras have emerged. Along this direction, the class of
MS− algebras were first introduced by T.S. Blyth and J.C. Varlet [3,4] as a generalization of de Morgan
algebras and Stone algebras.

2. Preliminaries

In this section, we recall certain definitions and important results, those will be required in the text
of the paper.

Definition 2.1. [12] An algebra L = (L,∨,∧, 0) of type (2, 2, 0) is called an Almost Distributive Lattice
(abbreviated as ADL), if it satisfies the following conditions:

(1) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

(2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(3) (a ∨ b) ∧ b = b

(4) (a ∨ b) ∧ a = a

(5) a ∨ (a ∧ b) = a

(6) 0 ∧ a = 0

(7) a ∨ 0 = a, for all a, b, c ∈ L.

Example 2.2. Every non-empty set X can be regarded as an ADL as follows. Let x0 ∈ X. Define the
binary operations ∨,∧ on X by

x ∨ y =

x if x 6= x0

y if x = x0

x ∧ y =

y if x 6= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.

If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a ≤ b if and only if a = a ∧ b (or equivalently,
a ∨ b = b), then ≤ is a partial ordering on L.

Theorem 2.3. [12] If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the following:

(1) a ∨ b = a⇔ a ∧ b = b

(2) a ∨ b = b⇔ a ∧ b = a
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(3) ∧ is associative in L

(4) a ∧ b ∧ c = b ∧ a ∧ c

(5) (a ∨ b) ∧ c = (b ∨ a) ∧ c

(6) a ∧ b = 0⇔ b ∧ a = 0

(7) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(8) a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a

(9) a ≤ a ∨ b and a ∧ b ≤ b
(10) a ∧ a = a and a ∨ a = a

(11) 0 ∨ a = a and a ∧ 0 = 0

(12) If a ≤ c, b ≤ c then a ∧ b = b ∧ a and a ∨ b = b ∨ a

(13) a ∨ b = (a ∨ b) ∨ a.

It can be observed that an ADL L satisfies almost all the properties of a distributive lattice except the
right distributivity of ∨ over ∧, commutativity of ∨, commutativity of ∧. Any one of these properties
make an ADL L a distributive lattice. That is

Theorem 2.4. [12] Let (L,∨,∧, 0) be an ADL with 0. Then the following are equivalent:

(1) L is a distributive lattice

(2) a ∨ b = b ∨ a, for all a, b ∈ L

(3) a ∧ b = b ∧ a, for all a, b ∈ L

(4) (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

As usual, an elementm ∈ L is called maximal if it is a maximal element in the partially ordered set
(L,≤). That is, for any a ∈ L, m ≤ a⇒ m = a.

Theorem 2.5. [12] Let L be an ADL andm ∈ L. Then the following are equivalent:

(1) m is maximal with respect to ≤

(2) m ∨ a = m, for all a ∈ L

(3) m ∧ a = a, for all a ∈ L

(4) a ∨m is maximal, for all a ∈ L.

As in distributive lattices [2, 5], a non-empty sub set I of an ADL L is called an ideal of L if a ∨ b ∈ I
and a ∧ x ∈ I for any a, b ∈ I and x ∈ L. Also, a non-empty subset F of L is said to be a filter of L if
a ∧ b ∈ F and x ∨ a ∈ F for a, b ∈ F and x ∈ L.

The set I(L) of all ideals of L is a bounded distributive lattice with least element {0} and greatest
element L under set inclusion in which, for any I, J ∈ I(L), I ∩ J is the infimum of I and J while the
supremum is given by I ∨ J := {a ∨ b | a ∈ I, b ∈ J}. A proper ideal P of L is called a prime ideal if,
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for any x, y ∈ L, x ∧ y ∈ P ⇒ x ∈ P or y ∈ P . A proper idealM of L is said to be maximal if it is not
properly contained in any proper ideal of L. It can be observed that every maximal ideal of L is a prime
ideal. Every proper ideal of L is contained in a maximal ideal. For any subset S of L the smallest ideal
containing S is given by (S] := {(

n∨
i=1

si)∧ x | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write (s] instead

of (S]. Similarly, for any S ⊆ L, [S) := {x ∨ (
n∧
i=1

si) | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write [s)

instead of [S).

Theorem 2.6. [12] For any a, y ∈ L, the following are equivalent:

(1) (a] ⊆ (b]

(2) b ∧ a = a

(3) b ∨ a = b

(4) [b) ⊆ [a).

For any a, b ∈ L, it can be verified that (a] ∨ (b] = (a ∨ b] and (a] ∩ (b] = (a ∧ b]. Hence the set PI(L)

of all principal ideals of L is a sublattice of the distributive lattice I(L) of ideals of L.

Theorem 2.7 ( [9]). Let I be an ideal and F a filter of L such that I ∩ F = ∅. Then there exists a prime ideal P

such that I ⊆ P and P ∩ F = ∅.

Definition 2.8. [15] Let (L,∨,∧, 0) be an ADL. Then a unary operation a −→ a∗ on L is called a
pseudo-complementation on L if, for any a, b ∈ L, it satisfies the following conditions:

(1) a ∧ b = 0⇒ a∗ ∧ b = b

(2) a ∧ a∗ = 0

(3) (a ∨ b)∗ = a∗ ∧ b∗

Then (L,∨,∧,∗ , 0) is called a pseudo-complemented ADL.

Theorem 2.9. Let L be an ADL and ∗ a pseudo-complementation on L. Then, for any a, b ∈ L, we have the

following:

(1) 0∗∗ = 0

(2) 0∗ ∧ a = a

(3) a∗∗ ∧ a = a

(4) a∗∗∗ = a∗

(5) a ≤ b⇒ b∗ ≤ a∗

(6) a∗ ∧ b∗ = b∗ ∧ a∗

(7) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗

(8) a∗ ∧ b = (a ∧ b)∗ ∧ b∗.
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Definition 2.10 ( [16]). Let L be an ADL and ∗ a pseudo-complementation on L.Then L is called a
Stone ADL if, for any x ∈ L, x∗ ∨ x∗∗ = 0∗.

Lemma 2.11 ( [16]). Let L be a Stone ADL and a, b ∈ L. Then the following conditions hold:

(1) 0∗ ∧ a = a and 0∗ ∨ a = 0∗

(2) (a ∧ b)∗ = a∗ ∨ b∗.

Definition 2.12. [8] Let L be a stone ADL with maximal elements. Then for any a ∈ L, define
(a)+ = {x ∈ L | x ∨ a∗ is a maximal element of L}.We call (a)+ as booster of a.

Theorem 2.13. [8] Let L be a stone ADL with maximal elements. Then the set B0(L) of all boosters is a

complete distributive lattice on its own.

Definition 2.14. [8]
(1) For any filter F of L, define an operator β as β(F ) = {(x)+ | x ∈ F}.

(2) For any ideal I of B0(L), define an operator←−β as←−β (I) = {x ∈ L | (x)+ ∈ I}.

We recall that for any non empty set S, the characteristic function of S,

XS(x) =

 1 if x ∈ S

0 if x /∈ S.

Definition 2.15. [14] Let λ be a fuzzy subset of S and let α ∈ [0, 1]. Then the set

λα = {x ∈ L : α ≤ λ(x)}

is called a level subset of λ.

Definition 2.16. [13] A fuzzy subset λ of an ADL L is said to be a fuzzy ideal of L, if for all x, y ∈ L,
(1) λ(0) = 1,

(2) λ(x ∨ y) ≥ λ(x) ∧ λ(y),

(3) λ(x ∧ y) ≥ λ(x) ∨ λ(y) for all x, y ∈ L.

In [13], Swamy and Raju observed that, a fuzzy subset λ of an ADL L is a fuzzy ideal of L if and
only if λ(0) = 1 and λ(x ∨ y) = λ(x) ∧ λ(y) for all x, y ∈ L.

In [14], Swamy et.al µ : L→ L
′
,where L is an ADL and L′ is a complete lattice satisfying infinite

meet distributive law. Now in our cases take L′ as [0, 1]. λ is said to be a fuzzy filter of an ADL L if λα
is a filter of L for all α ∈ L.

Theorem 2.17. [14] Let λ be a fuzzy subset of an ADL L. Then the following are equivalent to each other.

(1) λ is a fuzzy filter of L,
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(2) λ(m) = 1 for all maximal elementsm and λ(x ∧ y) = λ(x) ∧ λ(y), for all x, y ∈ L,

(3) λ(m) = 1 for all maximal elementsm and λ(x ∨ y) ≥ λ(x) ∨ λ(y) and λ(x ∧ y) ≥ λ(x) ∧ λ(y), for

all x, y ∈ L.

We define the binary operations ” + ” and ”.” on all fuzzy subsets of an ADL L as: (µ + θ)(x) =

sup{µ(a) ∧ θ(b) : a, b ∈ L, a ∨ b = x} and (µ, θ)(x) = sup{µ(a) ∧ θ(b) : a, b ∈ L, a ∧ b = x}.

The intersection of fuzzy filters of L is a fuzzy filter. However the union of fuzzy filters may not be
fuzzy filter. The least upper bound of a fuzzy filters µ and θ of L is denoted as µ ∨ θ =

⋂
{σ ∈ FF(L) :

µ ∪ θ ⊆ σ}. If µ and θ are fuzzy filters of L, then µ · θ = µ ∨ θ and µ+ θ = µ ∩ θ.

Theorem 2.18. Let λ be a fuzzy subset of L. Then λ is a fuzzy ideal of L if and only if, for any α ∈ [0, 1], λα is

an ideal of L.

Definition 2.19.

1. A proper fuzzy ideal λ of L is called a prime fuzzy ideal if for any two fuzzy ideals η and ν of L,
η ∩ ν ⊆ λ implies η ⊆ λ or ν ⊆ λ.
2. A proper fuzzy filter λ of L is called a prime fuzzy filter if for any two fuzzy filters η, ν of L, η ∩ ν ⊆ λ
implies η ⊆ λ or ν ⊆ λ.

Theorem 2.20. For any α ∈ [0, 1), the fuzzy subset P 1
α of L given by

P 1
α(x) =

 1 if x ∈ P

α if x /∈ P

for all x ∈ L is a prime fuzzy filter if and only if P is a prime filter of L.

3. Fuzzy Closure filters of Decomposable Stone ADLs

In this section, we introduce the notion of fuzzy closure filters in decomposable stone ADLs and
study the properties of fuzzy closure filters.

Definition 3.1. A fuzzy subset ν ofM0(L) is called a fuzzy ideal ofM0(L) if ν((1)+) = 1 and ν((a)+ t

(b)+) ≥ ν((a)+) ∧ ν((b)+)) and ν((a)+ ∩ (b)+) ≥ ν((a)+) ∨ ν((b)+)), for all (a)+, (b)+ ∈M0(L).

Example 3.2. LetL = {0, 1, 2, 3} be a non-empty set and ∨,∧ be binary operations and unary operations
respectively which are defined by

∧ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 1 2 3
3 0 3 3 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 1 1
2 2 2 2 2
3 3 1 2 3
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Define ∗ on L, as 0∗ = 1, 1∗ = 2∗ = 3∗ = 0. Then clearly, (L,∧,∨, ∗) is a stone ADL which is not a lattice.
For the elements 0, 2 there exist dense element 2 such that 0∗∗ ∧ 2 = 0 and 2∗∗ ∧ 2 = 2 and
for the element 1, there exists dense element 1 such that 1∗∗ ∧ 1 = 1 and
for the element 3, there exists dense element 3 such that 3∗∗ ∧ 3 = 3.
Hence(L,∨,∧,′ , 0, 1) is a decomposable stone ADL.
Define ν((1)+) = 1, ν((0)+) = 0.5, ν((2)+) = ν((3)+) = 0.8. Clearly, ν is a fuzzy ideal ofM0(L).

In the following definition, we define two operators α and←−α in L

Definition 3.3. Let L be a decomposable stone ADL.
(1) For any fuzzy filter θ of L and for any a in L, define an operator α as α(θ)((a)+) = sup{θ(b) | (a)+ =

(b)+, b ∈ L}.

(2) For any fuzzy ideal ν ofM0(L) and for any a in L, define an operator←−α as←−α (ν)(a) = ν((a)+).

Lemma 3.4. In any decomposable stone ADL L, The following three statements hold:

(1) For any fuzzy filter θ of L, α(θ) is a fuzzy ideal ofM0(L)

(2) For any fuzzy ideal ν ofM0(L), ←−α (ν) is a fuzzy filter of L

(3) The maps α and←−α are isotone.

Proof.

(1). For any fuzzy filter θ,we haveα(θ)((0∗)+) = 1. Let (x)+, (y)+ ∈M0(L). Then, we haveα(θ)((x)+)∧

α(θ)((y)+) = sup{θ(a) | (a)+ = (x)+}∧ sup{θ(b) | (b)+ = (y)+} = sup{θ(a)∧θ(b) | (a)+ = (x)+, (b)+ =

(y)+} ≤ sup{θ(a ∧ b) | (a ∧ b)+ = (x ∧ y)+} = α(θ)((x ∧ y)+) = α(θ)((x)+ t (y)+) and α(θ)((x)+) ∨

α(θ)((y)+) = sup{θ(a) | (a)+ = (x)+}∨ sup{θ(b) | (b)+ = (y)+} = sup{θ(a)∨θ(b) | (a)+ = (x)+, (b)+ =

(y)+} ≤ sup{θ(a ∨ b) | (a ∨ b)+ = (x ∨ y)+} = α(θ)((x ∨ y)+) = α(θ)((x)+ ∩ (y)+). Therefore, α(θ) is a
fuzzy ideal ofM0(L).

(2). Let ν be any fuzzy ideal ofM0(L). Then←−α (ν)(0∗) = ν((0∗)+) = 1. For any x, y ∈ L, ←−α (ν)(x∧y) =

ν((x∧y)+) = ν((x)+t(y)+) ≥ ν((x)+)∧ν((y)+) =←−α (ν)(x)∧←−α (ν)(y) and←−α (ν)(x∨y) = ν((x∨y)+) =

ν((x)+ ∩ (y)+) ≥ ν((x)+) ∨ ν((y)+) =←−α (ν)(x) ∨←−α (ν)(y).

(3). Assume that ν and θ are fuzzy filters of Lwith ν ⊆ θ.Now α(ν)((a)+) = sup{ν(b) | (b)+ = (a)+} ≤

sup{θ(b) | (b)+ = (a)+} = α(θ)((a)+). Therefore, α is an isotone mapping. Similarly, we deduce that←−α
is also an isotone mapping. �

Theorem 3.5. The mapping ν → ←−αα(ν) is a closure operator on the lattice of fuzzy filters of L. i.e., for any

fuzzy filters ν and θ of L,

(1) ν ⊆ ←−αα(ν)

(2) ν ⊆ θ ⇒←−αα(ν) ⊆ ←−αα(θ)
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(3)←−αα{←−αα(ν)} =←−αα(ν).

Proof.

(1). Clearly, we have the following equality:

←−αα(ν)(a) = sup{ν(b) | (a)+ = (b)+} ≥ ν(a),

for all a ∈ L
(2). This part is clear.
(3). Let a ∈ L.Now, we have←−αα{←−αα(ν)}(a) = α{←−αα(ν)}((a)+) = sup{←−αα(ν)(b) | (b)+ = (a)+, b ∈

L} = sup{α(ν)((b)+) | (b)+ = (a)+, b ∈ L} = α(ν)((a)+) =←−αα(ν)(a).

�

Theorem 3.6. Let L be a decomposable stone ADL. Then α is a homomorphism of the lattice of fuzzy filters of L

into the lattice of fuzzy ideals ofM0(L).

Proof. Let FF(L) be the set of all fuzzy filters of L and FIM0(L) be the set of all fuzzy ideals inM0(L).

Then, for any ν, θ ∈ FF(L), we have ν ∩ θ ⊆ ν and ν ∩ θ ⊆ θ. These results imply that α(ν ∩ θ) ⊆ α(ν)

and α(ν ∩ θ) ⊆ α(θ). The above results further imply that α(ν ∩ θ) ⊆ α(ν) ∩ α(θ). Now, we have
(α(ν) ∩ α(θ))((a)+) = α(ν)((a)+) ∧ α(θ)((a)+) = sup{ν(x) | (x)+ = (a)+} ∧ sup{θ(y) | (y)+ = (a)+} ≤

sup{ν(x∨ y) | (x∨ y)+ = (a)+}∧ sup{θ(x∨ y) | (x∨ y)+ = (a)+} = sup{ν(x∨ y)∧ θ(x∨ y) | (x∨ y)+ =

(a)+} = sup{(ν∩θ)(x∨y) | (x∨y)+ = (a)+} = α(ν∩θ)((a)+). Therefore, we deduce that α(ν)∩α(θ) =

α(ν∩θ). Since ν ⊆ ν∨θ,we have θ ⊆ ν∨θ,we obtain thatα(ν) ⊆ α(ν∨θ) andα(θ) ⊆ α(ν∨θ). The above
results imply that α(ν) t α(θ) ⊆ α(ν ∨ θ). Now, we have (α(ν ∨ θ))((a)+) = sup{(ν ∨ θ)(x) | (x)+ =

(a)+} = sup{sup{ν(x1) ∧ θ(x2) | x = x1 ∧ x2} | (x)+ = (a)+} ≤ sup{sup{ν(y1) ∧ θ(y2) | (y1)+ =

(x1)+, (y2)+ = (x2)+} | (x1 ∧ x2)+ = (a)+} = sup{sup{ν(y1) | (y1)+ = (x1)+} ∧ sup{θ(y2) | (y2)+ =

(x2)+} | (x1)+ t (x2)+ = (a)+} = sup{α(ν)((x1)+) ∧ α(θ)((x2)+) | (x1)+ t (x2)+ = (a)+} = (α(ν) t

α(θ))((a)+). The above equalities imply that α(ν ∨ θ) ⊆ α(ν) t α(θ). Hence, α(ν ∨ θ) = α(ν) t α(θ).

Clearly, we have shown that χ{1}, χL are the smallest and the largest fuzzy filters of L, respectively and
also we have that α(χ{1}), α(χL) are smallest and greatest fuzzy ideals ofM0(L), respectively. Hence
,α is indeed a homomorphism from FF(L) into FIM0(L). �

Corollary 3.7. Let ν and θ be any two fuzzy filters of a decomposable stone ADL L. Then, we have←−αα(ν ∩ θ) =

←−αα(ν) ∩←−αα(θ).

Proof. By using the above result, we obtain that α(ν) ∩ α(θ) = α(ν ∩ θ). Now,←−αα(ν ∩ θ)(b) = α(ν ∩

θ)((b)+) = α(ν)((b)+)∧ α(θ)((b)+) =←−αα(ν)(b)∧←−αα(θ)(b). Therefore, we have←−αα(ν ∩ θ) =←−αα(ν)∩
←−αα(θ). �

Now, we introduce the concept of fuzzy closure filters in decomposable stone ADLs.
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Definition 3.8. A fuzzy filter ν of a decomposable stone ADL L is called a fuzzy closure filter if
←−αα(ν) = ν.

Example 3.9. LetL = {0, 1, 2, 3} be a non-empty set and∨,∧,′ be binary operations andunary operations
respectively which are defined by

′ 0 1 2 3
1 0 0 0

∧ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 1 1
2 2 1 2 3
3 3 1 3 3

Then (L,∨,∧,′ , 0, 1) is a decomposable MS-algebra. Define ν(1) = 1, ν(0) = 0.5, ν(2) = ν(3) = 0.8.

Clearly, ν is a fuzzy filter of L. Clearly, we have ←−ααν(x) = ν(x), for all x ∈ L. Hence, ν is a fuzzy
closure filter of L. Define θ(1) = 1, θ(0) = 0, θ(2) = 0.3, θ(3) = 0.6. Clearly, θ is a fuzzy filter of L. But
θ is not a fuzzy closure filter of L, because←−ααθ(2) 6= θ(2).

Nowwe characterize the fuzzy closure filters in terms of its level subsets and characteristic functions.

Theorem 3.10. Let ν be any proper fuzzy subset of L. Then ν is a fuzzy closure filter if and only if νt, for all

t ∈ [0, 1], is a closure filter of L.

Proof. Let ν is a fuzzy closure filter of L. Then (←−αα(ν))t = (ν)t Now we prove every level subset of
ν is a closure filter of L. It is enough to show ←−αα(νt) = νt. Clearly, we have that νt ⊆ ←−αα(νt). Let
a ∈ ←−αα(νt). That implies (a)+ ∈ α(νt). Then there exists b ∈ νt such that (a)+ = (b)+ and so, we
have ν(b) ≥ α with (a)+ = (b)+. That implies α(ν)((a)+) = sup{ν(b) | (a)+ = (b)+} ≥ α and so
←−αα(ν)(a) ≥ t. That implies a ∈ (←−αα(ν))t. Therefore, we have←−αα(νt) ⊆ νt and hence←−αα(νt) = νt.

Clearly, we arrive that ν ⊆ ←−αα(ν). Let α =←−αα(ν)(a) = sup{ν(b) | (b)+ = (a)+}. Then for each ε > 0,

there is x ∈ L, (x)+ = (x)+ such that ν(a) > α − ε. Since ε is arbitrary chosen, we have ν(a) ≥ α

such that (x)+ = (a)+. This result implies x ∈ νt. Therefore, we have a ∈ ←−αα(νt) = να and hence
ν(a) ≥ α =←−αα(νt). Thus, we conclude that ν←−αα(ν). �

Corollary 3.11. Let F be any non-empty subset F of a decomposable stone ADL L. Then F is a closure filter if

and only if χF is a fuzzy closure filter of L.

Now we characterize the fuzzy closure filters in terms of boosters in the following result.

Theorem 3.12. Let ν be a fuzzy filter of L. Then ν is a fuzzy closure filter if and only if for any a, b ∈ L, (a)+ =

(b)+ implies ν(a) = ν(b).
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Proof. Assume that ν is a fuzzy closure filter ofL.Thenwe have the following equality ν(a) =←−αα(ν)(a),

for all a ∈ L. Let a, b ∈ L such that (a)+ = (b)+. Then, we have ν(a) = ←−αα(ν)(a) = α(ν)((a)+) =

α(ν)((b)+) =←−αα(ν)(b) = ν(b). Conversely, assume that for any a, b ∈ L, (a)+ = (b)+ implies ν(a) =

ν(b). Now←−αα(ν)(a) = sup{ν(b) | (b)+ = (a)+} = ν(a). Therefore. we have←−αα(ν) = ν. �

We now establish the following main theorem of fuzzy closure filters.

Theorem 3.13. Let {νi | i ∈ Ω} be any family of fuzzy closure filters of a decomposable stone ADL L. Then⋂
i∈Ω

νi is a fuzzy closure filter of L.

Corollary 3.14. Let L be a decomposable stone ADL. Then the set FFC(L) of all fuzzy closure filters of L is

a complete distributive lattice with relation ⊆ . The sup and inf of any subfamily {νi | i ∈ Ω} of fuzzy closure

filters are←−αα(
∨
νi) and i) and

⋂
i∈Ω

νi respectively, where
∨
νi is their supremum in the lattice of fuzzy filters of

L.

Lemma 3.15. Let ν be any fuzzy ideal ofM0(L). Then ν = α←−α (ν).

Proof. Let (a)+ ∈ M0(L). Now α←−α (ν)((a)+) = sup{←−α (ν)(b) | (b)+ = (a)+} = sup{ν((b)+) | (b)+ =

(a)+} = ν((a)+). Therefore α←−α (ν) = ν. �

Using the above Corollary 3.14 and Lemma 3.15, we are able to prove that the lattice of fuzzy closure
filters of L is isomorphic to the lattice of fuzzy ideals ofM0(L).

Theorem 3.16. Let L be a decomposable stone ADL. Then there is an isomorphism of the lattice of fuzzy closure

filters of L onto the lattice of fuzzy ideals ofM0(L).

Proof. Let FFC(L) be the set of all fuzzy filters of L, FIM0(L) be the set of all fuzzy ideals ofM0(L).

Define f : FFC(L) → FIM0(L) by f(ν) = α(ν), for any ν ∈ FFC(L). It is easy to see that f is one
one. Let ν be an fuzzy ideal ofM0(L). Then←−α (ν) is a fuzzy filter of L. Now By applying the above
Lemma, we deduce that←−αα(←−α (ν)) = ←−α (α←−α (ν)) = ←−α (ν). Thus←−α (ν) is a fuzzy closure filter of L.
Hence, we derive that f(←−α (ν)) = α(←−α (ν)) = ν. This result gives that f is onto. Let ν, θ be any two
fuzzy closure filters of L. Clearly, we have f(ν ∩ θ) = α(ν ∩ θ) = α(ν) ∩ α(θ).Now, we further obtain
f(←−αα(ν ∨ θ)) = α((←−αα(ν ∨ θ))) = α(ν ∨ θ) = α(ν) t α(θ). Therefore, we have shown that f is an
isomorphism. �

Now, we continue to study some important properties of prime fuzzy closure filters and maximal
fuzzy closure filters in decomposable stone ADLs.

Definition 3.17. A proper fuzzy closure filter ν of a decomposable stone ADL L is said to be prime if
for any fuzzy filters θ and µ such that θ ∩ µ ⊆ ν,we have θ ⊆ ν or µ ⊆ ν.
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Lemma 3.18. Let P be a proper filter of L. Then P is a prime closure filter of L, t ∈ [0, 1) if and only if

P 1
t (a) =

1 if a ∈ P

t otherwise

is a prime closure filter of L.

Proof. Assume that P is a proper closure filter of L and t ∈ [0, 1). It can be easily verified that P 1
t is a

proper fuzzy filter of L.Now, we prove that P 1
t is a prime fuzzy filter of L. Let θ and λ be fuzzy filters of

L such that θ * P 1
t and λ * P 1

t . Then there exist a, b ∈ L such that θ(a) > P 1
t (a) and λ(b) > P 1

t (b). This
implies a /∈ P and b /∈ P, and sowe have a∨b /∈ P and P 1

t (a∨b) = α. It follows that θ(x)∧λ(b) > t. Since
θ and λ are isotone mappings, we have (θ∩λ)(a∨ b) = θ(a∨ b)∧λ(a∨ b) ≥ θ(a)∧λ(a) > t = P 1

t (a∨ b).

This implies θ ∩ λ * P 1
t . Thus, we have shown that P 1

t is a prime fuzzy filter of L. Next, we prove
that P 1

t is a prime fuzzy closure filter of L. Since P is a prime closure filter of L and t ∈ [0, 1), for
any a, b ∈ L such that (a)+ = (b)+. If P 1

t (a) = 1, then a ∈ P. This implies that b ∈ P and P 1
t (b) = 1.

If P 1
t (a) = t; then a /∈ P. This implies that b /∈ P and P 1

t (b) = t. Hence, P 1
t is a prime fuzzy closure

filter of L. Conversely, assume that P 1
t is a prime fuzzy filter of L. If F and G are any filters of L such

that F ∩ G ⊆ P, then (F ∩ G)1
t = F 1

t ∩ G1
t ⊆ P 1

t . This implies F 1
t ⊆ P 1

t or G1
t ⊆ P 1

t , so that F ⊆ P

or G ⊆ P. Therefore, we have shown that P is a prime filter of L. Now, suppose that P 1
t is a prime

fuzzy closure filter of L and for any a, b ∈ L such that (a)+ = (b)+. Let a ∈ P. Then, we deduce that
1 = P 1

t (a) = P 1
t (b). This implies b ∈ P. Hence, P is indeed a prime closure filter of L. �

Corollary 3.19. A proper filter P is a prime closure filter of L if and only if χP is a prime fuzzy closure filter of

L.

Proof. Assume thatP is a prime closure filter ofL.Nowweprove thatχP is a prime fuzzy filter ofL.Let ν
andλ be any fuzzy filters ofL such that θ∩λ ⊆ χP . Suppose θ * χP andλ * χP .Then there exist a, b ∈ L
such thatλ(a) > χP (a) and θ(b) > χP (b).This implies a /∈ P and b /∈ P. SinceP is a primefilter, a∨b /∈ P.
Thus χP (a∨b) = 0.Now, (λ∩θ)(a∨b) = λ(a∨b)∧θ(a∨b) ≥ λ(a)∧θ(b) > χP (a)∧χP (b) = 0 = χP (a∨b).

This implies θ ∩ λ * χP ,which is a contradiction. Thus χP is a prime filter of L.Next we prove that χP
is a prime fuzzy closure filter. Let a, b ∈ L such that (a)+ = (b)+. If χP (a) = 1, then a ∈ P. This implies
b ∈ P. Thus χP (b) = 1. If χP (a) = 0, then a /∈ P. This implies b /∈ P. Thus χP (b) = 0. Hence χP is a
prime fuzzy closure filter of L. Conversely, assume that χP is a prime closure filter of L. Now we show
that P is a prime filter of L. Let F andG be any filters of L such that F ∩G ⊆ P. Then χF∩G ⊆ χP . That
implies χF ⊆ χP or χG ⊆ χP and hence F ⊆ P or G ⊆ P. Therefore P is a prime filter. We prove that
P is a prime closure filter of L. Let a, b ∈ L such that (a)+ = (b)+. Let a ∈ P. Then χP (a) = 1 = χP (b).

Thus b ∈ P. Hence P is a prime fuzzy closure filter of L. �
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Theorem 3.20. proper fuzzy filter ν of L is a prime fuzzy closure filter if and only if Img(ν) = {1, t}, where

t ∈ [0, 1) and the set ν∗ = {x ∈ L | ν(x) = 1} is a prime closure filter of L.

Proof. From the above lemma, we have the converse part. Assume that ν is a prime fuzzy closure
filter. Clearly, we have 1 ∈ Im(ν). Since ν is proper, there is a ∈ L such that ν(a) < 1.We show that
ν(a) = ν(b), for all a, b ∈ L \ ν∗. Suppose ν(a) 6= ν(b), for some a, b ∈ L \ ν∗.Without loss of generality
we can assume that ν(b) < ν(a) < 1. Define fuzzy subsets θ and λ as follows:

θ(x) =

1 if x ∈ [a)

0 otherwise

and

λ(x) =

1 if x ∈ ν∗
ν(a) otherwise

for all x ∈ L. Clearly, we see immediately that both θ and λ are fuzzy filters of L. Let x ∈ L. If x ∈ ν∗,
then (θ ∩ λ)(x) ≤ 1 = ν(x). If x ∈ [a) \ ν∗, then x = a ∨ x, and we have (θ ∩ λ)(x) = θ(x) ∧ λ(x) =

1ν(a) = ν(a) ≤ ν(x). Also if x /∈ [a), then θ(x) = 0 and hence (θ ∩ λ)(x) = 0 ≤ ν(z). Therefore, we get
θ ∩ λ ⊆ ν. Since θ(x) = 1 > ν(x) and λ(y) = ν(x) > ν(y), we arrive that λ * ν and θ * λ, which is a
contradiction. Thus ν(a) = ν(b) for all a, b ∈ L \ ν∗ and hence Im(ν) = {1, t} for some t ∈ [0, 1). Let
P = {a ∈ L | ν(a) = 1}. Since ν is proper, we get that P is a proper filter of L. Let t 6= 1. Then

ν(x) =

1 if x ∈ P

t if x /∈ P.

By the above lemma, we have shown that P = ν∗. �

Definition 3.21. A proper fuzzy filter ν of a decomposable stone ADL L is said to be maximal if
Imν = {1, t},where t ∈ [0, 1) and the level filter ν∗ = {a ∈ L | ν(a) = 1} is a maximal filter.

A proper fuzzy filter ν of a decomposable stone ADL L is said to be a maximal fuzzy closure filter of
L if Imν = {1, t},where t ∈ [0, 1) and the level filter ν∗ is a maximal closure filter.

Theorem 3.22. Every maximal fuzzy filter of a decomposable stone ADL is a fuzzy closure filter.

Proof. Let ν be a maximal fuzzy filter of L. Then ν∗ is a maximal filter and Imν = {1, t}. That implies
ν∗ is maximal and νt = L. Since every maximal filter is a closure filter of L,we get that the level subsets
of L is closure filters of L. Hence ν is a fuzzy closure filter of L. �

The following corollaries follow immediately.
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Corollary 3.23. Every maximal fuzzy closure filter of L is a maximal fuzzy filter.

Corollary 3.24. Every maximal fuzzy closure filter of L is a prime fuzzy closure filter.

Theorem 3.25. Let L be a decomposable stone ADL. If ν is minimal in the class of all prime fuzzy filters

containing a given fuzzy closure filter, then ν is a fuzzy closure filter.

Proof. Let ν be a minimal in the class of all prime fuzzy filters containing a fuzzy closure filter θ of L.
Since ν is a prime fuzzy filter of L, there exists a prime filter P of L such

ν(z) =

1 if x ∈ P

t otherwise,

for some t ∈ [0, 1). Suppose that ν is not a fuzzy closure filter of L. Then there exist a, b ∈ L, (a)+ = (b)+

such that ν(a) 6= ν(b).Without loss of generality, we may assume that ν(a) = 1 and ν(b) = t. Consider
a fuzzy ideal φ of L defined by

φ(x) =

1 if x ∈ (L \ P ) ∨ (a ∨ b)

t otherwise.

Then we have θ ∩ φ ≤ t. For if otherwise, then there exists y ∈ L such that φ(y) = 1. This implies
y ∈ (L \ P ) ∨ (a ∨ b]. This result again implies y = r ∨ s for some r ∈ (L \ P ) and s ∈ (a ∨ b] and
hence, y = r ∨ s = r ∨ (s ∧ ((a ∨ b)) = (r ∨ s) ∧ (s ∨ a ∨ b) ≤ s ∨ a ∨ b. Since θ is a fuzzy closure filter
of L, t < θ(r ∨ s) ≤ θ(r ∨ a ∨ b)ν(r ∨ a ∨ b). Also, (a)+ = (b)+ implies (r ∨ a ∨ b)+ = (r ∨ b)+. These
results imply that θ(r ∨ a ∨ b) = θ(r ∨ b) ≤ ν(r ∨ b) = 1. Since ν is a prime filter, we have ν(r) = 1 or
ν(y) = 1, which is a contradiction. Thus, we arrive that θ ∩ φ ≤ t. This result implies that there exists a
prime fuzzy filter η such that η ∩ φ ≤ t and θ ⊆ η. Clearly, we have a ∨ b ∈ (L \ P ) ∨ (a ∨ b]. This result
implies φ(a ∨ b) = 1 and φ ∩ η ≤ t. Hence, we have η(a ∨ b) ≤ t < ν(a ∨ b) = 1. This implies ν * η.

Therefore, ν is not minimal in the class of all prime fuzzy filters containing a given fuzzy closure filter,
which is a contradiction. Finally, we have shown that ν is indeed a fuzzy closure filter. �

Corollary 3.26. Let L be a decomposable stone ADL. Then prime fuzzy closure filters of L are one to one

correspondence with the prime fuzzy ideals ofM0(L).

Proof. Clearly, we see that fuzzy closure filters of L are one to one correspondence with the fuzzy ideals
ofM0(L).Now we prove that if ν is a prime fuzzy closure filter, then α(ν) is also a prime fuzzy ideal of
M0(L) and vice versa. Let ν be a prime fuzzy closure filter of L. Then α(ν) is a fuzzy ideal ofM0(L). Let
θ and ν be any ideals ofM0(L). Then there exist a fuzzy closure filter of L, φ and ψ such that θ = α(φ)

and ν = α(ψ). Assume that α(φ) ∩ α(ψ) ⊆ α(ν). Then α(φ ∩ ψ) ⊆ α(ν) and so φ ∩ ψ ⊆ ν. Since ν is
a prime closure filter of L, then φ ⊆ ν or ψ ⊆ ν. This gives α(φ) ⊆ α(ν) or α(ψ) ⊆ α(ν). Let ν be a
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prime ideal ofM0(L). Then there exists a fuzzy closure filter of η of L such that ν = α(η). Let φ, ψ be
any fuzzy filters of L such that φ ∩ ψ ⊆ η. Then α(φ ∩ ψ) = α(φ) ∩ α(ψ) ⊆ α(η). Since α(η) is a prime
ideal of L, then we have α(φ) ⊆ α(η) or α(ψ) ⊆ α(η) and so φ ⊆ η or ψ ⊆ η. This result implies η is a
prime fuzzy closure filter of L. Thus, we have shown that prime fuzzy closure filters of L are one to
one correspondence with the prime fuzzy ideals ofM0(L).

�

Now we turn to prove the existence of prime fuzzy closure filters in decomposable stone ADL in the
following theorem.

Theorem 3.27. Let α ∈ [0, 1), ν be a fuzzy closure filter and σ be a fuzzy ideal of a decomposable stone ADL L

such thatν ∩ σ ≤ α. Then there exists a prime fuzzy closure filter η such that ν ⊆ η and η ∩ σ ≤ α.

Proof. Put ξ = {θ ∈ FFC(L) | ν ⊆ θ, θ ∩ σ ≤ α}. Clearly, ν ∈ ξ, ξ 6= ∅ and (ξ, ⊆) is a poset.
Let Q = {νi | i ∈ Ω} be a chain in ξ. We prove that ⋃

i∈Ω

νi ∈ ξ. Clearly (
⋃
i∈Ω

νi)(1) = 1. For any
a, b ∈ L, (

⋃
i∈Ω

νi)(a) ∧ (
⋃
i∈Ω

νi)(b) = sup{νi(a) | i ∈ Ω} ∧ sup{νj(b) | j ∈ Ω} = sup{νi(a) ∧ νj(b) | i, j ∈

Ω} ≤ sup{(νi ∪ νj)(a) ∧ (νi ∪ νj)(b) | i; j ∈ Ω}. Since Q is a chain, νi
nuj or νj ⊆ νi.Without loss of generality, we can assume that νj ⊆ νi This implies νi ∪ νj = νi. That
implies (

⋃
i∈Ω

νi)(a) ∧ (
⋃
i∈Ω

νi)(b) ≤ sup{νi(a) ∧ νj)(b) | i ∈ Ω} = sup{νi(a ∧ b) | i ∈ Ω} = (
⋃
i∈Ω

νi)(a ∧ b).

Again (
⋃
i∈Ω

νi)(a) = sup{νi(a) | i ∈ Ω} ≤ sup{νi(a ∨ b) | i ∈ Ω} = (
⋃
i∈Ω

νi)(a ∨ b). Similarly, we get that
(
⋃
i∈Ω

νi)(b) ≤ (
⋃
i∈Ω

νi)(a∨b). This implies (
⋃
i∈Ω

νi)(a)∨(
⋃
i∈Ω

νi)(b) ≤ (
⋃
i∈Ω

νi)(a∨b).Hence (
⋃
i∈Ω

νi) is a fuzzy
filter of L. Now prove that (

⋃
i∈Ω

νi) is a fuzzy closure filter. ←−αα(
⋃
i∈Ω

νi)(a) = sup{(
⋃
i∈Ω

νi)(x) | (a)+ =

(x)+, x ∈ L} = sup{sup{νi)(x) | i ∈ Ω} | (a)+ = (x)+, x ∈ L} = sup{sup{νi)(x) | (a)+ = (x)+, x ∈

L} | i ∈ Ω} = sup{←−αα(νi) | i ∈ Ω} = sup{νi(a) | i ∈ Ω} = (
⋃
i∈Ω

νi)(a). Thus ⋃
i∈Ω

νi is a fuzzy closure
filter of L. Since νi ∩σ ≤ α, for each ((

⋃
i∈Ω

νi)∩σ)(a) = (
⋃
i∈Ω

νi)(a)∧σ)(a) = sup{νi(a) | i ∈ Ω}∧σ(a) =

sup{νi(a)∧σ(a) | i ∈ Ω} = sup{(νi∧σ)(a) | i ∈ Ω} ≤ α. Thus (
⋃
i∈Ω

νi)∩σ ≤ α.Hence ⋃
i∈Ω

νi ∈ ξ. ByZorn’s
Lemma, ξ has a maximal element, say δ, i.e, δ is a fuzzy closure filter of L such that ν ⊆ δ and δ∩ θ ≤ α.
Nowwe show that δ is a prime fuzzy closure filter of L.Assume that δ is not a prime fuzzy closure filter.
Let λ1, λ2 ∈ FFC(L), and λ1 ∩ λ2 ⊆ δ such that λ1 * δ and λ2 * δ. Suppose δ1 =←−αα(λ1 ∨ δ) and δ2 =

←−αα(λ2 ∨ δ). Then both δ1, δ2 are fuzzy closure filters of L properly containing δ. Since δ is a maximal in
ξ,we get that δ1, δ2 /∈ ξ. That implies δ1∩θ � α and δ1∩θ � α. That implies there exist a, b ∈ L such that
(δ1∩σ)(a) > α and (δ2∩σ)(a) > α.We have (δ1∩σ)(a∨b)∧(δ2∩σ)(a∨b) ≥ (δ1∩σ)(a)∧(δ2∩σ)(b) ≥ α,

which implies (δ1∩σ)(a∨b)∧(δ2∩σ)(a∨b) = ((δ1∩θ)∩(δ2∩σ))(a∨b) = ((δ1 δ2)∩σ)(a∨b) = ((←−αα(λ1∨

δ)∩←−αα(λ2 ∨ δ))∩ σ)(a∨ b) = (←−αα(λ1 ∩ λ2)∨ δ)∩ σ)(a∨ b) = (←−αα(δ)∩ σ)(a∨ b) = (δ ∩ θ)(a∨ b) > α.

That implies (δ ∩ σ)(a ∨ b) > α, which is a contradiction to δ ∩ σ ≤ α. Therefore δ is a prime fuzzy
closure filter of L. �
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Corollary 3.28. Let ν be a fuzzy closure filter and σ be a fuzzy ideal of a decomposable stone ADL L such that

ν ∩ σ = 0. Then there exists a prime fuzzy closure filter η such that ν ⊆ η and η ∩ σ = 0.

Corollary 3.29. Let t ∈ [0, 1), ν be a fuzzy closure filter of a decomposable stone ADL L and ν(x) ≤ α. Then

there exists a prime fuzzy closure filter θ of L such that ν ⊆ θ and θ(x) ≤ t.

Proof. Consider ξ = {θ ∈ FFC(L) | ν ⊆ θ and θ(x) ≤ t}. Clearly, we have that ν ∈ ξ, ξ 6= ∅, and
(ξ,⊆) is a poset. Let Q = {νi | i ∈ Ω} be a chain in ξ. By above theorem, ⋃

i∈Ω

νi is a fuzzy closure
filter of L. Since νi ⊆ θ for each i ∈ Ω and θ(a) ≤ t. (

⋃
i∈Ω

νi)(a) = sup{νi(x) | i ∈ Ω} ≤ θ(a) ≤ t.

Hence ⋃
i∈Ω

νi ∈ ξ. By Zorn’s Lemma, ξ has a maximal element say δ, i.e, δ is a fuzzy closure filter of
L such that ν ⊆ δ and ν(a) ≤ t. Next we show that δ is a prime fuzzy closure filter of L. Assume
that δ is not a prime fuzzy closure filter. Let λ1, λ2 ∈ FF(L), and λ1 ∩ λ2 ⊆ δ such that λ1 * δ and
λ2 * δ. If we put δ1 = ←−αα(λ1 ∨ δ) and δ2 = ←−αα(λ2 ∨ δ), then both δ1, δ2 are fuzzy closure filters of
L properly containing δ. Since δ is maximal in ξ, we get δ1, δ2 /∈ ξ. This we show that δ1(a) � t and
δ2(a) � t. Thus implies δ1(a) > t and δ2(a) > t.We get (δ1(a)∧ (δ2)(a) = (δ1∩δ2)(a) > t,which implies
δ1(a) ∧ δ2(a) = (←−αα(λ1 ∨ δ) ∩←−αα(λ2 ∨ δ))(a) = (←−αα((λ1 ∩ λ2) ∨ δ))(a) =←−αα(δ)(a) = δ(a) > t. That
implies δ(a) > t,which is a contradiction δ(a) ≤ t. Thus δ is a prime fuzzy closure filter of L.

�

Corollary 3.30. LetL be a decomposable stone ADL. Then every proper fuzzy closure filters ofL is the intersection

of all prime fuzzy closure filters containing it.

Proof. Let ν be a proper fuzzy closure filter of L.
Put η =

⋂
{θ | θ is a prime fuzzy closure filter such that ν ⊆ θ}.Now, we proceed to prove that ν = η.

Clearly, ν ⊆ η. Put t = ν(x), for some x ∈ L. This implies ν ⊆ ν and ν(a) ≤ t. By the above Corollary,
there exists a prime fuzzy closure filter δ such that ν ⊆ δ and δ(x) ≤ t. Thus,we have η ⊆ ν. Hence,
ν = η. This result implies that every proper fuzzy closure filters of L is the intersection of all prime
fuzzy closure filters containing it. �

4. Fuzzy Closure Prime Spectrum

In this section, we studied the properties of the set of all closure fuzzy filters of a decomposable
stone ADL topologically.
Let L be a decomposable stone ADL and XC denotes the set of all prime fuzzy closure filters of L. For
a fuzzy subset θ of L, define HC(θ) = {µ ∈ XC : θ ⊆ µ}, and XC(θ) = {µ ∈ XC : θ * µ}.

Lemma 4.1. For any fuzzy filters λ and ν of a decomposable stone ADL L, we have the following

(1) λ ⊆ ν ⇒ XC(λ) ⊆ XC(ν)

(2) XC(λ ∨ ν) = XC(λ) ∪XC(ν)
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(3) XC(λ ∩ ν = XC(λ) ∩XC(ν).

Proof.

1. Let µ ∈ XC(λ). Then λ * µ and so ν * µ. Thus µ ∈ XC(ν). Hence XC(λ) ⊆ XC(ν).

2. By condition 1, we have that XC(λ) ⊆ XC(λ ∨ ν) and XC(ν) ⊆ XC(λ ∨ ν). That implies XC(ν) ∪

XC(λ) ⊆ XC(λ ∨ ν). Let µ ∈ XC(λ ∨ ν). Then λ ∨ ν * µ. Since µ is a prime fuzzy closure filter, we
get that λ * µ or ν * µ and hence µ ∈ XC(λ) or µ ∈ XC(ν). Therefore µ ∈ XC(λ) ∪ XC(ν). Thus
XC(λ ∨ ν) = XC(λ) ∪XC(ν).

3. Clearly, we have that XC(λ ∩ ν) ⊆ XC(λ) ∩XC(ν). Let µ ∈ XC(λ) ∩XC(ν). Then λ * µ and ν * µ.

Since µ is a prime fuzzy closure filter, we have that λ ∩ µ * µ. That implies µ ∈ XC(λ ∩ ν) and hence
XC(λ) ∩XC(ν) ⊆ XC(λ ∩ ν). Therefore XC(λ) ∩XC(ν) = XC(λ ∩ ν). �

Lemma 4.2. Let λ be a fuzzy subset of L. Then XC(λ) = XC([λ))

Proof. Since λ ⊆ [λ), XC(λ) ⊆ XC([λ)). Letµ ∈ XC([λ)), Then [λ) * µ. That implies λ * µ. Suppose
λ ⊆ µ, then [λ) ⊆ µ,Which is not possible. Therefore µ ∈ XC(λ) and hence XC(λ) = XC([λ)). �

Lemma 4.3. Let x, y ∈ L, and α ∈ (0, 1]. Then we have the following

(1) ⋃
x∈L,α∈(0,1]

XC(xα) ⊆ XC

(2) XC(xα) ∩XC(yα) = XC((x ∨ y)α)

(3) XC(xα) ∪XC(yα) = XC((x ∧ y)α).

Proof.

1. Clearly, we have that ⋃
x∈L,α∈(0,1]

XC(xα) ⊂ XC . Let µ ∈ XC . Then Imµ = {1, r}, r ∈ [0, 1). That

implies there exists an element x ∈ L such that µ(x) = r. Let us take some α ∈ (0, 1] such that α > r.

That implies µ ∈ XC(xα) and hence µ ∈ ⋃
x∈L,α∈(0,1]

XC(xα). Therefore XC ⊆
⋃

x∈L,α∈(0,1]

XC(xα). Thus

XC =
⋃

x∈L,α∈(0,1]

XC(xα).

2.

Let µ ∈ XC(xα) ∩XC(yα)⇒µ ∈ XC(xα) and µ ∈ XC(yα)

⇒xα * µ and yα * µ

⇒α > µ(x) and α > µ(y)

⇒α > µ(x) ∨ µ(y) = µ(x ∨ y)

⇒(x ∨ y)α * µ

⇒µ ∈ XC((x ∨ y)α).
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Therefore XC(xα) ∩XC(yα) ⊆ XC((x ∨ y)α).

Let µ ∈ XC((x ∨ y)α)⇒(x ∨ y)α * µ

⇒α > µ(x ∨ y) = µ(x) ∨ µ(y) as µ is prime

⇒α > µ(x) and α > µ(y)

⇒xα * µ and yα * µ

⇒µ ∈ XC(xα) and µ ∈ XC(yα)

⇒µ ∈ XC(xα) ∩XC(yα).

Therefore XC((x ∨ y)α) ⊆ XC(xα) ∩XC(yα). Hence XC(xα) ∩XC(yα) = XC((x ∨ y)α).

3. The proof similar to 2. �

Lemma 4.4. Let α1, α2 ∈ (0, 1], α = min{α1, α2} and any x, y ∈ L. ThenXC(xα1)∩XC(yα2) = XC((x∨

y)α).

Proof. Let µ ∈ XC(xα1) ∩XC(yα2). Then xα1 * µ and yα2 * µ. That implies α1 > µ(x) and α2 > µ(y).

Since µ∗ is a prime filter of L and x, y /∈ µ∗,we have that x ∨ y /∈ µ∗ and µ(x) = µ(y) = µ(x ∨ y). That
impliesα = α1∧α2 > µ(x∨y),Whence (x∨y)α * µ and soµ ∈ XC((x∨y)α).ThusXC(xα2)∩XC(yα2) ⊆

XC((x∨ y)α). Let µ ∈ XC((x∨ y)α). Then (x∨ y)α * µ. That implies α > µ(x∨ y) = µ(x)∨ µ(y). That
implies α1 > µ(x) and α2 > µ(y) and xα2 * µ and yα2 * µ. Therefore µ ∈ XC(xα2) ∩XC(yα2). Hence
XC(xα2) ∩XC(yα2) = XC((x ∨ y)α). �

Lemma 4.5. The collection T = {XC(θ) : θ is a fuzzy filter of L} is a topology on XC .

Proof. Consider the fuzzy subsets λ1, λ2 of L defined as : λ1(x) = 0 and λ2(x) = 1 for all x ∈ L.

Clearly [λ1) and λ2 are fuzzy filters of L. [λ1) ⊆ µ for all µ ∈ XC . Thus XC([λ1)) = ∅. Since each
µ ∈ XC is non-constant, λ2 * µ for all µ ∈ XC . Thus XC(λ2) = XC . This implies ∅, XC ∈ T . Also
for any fuzzy filters λ1 and λ2 of L, by Lemma-4.1 we have XC(λ1) ∩ XC(λ2) = XC(λ1 ∩ λ2). This
show that T is closed under finite intersections. Next, let {λi, i ∈ Ω} be any family of fuzzy filters
of L. Now we prove that ⋃

i∈Ω

XC(λi) = XC([
⋃
i∈Ω

λi)). Let µ ∈ XC([
⋃
i∈Ω

λi)), then [
⋃
i∈Ω

λi) * µ, which
implies that λi * µ for some i ∈ Ω. Otherwise if λi ⊆ µ for each i ∈ Ω, it will be true that [

⋃
i∈Ω

λi) ⊆ µ.

Thus µ ∈ ⋃
i∈Ω

XC(λi) Whence XC([
⋃
i∈Ω

λi)) ⊆
⋃
i∈Ω

XC(λi). Clearly
⋃
i∈Ω

XC(λi) ⊆ XC([
⋃
i∈Ω

λi)). Hence⋃
i∈Ω

XC(λi) = XC([
⋃
i∈Ω

λi)). Therefore, T is closed under arbitrary unions and hence, it is topology on
XC . �

Theorem 4.6. LetB = {XC(xα) : x ∈ L,α ∈ (0, 1]}. ThenB forms a base for some topology on T .
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Proof. By conditions 1 and 2 from Lemma-4.3, it follows that B forms a base for some topology on
XC . �

Theorem 4.7. The space XC is a T0-space.

Proof. Let µ, θ ∈ XC such that µ 6= θ. Then either µ * θ or θ * µ.Without loss of generality, we can
assume that µ * θ. Then θ ∈ XC(µ) and µ /∈ XC(µ). Thus XC is a T0-space. �

Theorem 4.8. For any fuzzy filter µ of L,XC(µ) = XC(←−αα(µ)).

Proof. Clearly we have that for any fuzzy filter µ of L. µ ⊆ ←−αα(µ). Then XC(µ) ⊆ XC(←−αα(µ)).

Conversely, let θ ∈ XC(←−αα(µ)). Then ←−αα(µ) * θ. Suppose θ /∈ XC(µ), then µ ⊆ θ. This implies
←−αα(µ) ⊆ θe = θ, which is not possible. Thus θ ∈ XC(µ) and so XC(←−αα(µ)) ⊆ XC(µ). Hence
XC(µ) = XC(←−αα(µ)). �

Theorem 4.9. For any fuzzy filter µ of L,XC(µ) =
⋃

xα∈µ
XC(xα).

Theorem 4.10. The lattice FFC(L) is isomorphic with the lattice of all open sets XC .

Proof. The lattice of all open sets in XC is (T ,∩,∪). Define the mapping f : FFC(L)→ T by f(µ) =

XC(µ) for all µ ∈ FFC(L). Let µ, θ ∈ FFC(L). Then f(µ t θ) = f((µ ∨ θ)e) = XC(µ ∨ θ) = XC(µ) ∪

XC(θ) = f(µ) ∪ f(θ), and f(µ ∩ θ) = XC(µ ∩ θ) = XC(µ) ∩ XC(θ) = f(µ) ∩ f(θ). That implies f
is homomorphism. Since XC(µ) = XC(←−αα(µ)) and ←−αα(µ) ∈ FFC(L),∀XC(µ) ∈ T , there exists
←−αα(µ) ∈ FFC(L) such that f(←−αα(µ)) = XC(µ).Hence f is onto. Next we prove that f is one to one.
Let f(µ) = f(θ). Suppose that µ 6= θ, then there exists x ∈ L such that either µ(x) < θ(x) or θ(x) < µ(x).

Without loss of generality, we can assume that µ(x) < θ(x). Put θ(x) = α, then by Corollary-3.29, we
can find a prime fuzzy closure filter δ of L such that µ ⊆ δ and δ(x) < α. This implies δ /∈ XC(µ) and
θ * δ. This show that δ /∈ XC(µ) and δ ∈ XC(θ). This is a contradiction f(µ) = f(θ). Thus µ = θ.

Hence f is an isomorphism. �

For any fuzzy subset θ of L, XC(θ) = {µ ∈ XC : µ * θ} is open set ofXC andHC(θ) = XC \XC(θ)

is a closed set of XC . Also every closed set in XC is the form of HC(θ) for all fuzzy subset of L. Then
we have the following:

Theorem 4.11. The closure of any A ⊆ XC is given by A = HC(
⋂
µ∈A

µ).

Proof. Let A ⊆ XC and γ ∈ A. Then ⋂
µ ∈ Aµ ⊆ γ. Thus γ ∈ HC(γ) ⊆ HC(

⋂
µ∈A

µ). Therefore,

HC(
⋂
µ∈A

µ) is a closed set containing A. Let C be any closed set containing A in XC . Then C = HC(θ)

for some fuzzy subset of θ of L. Since A ⊆ C = HC(θ),we have θ ⊆ µ for all µ ∈ A.Hence θ ⊆ ⋂
µ∈A

µ.
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Therefore,HC(
⋂
µ∈A

µ) ⊆ HC(θ) = C.HenceHC(
⋂
µ∈A

µ) is the smallest closed set containingA.Therefore,

A = HC(
⋂
µ∈A

µ). �
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