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Abstract. A generalized hypersubstisution of type τ is a mapping which maps from the set of all any
operation symbols of type τ to the set of all terms. The set of all generalized hypersubstisutions of type τ with
a binary operation defined on this set forms a monoid. The monoid of all generalized hypersubstisutions of
type τ = (n) denote byHypG(n). In semigroup theory, a regular element is a special element in semigroup.
The principle special study of a regular element is a completely regular element and inverse of element with
a great diversity of their various generalization. In this paper, we use the concept of regular element in the
moindHypG(n) to study inverse of an element in this monoid. We characterize the set of all elements in the
minoidHypG(n)which has a unique inverse and we show that this set is a maximal inverse subsemigroup
of the monoidHypG(n). Furthermore, we have maximal inverse subsemigroup and maximal subgroup of
HypG(n) are identical.
2020 Mathematics Subject Classification. 20B30, 20M05, 20M17.
Key words and phrases. generalized hypersubstitution; regular element; inverse of an element; inverse
semigroup.

1. Introduction and Preliminaries

We first recall from [6] that an element a in a semigroup S is regular if there exists an element b in S
with a = aba. A semigroup S is regular semigroup if all its elements are regular. An element b in S
such that a = aba and b = bab is an inverse of a. Notice that an element with an inverse is necessarily
regular. Less obviously, every regular element has an inverse. An element amay well have more than
one inverse. Denote V (a) is the set of all an inverse of a, then |V (a)| ≥ 1. An inverse semigroup is a
semigroup which every element has unique inverse, i.e. a regular semigroup in which every element
has a unique inverse.
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A semigroup S is a monoid if a binary operation is defined on S has an identity, i.e. there exist
unique element e in S sucth that ae = a = ea for all a in S. For each a monoid S with identity e, an
element u in S is called unit if there exist u−1 in S such that uu−1 = e = u−1u. Then uu−1u = u and
u−1uu−1 = u−1, i.e. u−1 is an inverse (in semigroup) of u. The set of all unit elements of S denoted by
U(S).

In this paper, we study an inverse element in the monoid of all generalized hypersubstisution of type
τ . Henceforth, we recall the concept of the monoid of all generalized hypersubstisution of type τ .

LetX := {x1, x2, . . .} be a countably infinite set of variables andXn := {x1, x2, . . . , xn}which n ∈ N

be an n-element alphabet of variables. Let {fi | i ∈ I} be a set of ni-ary operation symbols indexed by
the set I . The squecence τ = (ni)i∈I which ni ∈ N is a type with operation symbols fi. An n-ary term
of type τ is defined inductively as follows:

(i) The variables x1, x2, . . . , xn are n-ary terms.
(ii) If t1, t2, . . . , tni are n-ary terms of type τ then fi(t1, t2, . . . , tni) is an n-ary term.

Denote Wτ (Xn) is the set of all n-ary terms of type τ . Wτ (Xn) is the smallest set which contains
x1, x2, . . . , xn and is closed under finite application of (ii). It is clear that every n-ary term is also an
m-ary for all m ≥ n. LetWτ (X) = ∪∞n=1Wτ (Xn). Recent trends in the study of terms can be found
in [5,7, 11, 13].

The concept of a generalized hypersubstisution of type τ was first defined by Leeratanavalee and
Denecke [10]. A generalized hypersubstisution of type τ is a mapping σ : {fi|i ∈ I} → Wτ (X)

which maps each ni-ary operation symbol of type τ to the set of all terms of type τ which does not
necessarily preserve the arity. The set of all generalized hypersubstisutions of type τ denoted by
HypG(τ). Leeratanavalee and Denecke use the concept of a generalized superposition of term and the
concept of the extension of generalized hypersubstitution to define a binary operation onHypG(τ) and
show that HypG(τ) with this binary operation forms the monoid. Firstly we will recall the concept of
generalized superposition of terms Sm :Wτ (X)m+1 →Wτ (X) which is defined by the following steps:

(i) If t = xj , 1 ≤ j ≤ m, then
Sm(t, t1, t2, . . . , tm) = Sm(xj , t1, t2, . . . , tm) := tj .

(ii) If t = xj ,m < j ∈ N, then
Sm(t, t1, t2, . . . , tm) = Sm(xj , t1, t2, . . . , tm) := xj .

(iii) If t = fi(s1, s2, . . . , sni), then
Sm(t, t1, t2, . . . , tm) := fi(S

m(s1, t1, t2, . . . , tm), . . . , S
m(sni , t1, t2, . . . , tm)).

Each generalized hypersubstitution σ can be extended to a mapping σ̂ :Wτ (X)→Wτ (X) defined
as follows:

(i) σ̂[x] := x ∈ X ,
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(ii) σ̂[fi(t1, t2, . . . , tni)] := Sni(σ(fi), σ̂[t1], σ̂[t2], . . . , σ̂[tni ]), for any ni-ary operation symbol fi and
supposed that σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2 for all σ1, σ2 ∈ HypG(τ) where ◦
denotes the usual composition of mappings. Then HypG(τ) forms a monoind under the operation ◦G
where the identity σid is a generalized hypersubstitution which maps each ni-ary operation symbol fi
to the term fi(x1, x2, ..., xni). See [4, 8, 9] for other developments of generalized hypersubstitutions.

2. Maximal Inverse Subsemigroup and Maximal Subgroup of HypG(n)

In this paper, we study inverse of an element in the moind of all generalized hypersubstitution of
type τ = (n). We fix the type τ = (n) be a type with an n-ary operation symbol f and let t ∈W(n)(X).
We denote

σt := the generalized hypersubstitution σ of type τ = (n) which maps f to the term t,
var(t) := the set of all variables occurring in the term t.

In 2010, Puninagool and Leeratanavalee [12] characterized all regular elements of the monoid
generalized hypersustitutions of type τ = (n). Next, Boonmee and Leeratanavalee [1] used the concept
of regular elements to classify the partition of the set of all regular elements of the monoid generalized
hypersustitutions of type τ = (n) by the set R1, R2 and R3.

Let σt ∈ HypG(n), denote
R1 := {σxi | xi ∈ X};
R2 := {σt | var(t) ∩Xn = ∅};
R3 := {σt | t = f(t1, t2, . . . , tn) where ti1 = xj1 , ti2 = xj2 , . . . , tim = xjm for some i1, i2, . . . , im

and for distinct j1, j2 . . . , jm ∈ {1, 2, . . . , n} and var(t) ∩Xn = {xj1 , xj2 , . . . , xjm}}.
Then R1 ∪R2 ∪R3 is the set of all regular elements of the monoid HypG(n). We know that every

regular element has an inverse, so every element in R1 ∪R2 ∪R3 has an inverse. If σt ∈ R1 ∪R2 ∪R3

then σt may well have more than one inverse.
For each σxi ∈ R1, σxj is an inverse of σxi such that

σxj ◦G σxi ◦G σxj = σxj and σxi ◦G σxj ◦G σxi = σxi

for all σxj ∈ R1. Similary, for each σt ∈ R2 then σs is an inverse of σt such that
σs ◦G σt ◦G σs = σs and σt ◦G σs ◦G σt = σt

for all σs ∈ R2. We see that, every element in R1 ∪R2 has more than one inverse.
For each σt ∈ R3, |V (σt)| ≥ 1. In the main results of this paper, we will characterize inverse of an

element in R3. Then we use the characteristics of inverse of an element in R3 to characterize the set of
all elements in the minoid HypG(n) which has a unique inverse. Finally, we show that the set of all
elements in the minoidHypG(n) which has a unique inverse is a maximal inverse subsemigroup of the
minoid HypG(n). Morever, we have this set is a maximal subgroup of the minoid HypG(n).
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First of all, we recall some notation that need to be referenced in this paper [2].
Let t ∈W(n)(X). A subterm of t is defined inductively by the following

(i) Every variable x ∈ var(t) is a subterm of t.
(ii) If t = f(t1, t2, . . . , tn), then t1, t2, . . . , tn and t itself are subterms of t.

We denote the set of all subterms of t by sub(t).

Example 2.1. Let t ∈W(3)(X) \X where t = f(x2, f(x4, f(x4, x1, x3), x5), x6). Then

sub(t) = {x1, x2, x3, x4, x5, x6, f(x4, x1, x3), f(x4, f(x4, x1, x3), x5), t}.

Let t ∈ W(n)(X) \ X where t = f(t1, t2, . . . , tn) for some t1, t2, . . . , tn ∈ W(n)(X) and let πil :

W(n)(X)\X →W(n)(X)with πil(t) = πil(f(t1, t2, . . . , tn)) = til . Maps πil are defined for il = 1, 2, . . . , n.
Let s ∈ sub(t)where s 6= t and let s(j) be a subterm s occurring in the jth order of t (from the left). If
s(j) = πim ◦ · · · ◦ πi1(t) for somem ∈ N, then the sequence of s(j) in t denote by seqt(s(j)) and the depth
of s(j) in t denote by deptht(s(j)) such that

seqt(s(j)) = (i1, i2, . . . , im) and deptht(s(j)) = m.

The set of all a sequences of s in term t denote by seqt(s), then

seqt(s) = {seqt(s(j)) | j ∈ N}.

Example 2.2. Let t ∈ W(5)(X) \X where t = f(x1, s, f(x2, f(s, x4, x6, s, x3), s, s, x5), x1, x7) for some
s ∈W(5)(X). Then

t = f(x1, s
(1), f(x2, f(s

(2), x4, x6, s
(3), x3), s

(4), s(5), x5), x1, x7)

and then

seqt(s(1)) = (2), deptht(s(1)) = 1,

seqt(s(2)) = (3, 2, 1), deptht(s(2)) = 3,

seqt(s(3)) = (3, 2, 4), deptht(s(3)) = 3,

seqt(s(4)) = (3, 3), deptht(s(4)) = 2,

seqt(s(5)) = (3, 4), deptht(s(5)) = 2

and seqt(s) = {(2), (3, 2, 1), (3, 2, 4), (3, 3), (3, 4)}.

In this paper, we introduce the following definition.

Definition 2.3. Let t ∈W(n)(X) \X and letm ∈ N. The set of all distinct a variable xi ∈ var(t) ∩Xn

which deptht(x(j)i ) = m for some j ∈ N denote by var(t)d(m)
Xn

, then

var(t)
d(m)
Xn

= {xi ∈ var(t) ∩Xn | deptht(x(j)i ) = m for some j ∈ N}.
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Defined the set codn(t)d(m)
Xn

by
codn(t)

d(m)
Xn

= {im ∈ {1, 2, . . . , n} | seqt(x(j)i ) = (i1, i2, . . . , im) where xi ∈ var(t) ∩ Xn which
deptht(x

(j)
i ) = m for some j ∈ N}.

Example 2.4. Let t ∈ W(4)(X) \X where t = f(x2, f(x1, x3, x5, f(x2, x1, x6, x8)), x4, f(x1, x3, x7, x3)),
then

var(t)
d(1)
Xn

= {x2, x4}, codn(t)
d(1)
Xn

= {1, 3},

var(t)
d(2)
Xn

= {x1, x3}, codn(t)
d(2)
Xn

= {1, 2, 4},

var(t)
d(3)
Xn

= {x1, x2}, cond(t)
d(3)
Xn

= {1, 2}.

Form ≥ 5, then var(t)d(m)
Xn

= ∅ and codn(t)d(m)
Xn

= ∅.

Lemma 2.5. Let t = f(t1, t2, . . . , tn) where var(t) ∩ Xn = {xi1 , xi2 , . . . , xim} for some i1, i2, . . . , im ∈

{1, 2, . . . , n} and let s = f(s1, s2, . . . , sn) where sil = xil for all il ∈ {i1, i2, . . . , im} then σt ◦G σs = σt.

Proof. Assume that the condition holds and denote

(σt ◦G σs)(f) = f(u1, ..., un)

where ui = Sn(ti, σ̂t[s1], σ̂t[s2], ..., σ̂t[tn]) for all i ∈ {1, 2, ..., n}. We will prove that σt ◦G σs = σt by
showing that ui = ti for all i ∈ {1, 2, . . . , n}. Let ti ∈ {t1, t2, . . . , tn}. If var(ti) ∩Xn = ∅ then ui = ti. If
ti = xij for some ij ∈ {i1, i2, . . . , im} then

ui = Sn(xij , σ̂t[s1], σ̂t[s2], ..., σ̂t[sn]) = σ̂t[sij ] = σ̂t[xij ] = xij = ti.

For ti ∈W(n)(X) \X and var(ti) ∩Xn 6= ∅where ti = f(w1, w2, . . . , wn). Then

ui = Sn(f(w1, w2, . . . , wn), σ̂t[s1], σ̂t[s2], ..., σ̂t[sn]).

So ui ∈ W(n)(X) \ X and var(ui) ∩ Xn 6= ∅. Let ui = f(u′1, u
′
2, . . . , u

′
n) where u′i = Sn(wi, σ̂t[s1],

σ̂t[s2], ..., σ̂t[tn]) for all i ∈ {1, 2, ..., n}. The proof in this case is simmilar to the previous case, then
u′k = wk for all k ∈ {1, 2, . . . , n}. Therefore ui = ti for all i ∈ {1, 2, . . . , n}, i.e. σt ◦G σs = σt. �

By the definition of set R3 and the definition of vard(m)
Xn

, we can rewrite the set R3 as follows:
R3 = {σt | t ∈W(n)(X) \X where var(t)d(1)Xn

6= ∅ and var(t) ∩Xn = var(t)
d(1)
Xn
}.

Theorem 2.6. Let σt ∈ R3 where t = f(t1, t2, . . . , tn) and var(t)d(1)Xn
= {xj1 , xj2 , . . . , xjm} and let s =

f(s1, s2, . . . , sn). Then σt ◦G σs ◦G σt = σt if and only if sjl = xπ(jl) where π is a bijective map from

{j1, j2, . . . , jm} into {i1, i2, . . . , im} for some i1, i2, . . . , im ∈ codn(t)
d(1)
Xn

such that til = xπ−1(il) for all

il ∈ {i1, i2, . . . , im}.

Proof. Let
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u = σs ◦G σt(f) = f(u1, u2, . . . , un)

where ui = Sn(si, σ̂s[t1], σ̂s[t2], ..., σ̂s[tn]) and let

w = σt ◦G σu(f) = f(w1, w2, . . . , wn)

where wi = Sn(ti, σ̂t[u1], σ̂t[u2], ..., σ̂t[un]).
(⇒) Assume that σt ◦G σs ◦G σt = σt. We prove the result by contradiction. Suppose that, there exists
jl ∈ {j1, j2, . . . , jm} such that sjl /∈ {xi|i ∈ codn(t)d(1)Xn

}. Since xjl ∈ var(t)d(1)Xn
, there exist il ∈ codn(t)d(1)Xn

such that til = xjl . Then

wil = Sn(til , σ̂t[u1], σ̂t[u2], ..., σ̂t[un])

= Sn(xjl , σ̂t[u1], σ̂t[u2], ..., σ̂t[un])

= σ̂t[ujl ]

and ujl = Sn(sjl , σ̂s[t1], σ̂s[t2], ..., σ̂s[tn]). If sjl ∈ Xn then sjl = xk for some k ∈ {1, 2, · · · , n}\codn(t)d(1)Xn
.

So

ujl = Sn(xk, σ̂s[t1], σ̂s[t2], ..., σ̂s[tn]) = σ̂s[tk].

Since k /∈ codn(t)
d(1)
Xn

, so tk ∈ W(n)(X) \ Xn and so ujl ∈ W(n)(X) \ Xn. If sjl /∈ Xn then ujl ∈

W(n)(X) \Xn. Therefore wil = σ̂t[ujl ] ∈W(n)(X) \Xn. So til = xjl 6= wil . We have therefore reached a
contradiction, because we assumed that σt ◦G σs ◦G σt = σt.
(⇐) Assume that the condition holds. Let jl ∈ {j1, j2, . . . , jm}. Then there exist il ∈ {i1, i2, . . . , im}
such that π(jl) = il and π−1(il) = jl. So sjl = xπ(jl) = xij and til = xπ−1(il) = xjl . Consider

ujl = Sn(sjl , σ̂s[t1], σ̂s[t2], ..., σ̂s[tn])

= Sn(xil , σ̂s[t1], σ̂s[t2], ..., σ̂s[tn])

= σ̂s[til ]

= xjl .

It follows thatujl = xjl for all jl ∈ {j1, j2, . . . , jm}. By Lemma 2.5, σt◦Gσu = σt. Thereforeσt◦Gσs◦Gσt =
σt. �

By the characteristics of σs in the previous theorem we see that var(s)d(1)Xn
= {xi1 , xi2 , . . . , xim}. If

var(s) ∩Xn = var(s)
d(1)
Xn

then σs ∈ R3 and σt ◦G σs ◦G σt = σt. By the previous theorem, we have the
characteristics of inverse of an element in the set R3 are as follows:

Theorem 2.7. Let σt ∈ R3 where t = f(t1, t2, . . . , tn) and var(t)d(1)Xn
= {xj1 , xj2 , . . . , xjm}. Then V (σt) =

{σs ∈ R3 | s = f(s1, s2, . . . , sn) where sjl = xπ(jl) and π : {j1, j2, . . . , jm} → {i1, i2, . . . , im} is a bijective

map, for some i1, i2, . . . , im ∈ codn(t)d(1)Xn
such that til = xπ−1(il) for all il ∈ {i1, i2, . . . , im}}.
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Proof. Let H = {σs ∈ R3 | s = f(s1, s2, . . . , sn) where sjl = xπ(jl) and π : {j1, j2, . . . , jm} →

{i1, i2, . . . , im} is a bijective map, for some i1, i2, . . . , im ∈ codn(t)
d(1)
Xn

such that til = xπ−1(il) for all
il ∈ {i1, i2, . . . , im}}. We will show that V (σt) = H . Let σu ∈ V (σt) then σt ◦G σu ◦G σt = σt and
σu◦Gσt◦Gσu = σu. So σu is regularwhere var(u)∩Xn 6= ∅, i.e. σu ∈ R3. By theorem 2.6, we have σu ∈ H
so is V (σt) ⊆ H . Let σu ∈ H where u = f(u1, u2, . . . , un) then ujl = xπ(jl) and π : {j1, j2, . . . , jm} →

{i1, i2, . . . , im} is a bijective map, for some i1, i2, . . . , im ∈ codn(t)
d(1)
Xn

such that til = xπ−1(il) for all
il ∈ {i1, i2, . . . , im}. By Theorem 2.6, we have σt ◦G σu ◦G σt = σt and var(u)d(1)Xn

= {xi1 , xi2 , . . . , xim}

and j1, j2, . . . , jm ∈ codn(u)d(1)Xn
such that π−1 : {i1, i2, . . . , im} → {j1, j2, . . . , jm} is a bijective map and

ujl = x(π−1)−1(jl). By Theorem 2.6, we have σu ◦G σt ◦G σu = σu. Hence σu ∈ V (σt) so is H ⊆ V (σt).
Therefore V (σt) = H . �

Lemma 2.8. Let σt ∈ R3. If var(t)d(1)Xn
6= Xn then |V (σt)| > 1.

Proof. Let var(t)d(1)Xn
= {xj1 , xj2 , . . . , xjm} ⊂ Xn. Then {j1, j2, . . . , jm} ⊂ {1, 2, . . . , n} and then

{1, 2, . . . , n} \ {j1, j2, . . . , jm} 6= ∅. By Theorem 2.7, there exist σs ∈ V (σt) where σs ∈ R3 and
j1, j2, . . . , jm ∈ codn(s)

d(1)
Xn

. If s = f(s1, s2, . . . , sn) then σs is an inverse of σt for all si ∈ W(n)(X)

where i ∈ {1, 2, . . . , n} \ {j1, j2, . . . , jm} and var(si) ∩Xn ⊆ var(s) ∩Xn. Hence |V (σt)| > 1. �

Example 2.9. Let t ∈ R3 where

t = f(x2, f(x1, x4, x7, x7, x7), x4, f(x4, x7, x7, x8, x1), x1).

Then var(t)
d(1)
X5

= {x1, x2, x4} and codn(t)
d(1)
Xn

= {1, 3, 5}. By Theorem 2.7, there exist σs ∈ V (σt)

where var(s)d(1)X5
= {x1, x3, x5} and 1, 2, 4 ∈ codn(t)d(1)Xn

such that s = f(x5, x1, s3, x3, s5) where s3, s5 ∈
W(n)(X) and var(si) ∩X5 ⊆ {x1, x3, x5} for all i ∈ {3, 5}.

If s3 = x1 and s5 = f(x3, x6, x6, x7, x7) then

s = f(x5, x1, x1, x3, f(x3, x6, x6, x7, x7))

such that σs ∈ V (σt).
If s3 = x8 and s5 = x7 then s = f(x5, x1, x8, x3, x7) such that σs ∈ V (σt).
We see that |V (σt)| > 1.

Theorem 2.10. Let σt ∈ R3. |V (σt)| = 1 if and only if var(t)d(1)Xn
= Xn.

Proof. Let σt ∈ R3 then ∅ 6= var(t)
d(1)
Xn
⊆ Xn and |V (σt)| ≥ 1.

(⇒) By contrapositive of Lemma 2.8, if |V (σt)| = 1 then var(t)d(1)Xn
= Xn.

(⇐) Assume that var(t)d(1)Xn
= Xn. Then codn(t)d(1)Xn

= {1, 2, . . . , n}. So t = f(xπt(1), xπt(2), . . . , xπt(n))

where πt is a bijective map on {1, 2, . . . , n}. Hence there exist unique a bijective map on i ∈ {1, 2, . . . , n},
say πs where πs(i) = j such that πt(j) = i. Then there exist unique σs ∈ HypG(n) where s =

f(s1, s2, . . . , sn) = f(xπs(1), xπs(2), . . . , xπs(n))which σs is an inverse of σt. Therefore |V (σt)| = 1. �
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Theorem 2.11. [3] An element σt ∈ U(HypG(n)) if and only if t = f(xπ(1), xπ(2), . . . , xπ(n)) where π ∈ Sn
and Sn is a set of all permutation of {1, 2, . . . , n}.

Let Inv(HypG(n)) is the set of all elements in the minoidHypG(n)which has a unique inverse. Then

Inv(HypG(n)) = {σt ∈ HypG(n) | t ∈W(n)X \X and var(t)d(1)Xn
= Xn}.

We see that Inv(HypG(n)) = U(HypG(n)). Since U(HypG(n)) is a subsemigroup of HypG(n), so
Inv(HypG(n)) is an inverse subsemigroup of HypG(n). Hence Inv(HypG(n)) is maximal inverse
subsemigroup ofHypG(n), because Inv(HypG(n)) contains all elements in the minoidHypG(n)which
has a unique inverse. It is clear that Inv(HypG(n)) = U(HypG(n)) is a maximal subgroup of HypG(n).
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