MAXIMAL INVERSE SUBSEMIGROUP AND MAXIMAL SUBGROUP OF $H y p_{G}(n)$

SARAWUT PHUAPONG ${ }^{1}$, AMPIKA BOONMEE ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
${ }^{2}$ Faculty of Science at Siracha, Kasetsart University Sriracha Campus, Sriracha Chonburi, Thailand
*Corresponding author: ampika.boo@ku.th

Received Sep. 18, 2023

Abstract. A generalized hypersubstisution of type τ is a mapping which maps from the set of all any operation symbols of type τ to the set of all terms. The set of all generalized hypersubstisutions of type τ with a binary operation defined on this set forms a monoid. The monoid of all generalized hypersubstisutions of type $\tau=(n)$ denote by $\operatorname{Hyp}_{G}(n)$. In semigroup theory, a regular element is a special element in semigroup. The principle special study of a regular element is a completely regular element and inverse of element with a great diversity of their various generalization. In this paper, we use the concept of regular element in the moind $\operatorname{Hyp}_{G}(n)$ to study inverse of an element in this monoid. We characterize the set of all elements in the minoid $H y p_{G}(n)$ which has a unique inverse and we show that this set is a maximal inverse subsemigroup of the monoid $\operatorname{Hyp}_{G}(n)$. Furthermore, we have maximal inverse subsemigroup and maximal subgroup of $H y p_{G}(n)$ are identical.
2020 Mathematics Subject Classification. 20B30, 20M05, 20M17.
Key words and phrases. generalized hypersubstitution; regular element; inverse of an element; inverse semigroup.

1. Introduction and Preliminaries

We first recall from [6] that an element a in a semigroup S is regular if there exists an element b in S with $a=a b a$. A semigroup S is regular semigroup if all its elements are regular. An element b in S such that $a=a b a$ and $b=b a b$ is an inverse of a. Notice that an element with an inverse is necessarily regular. Less obviously, every regular element has an inverse. An element a may well have more than one inverse. Denote $V(a)$ is the set of all an inverse of a, then $|V(a)| \geq 1$. An inverse semigroup is a semigroup which every element has unique inverse, i.e. a regular semigroup in which every element has a unique inverse.

DOI: 10.28924/APJM/10-42

A semigroup S is a monoid if a binary operation is defined on S has an identity, i.e. there exist unique element e in S sucth that $a e=a=e a$ for all a in S. For each a monoid S with identity e, an element u in S is called unit if there exist u^{-1} in S such that $u u^{-1}=e=u^{-1} u$. Then $u u^{-1} u=u$ and $u^{-1} u u^{-1}=u^{-1}$, i.e. u^{-1} is an inverse (in semigroup) of u. The set of all unit elements of S denoted by $U(S)$.

In this paper, we study an inverse element in the monoid of all generalized hypersubstisution of type τ. Henceforth, we recall the concept of the monoid of all generalized hypersubstisution of type τ.

Let $X:=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countably infinite set of variables and $X_{n}:=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ which $n \in \mathbb{N}$ be an n-element alphabet of variables. Let $\left\{f_{i} \mid i \in I\right\}$ be a set of n_{i}-ary operation symbols indexed by the set I. The squecence $\tau=\left(n_{i}\right)_{i \in I}$ which $n_{i} \in \mathbb{N}$ is a type with operation symbols f_{i}. An n-ary term of type τ is defined inductively as follows:
(i) The variables $x_{1}, x_{2}, \ldots, x_{n}$ are n-ary terms.
(ii) If $t_{1}, t_{2}, \ldots, t_{n_{i}}$ are n-ary terms of type τ then $f_{i}\left(t_{1}, t_{2}, \ldots, t_{n_{i}}\right)$ is an n-ary term.

Denote $W_{\tau}\left(X_{n}\right)$ is the set of all n-ary terms of type $\tau . W_{\tau}\left(X_{n}\right)$ is the smallest set which contains $x_{1}, x_{2}, \ldots, x_{n}$ and is closed under finite application of (ii). It is clear that every n-ary term is also an m-ary for all $m \geq n$. Let $W_{\tau}(X)=\cup_{n=1}^{\infty} W_{\tau}\left(X_{n}\right)$. Recent trends in the study of terms can be found in $[5,7,11,13]$.

The concept of a generalized hypersubstisution of type τ was first defined by Leeratanavalee and Denecke [10]. A generalized hypersubstisution of type τ is a mapping $\sigma:\left\{f_{i} \mid i \in I\right\} \rightarrow W_{\tau}(X)$ which maps each n_{i}-ary operation symbol of type τ to the set of all terms of type τ which does not necessarily preserve the arity. The set of all generalized hypersubstisutions of type τ denoted by $H_{y p}(\tau)$. Leeratanavalee and Denecke use the concept of a generalized superposition of term and the concept of the extension of generalized hypersubstitution to define a binary operation on $H y p_{G}(\tau)$ and show that $\operatorname{Hyp}_{G}(\tau)$ with this binary operation forms the monoid. Firstly we will recall the concept of generalized superposition of terms $S^{m}: W_{\tau}(X)^{m+1} \rightarrow W_{\tau}(X)$ which is defined by the following steps:
(i) If $t=x_{j}, 1 \leq j \leq m$, then

$$
S^{m}\left(t, t_{1}, t_{2}, \ldots, t_{m}\right)=S^{m}\left(x_{j}, t_{1}, t_{2}, \ldots, t_{m}\right):=t_{j}
$$

(ii) If $t=x_{j}, m<j \in \mathbb{N}$, then

$$
S^{m}\left(t, t_{1}, t_{2}, \ldots, t_{m}\right)=S^{m}\left(x_{j}, t_{1}, t_{2}, \ldots, t_{m}\right):=x_{j} .
$$

(iii) If $t=f_{i}\left(s_{1}, s_{2}, \ldots, s_{n_{i}}\right)$, then

$$
S^{m}\left(t, t_{1}, t_{2}, \ldots, t_{m}\right):=f_{i}\left(S^{m}\left(s_{1}, t_{1}, t_{2}, \ldots, t_{m}\right), \ldots, S^{m}\left(s_{n_{i}}, t_{1}, t_{2}, \ldots, t_{m}\right)\right)
$$

Each generalized hypersubstitution σ can be extended to a mapping $\hat{\sigma}: W_{\tau}(X) \rightarrow W_{\tau}(X)$ defined as follows:
(i) $\hat{\sigma}[x]:=x \in X$,
(ii) $\hat{\sigma}\left[f_{i}\left(t_{1}, t_{2}, \ldots, t_{n_{i}}\right)\right]:=S^{n_{i}}\left(\sigma\left(f_{i}\right), \hat{\sigma}\left[t_{1}\right], \hat{\sigma}\left[t_{2}\right], \ldots, \hat{\sigma}\left[t_{n_{i}}\right]\right)$, for any n_{i}-ary operation symbol f_{i} and supposed that $\hat{\sigma}\left[t_{j}\right], 1 \leq j \leq n_{i}$ are already defined.
Define a binary operation \circ_{G} on $H y p_{G}(\tau)$ by $\sigma_{1} \circ_{G} \sigma_{2}:=\hat{\sigma}_{1} \circ \sigma_{2}$ for all $\sigma_{1}, \sigma_{2} \in H y p_{G}(\tau)$ where \circ denotes the usual composition of mappings. Then $H y p_{G}(\tau)$ forms a monoind under the operation \circ_{G} where the identity $\sigma_{i d}$ is a generalized hypersubstitution which maps each n_{i}-ary operation symbol f_{i} to the term $f_{i}\left(x_{1}, x_{2}, \ldots, x_{n_{i}}\right)$. See $[4,8,9]$ for other developments of generalized hypersubstitutions.

2. Maximal Inverse Subsemigroup and Maximal Subgroup of $\operatorname{Hyp}_{G}(n)$

In this paper, we study inverse of an element in the moind of all generalized hypersubstitution of type $\tau=(n)$. We fix the type $\tau=(n)$ be a type with an n-ary operation symbol f and let $t \in W_{(n)}(X)$. We denote
$\sigma_{t}:=$ the generalized hypersubstitution σ of type $\tau=(n)$ which maps f to the term t,
$\operatorname{var}(t):=$ the set of all variables occurring in the term t.
In 2010, Puninagool and Leeratanavalee [12] characterized all regular elements of the monoid generalized hypersustitutions of type $\tau=(n)$. Next, Boonmee and Leeratanavalee [1] used the concept of regular elements to classify the partition of the set of all regular elements of the monoid generalized hypersustitutions of type $\tau=(n)$ by the set R_{1}, R_{2} and R_{3}.

Let $\sigma_{t} \in \operatorname{Hyp}_{G}(n)$, denote
$R_{1}:=\left\{\sigma_{x_{i}} \mid x_{i} \in X\right\} ;$
$R_{2}:=\left\{\sigma_{t} \mid \operatorname{var}(t) \cap X_{n}=\emptyset\right\} ;$
$R_{3}:=\left\{\sigma_{t} \mid t=f\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right.$ where $t_{i_{1}}=x_{j_{1}}, t_{i_{2}}=x_{j_{2}}, \ldots, t_{i_{m}}=x_{j_{m}}$ for some $i_{1}, i_{2}, \ldots, i_{m}$ and for distinct $j_{1}, j_{2} \ldots, j_{m} \in\{1,2, \ldots, n\}$ and $\left.\operatorname{var}(t) \cap X_{n}=\left\{x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{m}}\right\}\right\}$.

Then $R_{1} \cup R_{2} \cup R_{3}$ is the set of all regular elements of the monoid $\operatorname{Hyp}_{G}(n)$. We know that every regular element has an inverse, so every element in $R_{1} \cup R_{2} \cup R_{3}$ has an inverse. If $\sigma_{t} \in R_{1} \cup R_{2} \cup R_{3}$ then σ_{t} may well have more than one inverse.

For each $\sigma_{x_{i}} \in R_{1}, \sigma_{x_{j}}$ is an inverse of $\sigma_{x_{i}}$ such that

$$
\sigma_{x_{j}} \circ_{G} \sigma_{x_{i}} \circ_{G} \sigma_{x_{j}}=\sigma_{x_{j}} \text { and } \sigma_{x_{i}} \circ_{G} \sigma_{x_{j}} \circ_{G} \sigma_{x_{i}}=\sigma_{x_{i}}
$$

for all $\sigma_{x_{j}} \in R_{1}$. Similary, for each $\sigma_{t} \in R_{2}$ then σ_{s} is an inverse of σ_{t} such that

$$
\sigma_{s} \circ_{G} \sigma_{t} \circ_{G} \sigma_{s}=\sigma_{s} \text { and } \sigma_{t} \circ_{G} \sigma_{s} \circ_{G} \sigma_{t}=\sigma_{t}
$$

for all $\sigma_{s} \in R_{2}$. We see that, every element in $R_{1} \cup R_{2}$ has more than one inverse.
For each $\sigma_{t} \in R_{3},\left|V\left(\sigma_{t}\right)\right| \geq 1$. In the main results of this paper, we will characterize inverse of an element in R_{3}. Then we use the characteristics of inverse of an element in R_{3} to characterize the set of all elements in the minoid $\operatorname{Hyp}_{G}(n)$ which has a unique inverse. Finally, we show that the set of all elements in the minoid $H y p_{G}(n)$ which has a unique inverse is a maximal inverse subsemigroup of the minoid $H y p_{G}(n)$. Morever, we have this set is a maximal subgroup of the minoid $\operatorname{Hyp}_{G}(n)$.

First of all, we recall some notation that need to be referenced in this paper [2].
Let $t \in W_{(n)}(X)$. A subterm of t is defined inductively by the following
(i) Every variable $x \in \operatorname{var}(t)$ is a subterm of t.
(ii) If $t=f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, then $t_{1}, t_{2}, \ldots, t_{n}$ and t itself are subterms of t.

We denote the set of all subterms of t by $\operatorname{sub}(t)$.
Example 2.1. Let $t \in W_{(3)}(X) \backslash X$ where $t=f\left(x_{2}, f\left(x_{4}, f\left(x_{4}, x_{1}, x_{3}\right), x_{5}\right), x_{6}\right)$. Then

$$
\operatorname{sub}(t)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, f\left(x_{4}, x_{1}, x_{3}\right), f\left(x_{4}, f\left(x_{4}, x_{1}, x_{3}\right), x_{5}\right), t\right\} .
$$

Let $t \in W_{(n)}(X) \backslash X$ where $t=f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ for some $t_{1}, t_{2}, \ldots, t_{n} \in W_{(n)}(X)$ and let $\pi_{i_{l}}$: $W_{(n)}(X) \backslash X \rightarrow W_{(n)}(X)$ with $\pi_{i_{l}}(t)=\pi_{i_{l}}\left(f\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)=t_{i_{l}}$. Maps $\pi_{i_{l}}$ are defined for $i_{l}=1,2, \ldots, n$. Let $s \in \operatorname{sub}(t)$ where $s \neq t$ and let $s^{(j)}$ be a subterm s occurring in the $j^{\text {th }}$ order of t (from the left). If $s^{(j)}=\pi_{i_{m}} \circ \cdots \circ \pi_{i_{1}}(t)$ for some $m \in \mathbb{N}$, then the sequence of $s^{(j)}$ in t denote by $\operatorname{seq}^{t}\left(s^{(j)}\right)$ and the depth of $s^{(j)}$ in t denote by depth ${ }^{t}\left(s^{(j)}\right)$ such that

$$
\operatorname{seq}^{t}\left(s^{(j)}\right)=\left(i_{1}, i_{2}, \ldots, i_{m}\right) \quad \text { and } \quad \operatorname{depth}\left(s^{(j)}\right)=m
$$

The set of all a sequences of s in term t denote by $s e q^{t}(s)$, then

$$
s e q^{t}(s)=\left\{s e q^{t}\left(s^{(j)}\right) \mid j \in \mathbb{N}\right\} .
$$

Example 2.2. Let $t \in W_{(5)}(X) \backslash X$ where $t=f\left(x_{1}, s, f\left(x_{2}, f\left(s, x_{4}, x_{6}, s, x_{3}\right), s, s, x_{5}\right), x_{1}, x_{7}\right)$ for some $s \in W_{(5)}(X)$. Then

$$
t=f\left(x_{1}, s^{(1)}, f\left(x_{2}, f\left(s^{(2)}, x_{4}, x_{6}, s^{(3)}, x_{3}\right), s^{(4)}, s^{(5)}, x_{5}\right), x_{1}, x_{7}\right)
$$

and then

$$
\begin{aligned}
s e q^{t}\left(s^{(1)}\right)=(2), & \operatorname{depth}{ }^{t}\left(s^{(1)}\right)=1, \\
s e q^{t}\left(s^{(2)}\right)=(3,2,1), & \operatorname{depth}{ }^{t}\left(s^{(2)}\right)=3, \\
s e q^{t}\left(s^{(3)}\right)=(3,2,4), & \operatorname{depth}{ }^{t}\left(s^{(3)}\right)=3, \\
\operatorname{seq}^{t}\left(s^{(4)}\right)=(3,3), & \operatorname{depth}{ }^{t}\left(s^{(4)}\right)=2, \\
\operatorname{seq}^{t}\left(s^{(5)}\right)=(3,4), & \operatorname{depth}^{t}\left(s^{(5)}\right)=2
\end{aligned}
$$

and $s e q^{t}(s)=\{(2),(3,2,1),(3,2,4),(3,3),(3,4)\}$.

In this paper, we introduce the following definition.
Definition 2.3. Let $t \in W_{(n)}(X) \backslash X$ and let $m \in \mathbb{N}$. The set of all distinct a variable $x_{i} \in \operatorname{var}(t) \cap X_{n}$ which $\operatorname{depth} h^{t}\left(x_{i}^{(j)}\right)=m$ for some $j \in \mathbb{N}$ denote by $\operatorname{var}(t)_{X_{n}}^{d(m)}$, then

$$
\operatorname{var}(t)_{X_{n}}^{d(m)}=\left\{x_{i} \in \operatorname{var}(t) \cap X_{n} \mid \operatorname{depth}^{t}\left(x_{i}^{(j)}\right)=m \text { for some } j \in \mathbb{N}\right\} .
$$

Defined the set $\operatorname{codn}(t)_{X_{n}}^{d(m)}$ by
$\operatorname{codn}(t)_{X_{n}}^{d(m)}=\left\{i_{m} \in\{1,2, \ldots, n\} \mid \operatorname{seq}^{t}\left(x_{i}^{(j)}\right)=\left(i_{1}, i_{2}, \ldots, i_{m}\right)\right.$ where $x_{i} \in \operatorname{var}(t) \cap X_{n}$ which $\operatorname{depth}^{t}\left(x_{i}^{(j)}\right)=m$ for some $\left.j \in \mathbb{N}\right\}$.

Example 2.4. Let $t \in W_{(4)}(X) \backslash X$ where $t=f\left(x_{2}, f\left(x_{1}, x_{3}, x_{5}, f\left(x_{2}, x_{1}, x_{6}, x_{8}\right)\right), x_{4}, f\left(x_{1}, x_{3}, x_{7}, x_{3}\right)\right)$, then

$$
\begin{array}{ll}
\operatorname{var}(t)_{X_{n}}^{d(1)}=\left\{x_{2}, x_{4}\right\}, & \operatorname{codn}(t)_{X_{n}}^{d(1)}=\{1,3\}, \\
\operatorname{var}(t)_{X_{n}}^{d(2)}=\left\{x_{1}, x_{3}\right\}, & \operatorname{codn}(t)_{X_{n}}^{d(2)}=\{1,2,4\}, \\
\operatorname{var}(t)_{X_{n}}^{d(3)}=\left\{x_{1}, x_{2}\right\}, & \operatorname{cond}(t)_{X_{n}}^{d(3)}=\{1,2\} .
\end{array}
$$

For $m \geq 5$, then $\operatorname{var}(t)_{X_{n}}^{d(m)}=\emptyset$ and $\operatorname{codn}(t)_{X_{n}}^{d(m)}=\emptyset$.
Lemma 2.5. Let $t=f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ where $\operatorname{var}(t) \cap X_{n}=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right\}$ for some $i_{1}, i_{2}, \ldots, i_{m} \in$ $\{1,2, \ldots, n\}$ and let $s=f\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ where $s_{i_{l}}=x_{i_{l}}$ for all $i_{l} \in\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ then $\sigma_{t}{ }^{\circ}{ }_{G} \sigma_{s}=\sigma_{t}$.

Proof. Assume that the condition holds and denote

$$
\left(\sigma_{t} \circ_{G} \sigma_{s}\right)(f)=f\left(u_{1}, \ldots, u_{n}\right)
$$

where $u_{i}=S^{n}\left(t_{i}, \hat{\sigma}_{t}\left[s_{1}\right], \hat{\sigma}_{t}\left[s_{2}\right], \ldots, \hat{\sigma}_{t}\left[t_{n}\right]\right)$ for all $i \in\{1,2, \ldots, n\}$. We will prove that $\sigma_{t} \circ_{G} \sigma_{s}=\sigma_{t}$ by showing that $u_{i}=t_{i}$ for all $i \in\{1,2, \ldots, n\}$. Let $t_{i} \in\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$. If $\operatorname{var}\left(t_{i}\right) \cap X_{n}=\emptyset$ then $u_{i}=t_{i}$. If $t_{i}=x_{i_{j}}$ for some $i_{j} \in\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ then

$$
u_{i}=S^{n}\left(x_{i_{j}}, \hat{\sigma}_{t}\left[s_{1}\right], \hat{\sigma}_{t}\left[s_{2}\right], \ldots, \hat{\sigma}_{t}\left[s_{n}\right]\right)=\hat{\sigma}_{t}\left[s_{i_{j}}\right]=\hat{\sigma}_{t}\left[x_{i_{j}}\right]=x_{i_{j}}=t_{i} .
$$

For $t_{i} \in W_{(n)}(X) \backslash X$ and $\operatorname{var}\left(t_{i}\right) \cap X_{n} \neq \emptyset$ where $t_{i}=f\left(w_{1}, w_{2}, \ldots, w_{n}\right)$. Then

$$
u_{i}=S^{n}\left(f\left(w_{1}, w_{2}, \ldots, w_{n}\right), \hat{\sigma}_{t}\left[s_{1}\right], \hat{\sigma}_{t}\left[s_{2}\right], \ldots, \hat{\sigma}_{t}\left[s_{n}\right]\right)
$$

So $u_{i} \in W_{(n)}(X) \backslash X$ and $\operatorname{var}\left(u_{i}\right) \cap X_{n} \neq \emptyset$. Let $u_{i}=f\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right)$ where $u_{i}^{\prime}=S^{n}\left(w_{i}, \hat{\sigma}_{t}\left[s_{1}\right]\right.$, $\left.\hat{\sigma}_{t}\left[s_{2}\right], \ldots, \hat{\sigma}_{t}\left[t_{n}\right]\right)$ for all $i \in\{1,2, \ldots, n\}$. The proof in this case is simmilar to the previous case, then $u_{k}^{\prime}=w_{k}$ for all $k \in\{1,2, \ldots, n\}$. Therefore $u_{i}=t_{i}$ for all $i \in\{1,2, \ldots, n\}$, i.e. $\sigma_{t} \circ_{G} \sigma_{s}=\sigma_{t}$.

By the definition of set R_{3} and the definition of $\operatorname{var}_{X_{n}}^{d(m)}$, we can rewrite the set R_{3} as follows:

$$
R_{3}=\left\{\sigma_{t} \mid t \in W_{(n)}(X) \backslash X \text { where } \operatorname{var}(t)_{X_{n}}^{d(1)} \neq \emptyset \text { and } \operatorname{var}(t) \cap X_{n}=\operatorname{var}(t)_{X_{n}}^{d(1)}\right\} .
$$

Theorem 2.6. Let $\sigma_{t} \in R_{3}$ where $t=f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $\operatorname{var}(t)_{X_{n}}^{d(1)}=\left\{x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{m}}\right\}$ and let $s=$ $f\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. Then $\sigma_{t} \circ_{G} \sigma_{s} \circ_{G} \sigma_{t}=\sigma_{t}$ if and only if $s_{j_{l}}=x_{\pi\left(j_{l}\right)}$ where π is a bijective map from $\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$ into $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ for some $i_{1}, i_{2}, \ldots, i_{m} \in \operatorname{codn}(t)_{X_{n}}^{d(1)}$ such that $t_{i_{l}}=x_{\pi^{-1}\left(i_{l}\right)}$ for all $i_{l} \in\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$.

Proof. Let

$$
u=\sigma_{s} \circ_{G} \sigma_{t}(f)=f\left(u_{1}, u_{2}, \ldots, u_{n}\right)
$$

where $u_{i}=S^{n}\left(s_{i}, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \ldots, \hat{\sigma}_{s}\left[t_{n}\right]\right)$ and let

$$
w=\sigma_{t} \circ_{G} \sigma_{u}(f)=f\left(w_{1}, w_{2}, \ldots, w_{n}\right)
$$

where $w_{i}=S^{n}\left(t_{i}, \hat{\sigma}_{t}\left[u_{1}\right], \hat{\sigma}_{t}\left[u_{2}\right], \ldots, \hat{\sigma}_{t}\left[u_{n}\right]\right)$.
(\Rightarrow) Assume that $\sigma_{t}{ }^{\circ} G_{G} \sigma_{s}{ }^{\circ} \sigma_{t}=\sigma_{t}$. We prove the result by contradiction. Suppose that, there exists $j_{l} \in\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$ such that $s_{j_{l}} \notin\left\{x_{i} \mid i \in \operatorname{codn}(t)_{X_{n}}^{d(1)}\right\}$. Since $x_{j_{l}} \in \operatorname{var}(t)_{X_{n}}^{d(1)}$, there exist $i_{l} \in \operatorname{codn}(t)_{X_{n}}^{d(1)}$ such that $t_{i_{l}}=x_{j_{l}}$. Then

$$
\begin{aligned}
w_{i_{l}} & =S^{n}\left(t_{i_{l}}, \hat{\sigma}_{t}\left[u_{1}\right], \hat{\sigma}_{t}\left[u_{2}\right], \ldots, \hat{\sigma}_{t}\left[u_{n}\right]\right) \\
& =S^{n}\left(x_{j_{l}}, \hat{\sigma}_{t}\left[u_{1}\right], \hat{\sigma}_{t}\left[u_{2}\right], \ldots, \hat{\sigma}_{t}\left[u_{n}\right]\right) \\
& =\hat{\sigma}_{t}\left[u_{j_{l}}\right]
\end{aligned}
$$

and $u_{j_{l}}=S^{n}\left(s_{j_{l}}, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \ldots, \hat{\sigma}_{s}\left[t_{n}\right]\right)$. If $s_{j_{l}} \in X_{n}$ then $s_{j_{l}}=x_{k}$ for some $k \in\{1,2, \cdots, n\} \backslash \operatorname{codn}(t)_{X_{n}}^{d(1)}$. So

$$
u_{j_{l}}=S^{n}\left(x_{k}, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \ldots, \hat{\sigma}_{s}\left[t_{n}\right]\right)=\hat{\sigma}_{s}\left[t_{k}\right] .
$$

Since $k \notin \operatorname{codn}(t)_{X_{n}}^{d(1)}$, so $t_{k} \in W_{(n)}(X) \backslash X_{n}$ and so $u_{j_{l}} \in W_{(n)}(X) \backslash X_{n}$. If $s_{j_{l}} \notin X_{n}$ then $u_{j_{l}} \in$ $W_{(n)}(X) \backslash X_{n}$. Therefore $w_{i_{l}}=\hat{\sigma}_{t}\left[u_{j_{l}}\right] \in W_{(n)}(X) \backslash X_{n}$. So $t_{i_{l}}=x_{j_{l}} \neq w_{i_{l}}$. We have therefore reached a contradiction, because we assumed that $\sigma_{t}{ }^{\circ}{ }_{G} \sigma_{s}{ }^{\circ}{ }_{G} \sigma_{t}=\sigma_{t}$.
(\Leftarrow) Assume that the condition holds. Let $j_{l} \in\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$. Then there exist $i_{l} \in\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ such that $\pi\left(j_{l}\right)=i_{l}$ and $\pi^{-1}\left(i_{l}\right)=j_{l}$. So $s_{j_{l}}=x_{\pi\left(j_{l}\right)}=x_{i_{j}}$ and $t_{i_{l}}=x_{\pi^{-1}\left(i_{l}\right)}=x_{j_{l}}$. Consider

$$
\begin{aligned}
u_{j_{l}} & =S^{n}\left(s_{j_{l}}, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \ldots, \hat{\sigma}_{s}\left[t_{n}\right]\right) \\
& =S^{n}\left(x_{i_{l}}, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \ldots, \hat{\sigma}_{s}\left[t_{n}\right]\right) \\
& =\hat{\sigma}_{s}\left[t_{i_{l}}\right] \\
& =x_{j_{l}} .
\end{aligned}
$$

It follows that $u_{j_{l}}=x_{j_{l}}$ for all $j_{l} \in\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$. By Lemma 2.5, $\sigma_{t}{ }^{\circ}{ }_{G} \sigma_{u}=\sigma_{t}$. Therefore $\sigma_{t}{ }^{\circ}{ }_{G} \sigma_{s}{ }^{\circ}{ }_{G} \sigma_{t}=$ σ_{t}.

By the characteristics of σ_{s} in the previous theorem we see that $\operatorname{var}(s)_{X_{n}}^{d(1)}=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right\}$. If $\operatorname{var}(s) \cap X_{n}=\operatorname{var}(s)_{X_{n}}^{d(1)}$ then $\sigma_{s} \in R_{3}$ and $\sigma_{t}{ }^{\circ}{ }_{G} \sigma_{s}{ }^{\circ}{ }_{G} \sigma_{t}=\sigma_{t}$. By the previous theorem, we have the characteristics of inverse of an element in the set R_{3} are as follows:

Theorem 2.7. Let $\sigma_{t} \in R_{3}$ where $t=f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $\operatorname{var}(t)_{X_{n}}^{d(1)}=\left\{x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{m}}\right\}$. Then $V\left(\sigma_{t}\right)=$ $\left\{\sigma_{s} \in R_{3} \mid s=f\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right.$ where $s_{j_{l}}=x_{\pi\left(j_{l}\right)}$ and $\pi:\left\{j_{1}, j_{2}, \ldots, j_{m}\right\} \rightarrow\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ is a bijective map, for some $i_{1}, i_{2}, \ldots, i_{m} \in \operatorname{codn}(t)_{X_{n}}^{d(1)}$ such that $t_{i_{l}}=x_{\pi^{-1}\left(i_{l}\right)}$ for all $\left.i_{l} \in\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}\right\}$.

Proof. Let $H=\left\{\sigma_{s} \in R_{3} \mid s=f\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right.$ where $s_{j_{l}}=x_{\pi\left(j_{l}\right)}$ and $\pi:\left\{j_{1}, j_{2}, \ldots, j_{m}\right\} \rightarrow$ $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ is a bijective map, for some $i_{1}, i_{2}, \ldots, i_{m} \in \operatorname{codn}(t)_{X_{n}}^{d(1)}$ such that $t_{i_{l}}=x_{\pi^{-1}\left(i_{l}\right)}$ for all $\left.i_{l} \in\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}\right\}$. We will show that $V\left(\sigma_{t}\right)=H$. Let $\sigma_{u} \in V\left(\sigma_{t}\right)$ then $\sigma_{t} \circ_{G} \sigma_{u}{ }^{\circ}{ }_{G} \sigma_{t}=\sigma_{t}$ and $\sigma_{u}{ }^{\circ}{ }_{G} \sigma_{t}{ }^{\circ}{ }_{G} \sigma_{u}=\sigma_{u}$. So σ_{u} is regular where $\operatorname{var}(u) \cap X_{n} \neq \emptyset$, i.e. $\sigma_{u} \in R_{3}$. By theorem 2.6, we have $\sigma_{u} \in H$ so is $V\left(\sigma_{t}\right) \subseteq H$. Let $\sigma_{u} \in H$ where $u=f\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ then $u_{j_{l}}=x_{\pi\left(j_{l}\right)}$ and $\pi:\left\{j_{1}, j_{2}, \ldots, j_{m}\right\} \rightarrow$ $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ is a bijective map, for some $i_{1}, i_{2}, \ldots, i_{m} \in \operatorname{codn}(t)_{X_{n}}^{d(1)}$ such that $t_{i_{l}}=x_{\pi^{-1}\left(i_{l}\right)}$ for all $i_{l} \in\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$. By Theorem 2.6, we have $\sigma_{t} \circ_{G} \sigma_{u}{ }^{\circ}{ }_{G} \sigma_{t}=\sigma_{t}$ and $\operatorname{var}(u)_{X_{n}}^{d(1)}=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right\}$ and $j_{1}, j_{2}, \ldots, j_{m} \in \operatorname{codn}(u)_{X_{n}}^{d(1)}$ such that $\pi^{-1}:\left\{i_{1}, i_{2}, \ldots, i_{m}\right\} \rightarrow\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$ is a bijective map and $u_{j_{l}}=x_{\left(\pi^{-1}\right)^{-1}\left(j_{l}\right)}$. By Theorem 2.6, we have $\sigma_{u} \circ_{G} \sigma_{t} \circ_{G} \sigma_{u}=\sigma_{u}$. Hence $\sigma_{u} \in V\left(\sigma_{t}\right)$ so is $H \subseteq V\left(\sigma_{t}\right)$. Therefore $V\left(\sigma_{t}\right)=H$.

Lemma 2.8. Let $\sigma_{t} \in R_{3}$. If $\operatorname{var}(t){ }_{X_{n}}^{d(1)} \neq X_{n}$ then $\left|V\left(\sigma_{t}\right)\right|>1$.
Proof. Let $\operatorname{var}(t)_{X_{n}}^{d(1)}=\left\{x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{m}}\right\} \subset X_{n}$. Then $\left\{j_{1}, j_{2}, \ldots, j_{m}\right\} \subset\{1,2, \ldots, n\}$ and then $\{1,2, \ldots, n\} \backslash\left\{j_{1}, j_{2}, \ldots, j_{m}\right\} \neq \emptyset$. By Theorem 2.7, there exist $\sigma_{s} \in V\left(\sigma_{t}\right)$ where $\sigma_{s} \in R_{3}$ and $j_{1}, j_{2}, \ldots, j_{m} \in \operatorname{codn}(s)_{X_{n}}^{d(1)}$. If $s=f\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ then σ_{s} is an inverse of σ_{t} for all $s_{i} \in W_{(n)}(X)$ where $i \in\{1,2, \ldots, n\} \backslash\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$ and $\operatorname{var}\left(s_{i}\right) \cap X_{n} \subseteq \operatorname{var}(s) \cap X_{n}$. Hence $\left|V\left(\sigma_{t}\right)\right|>1$.

Example 2.9. Let $t \in R_{3}$ where

$$
t=f\left(x_{2}, f\left(x_{1}, x_{4}, x_{7}, x_{7}, x_{7}\right), x_{4}, f\left(x_{4}, x_{7}, x_{7}, x_{8}, x_{1}\right), x_{1}\right) .
$$

Then $\operatorname{var}(t)_{X_{5}}^{d(1)}=\left\{x_{1}, x_{2}, x_{4}\right\}$ and $\operatorname{codn}(t)_{X_{n}}^{d(1)}=\{1,3,5\}$. By Theorem 2.7, there exist $\sigma_{s} \in V\left(\sigma_{t}\right)$ where $\operatorname{var}(s)_{X_{5}}^{d(1)}=\left\{x_{1}, x_{3}, x_{5}\right\}$ and $1,2,4 \in \operatorname{codn}(t)_{X_{n}}^{d(1)}$ such that $s=f\left(x_{5}, x_{1}, s_{3}, x_{3}, s_{5}\right)$ where $s_{3}, s_{5} \in$ $W_{(n)}(X)$ and $\operatorname{var}\left(s_{i}\right) \cap X_{5} \subseteq\left\{x_{1}, x_{3}, x_{5}\right\}$ for all $i \in\{3,5\}$.

If $s_{3}=x_{1}$ and $s_{5}=f\left(x_{3}, x_{6}, x_{6}, x_{7}, x_{7}\right)$ then

$$
s=f\left(x_{5}, x_{1}, x_{1}, x_{3}, f\left(x_{3}, x_{6}, x_{6}, x_{7}, x_{7}\right)\right)
$$

such that $\sigma_{s} \in V\left(\sigma_{t}\right)$.
If $s_{3}=x_{8}$ and $s_{5}=x_{7}$ then $s=f\left(x_{5}, x_{1}, x_{8}, x_{3}, x_{7}\right)$ such that $\sigma_{s} \in V\left(\sigma_{t}\right)$.
We see that $\left|V\left(\sigma_{t}\right)\right|>1$.
Theorem 2.10. Let $\sigma_{t} \in R_{3} .\left|V\left(\sigma_{t}\right)\right|=1$ if and only if $\operatorname{var}(t)_{X_{n}}^{d(1)}=X_{n}$.
Proof. Let $\sigma_{t} \in R_{3}$ then $\emptyset \neq \operatorname{var}(t)_{X_{n}}^{d(1)} \subseteq X_{n}$ and $\left|V\left(\sigma_{t}\right)\right| \geq 1$.
(\Rightarrow) By contrapositive of Lemma 2.8, if $\left|V\left(\sigma_{t}\right)\right|=1$ then $\operatorname{var}(t)_{X_{n}}^{d(1)}=X_{n}$.
(\Leftarrow) Assume that $\operatorname{var}(t)_{X_{n}}^{d(1)}=X_{n}$. Then $\operatorname{codn}(t)_{X_{n}}^{d(1)}=\{1,2, \ldots, n\}$. So $t=f\left(x_{\pi_{t}(1)}, x_{\pi_{t}(2)}, \ldots, x_{\pi_{t}(n)}\right)$ where π_{t} is a bijective map on $\{1,2, \ldots, n\}$. Hence there exist unique a bijective map on $i \in\{1,2, \ldots, n\}$, say π_{s} where $\pi_{s}(i)=j$ such that $\pi_{t}(j)=i$. Then there exist unique $\sigma_{s} \in \operatorname{Hyp}_{G}(n)$ where $s=$ $f\left(s_{1}, s_{2}, \ldots, s_{n}\right)=f\left(x_{\pi_{s}(1)}, x_{\pi_{s}(2)}, \ldots, x_{\pi_{s}(n)}\right)$ which σ_{s} is an inverse of σ_{t}. Therefore $\left|V\left(\sigma_{t}\right)\right|=1$.

Theorem 2.11. [3] An element $\sigma_{t} \in U\left(\operatorname{Hyp}_{G}(n)\right)$ if and only if $t=f\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$ where $\pi \in S_{n}$ and S_{n} is a set of all permutation of $\{1,2, \ldots, n\}$.

Let $\operatorname{Inv}\left(\operatorname{Hyp}_{G}(n)\right)$ is the set of all elements in the minoid $H y p_{G}(n)$ which has a unique inverse. Then

$$
\operatorname{Inv}\left(H y p_{G}(n)\right)=\left\{\sigma_{t} \in H y p_{G}(n) \mid t \in W_{(n)} X \backslash X \text { and } \operatorname{var}(t)_{X_{n}}^{d(1)}=X_{n}\right\} .
$$

We see that $\operatorname{Inv}\left(\operatorname{Hyp}_{G}(n)\right)=U\left(\operatorname{Hyp}_{G}(n)\right)$. Since $U\left(\operatorname{Hyp}_{G}(n)\right)$ is a subsemigroup of $\operatorname{Hyp}_{G}(n)$, so $\operatorname{Inv}\left(\operatorname{Hyp}_{G}(n)\right)$ is an inverse subsemigroup of $\operatorname{Hyp}_{G}(n)$. Hence $\operatorname{Inv}\left(\operatorname{Hyp}_{G}(n)\right)$ is maximal inverse subsemigroup of $H y p_{G}(n)$, because $\operatorname{Inv}\left(H y p_{G}(n)\right)$ contains all elements in the minoid $H y p_{G}(n)$ which has a unique inverse. It is clear that $\operatorname{Inv}\left(\operatorname{Hyp}_{G}(n)\right)=U\left(\operatorname{Hyp}_{G}(n)\right)$ is a maximal subgroup of $H y p_{G}(n)$.

Acknowledgments

The research was supported by Faculty of Science at Siracha, Kasetsart University Sriracha Campus, Sriracha Chonburi and Rajamangala University of Technology Lanna, Chiang Mai, Thailand. The authors are thankful to the referees for their valuable comments.

References

[1] A. Boonmee, S. Leeratanavalee, All completely regular elements in Hyp_{G} (n), Discuss. Math. - Gen. Algebra Appl. 33 (2013), 211-219. https://doi.org/10.7151/dmgaa. 1203.
[2] A. Boonmee, S. Leeratanavalee, All intra-regular generalized hypersubstitutions of type (2), Acta Univ. Sapient. Math. 11 (2019), 29-39. https://doi.org/10.2478/ausm-2019-0003.
[3] A. Boonmee, S. Leeratanavalee, Factorisable monoid of generalized hypersubstitutions of type $\tau=(2)$, Thai J. Math. 13 (2015), 213-225.
[4] N. Chansuriya, All maximal idempotent submonoids of generalized cohypersubstitutions of type $\tau=(2)$, Discuss. Math. Gen. Algebra Appl. 41 (2021), 45-54.
[5] K. Denecke, H. Hounnon, Partial Menger algebras of terms, Asian-European J. Math. 14 (2020), 2150092. https: //doi.org/10.1142/s1793557121500923.
[6] J.M. Howie, Fundamentals of semigroup theory, Academic Press, London, 1995.
[7] P. Kitpratyakul, B. Pibaljommee, On substructures of semigroups of inductive terms, AIMS Math. 7 (2022), 9835-9845. https://doi.org/10.3934/math. 2022548.
[8] T. Kumduang, S. Leeratanavalee, Semigroups of terms, tree Languages, Menger algebra of n-ary functions and their embedding theorems, Symmetry. 13 (2021), 558. https://doi. org/10.3390/sym13040558.
[9] P. Kunama, S. Leeratanavalee, Green's relations on submonoids of generalized hypersubstitutions of type (n), Discuss. Math. Gen. Algebra Appl. 41 (2021), 239-248.
[10] S. Leeratanavalee, K. Denecke, Generalized hypersubstitutions and strongly solid varieties, in: General Algebra and Applications, Proceeding of the 59 th Workshop on General Algebra, 15 th Conference for Young Algebraists Potsdam 2000, Shaker Verlag, (2000), 135-145.
[11] S. Phuapong, T. Kumduang, Menger algebras of terms induced by transformations with restricted range, Quasigroup Related Syst. 29 (2021), 255-268.
[12] W. Punainagool, S. Leeratanavalee, The monoid of generalized hypersubstitutions of type $\tau=(n)$, Discuss. Math. Gen. Algebra Appl. 30 (2010), 173-191.
[13] K. Wattanatripop, T. Changphas, The Menger algebra of terms induced by order-decreasing transformations, Commun. Algebra. 49 (2021), 3114-3123. https://doi.org/10.1080/00927872.2021.1888385.

