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Abstract. This work introduces and analyzes a novel higher order explicit method for solving physical
models in real-life situations. This new method is derived via a hybrid interpolating function which is the
combination of Chebyshev polynomials of first kind and exponential function. Its properties, including
consistency, local truncation error, stability, order of accuracy, and convergence, are thoroughly examined
and studied. To evaluate its effectiveness, the proposed method is applied to four numerical examples
derived from real-world scenarios. Furthermore, this study compares the results obtained from the new
numerical method with those of the well-known PJS method [28], in terms of the exact solution. The
study concludes that the method provides accurate solutions and can be considered as one of the suitable
approaches for solving first-order initial value problems (IVPs).
2020 Mathematics Subject Classification. 34A12, 65L05, 65L20, 65L70.
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1. Introduction

The study of differential equations plays a crucial role in various scientific and engineering disciplines
as it involves modeling natural processes such as growth and decay, heat transfer, population dynamics,
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and object motion [1]. Differential equations provide mathematical expressions that describe the
connection between the current value of a quantity and its rate of change. By analyzing how quantities
evolve over time, these equations enable us to make predictions about future events [2]. Differential
equations can be categorized into twomain types: ordinary and partial. Ordinary differential equations
are concerned with functions that involve a single variable, while partial differential equations describe
the behavior of functions that depend on multiple variables [3]. To solve these equations accurately,
various methods are employed in the study of differential equations, including analytical, numerical,
and qualitative approaches. A fundamental aspect of computational mathematics involves studying
numerical techniques for resolving ordinary differential equations (ODEs). When ODEs cannot be
solved analytically, numerical approaches are used to approximate them, enabling simulations and
predictions of real-world processes [4]. Furthermore, numerical solutions allow for predicting the
dynamic behavior of complex systems, which is not achievable through analytical solutions [5]. The
efficiency of numerical methods in solving ODEs depends on factors such as accuracy, stability, and
convergence. Traditional numerical methods like Euler’s method, Runge-Kutta methods, and multistep
methods have limitations concerning these factors. Consequently, recent efforts have focused on
developing and analyzing new and effective numerical methods for solving ODEs. Different numerical
techniques can differ in terms of convergence, accuracy order, local errors, stability, and computational
complexity. Research in the field of numerical methods for solving ordinary differential equations
(ODEs) is actively focusing on enhancing the accuracy, stability, and efficiency of these methods. Many
algorithms have been proposed in scholarly works, taking into account the specific characteristics and
form of the differential equations that need to be solved. Numerous examples of these algorithms
can be found in the literature, such as [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], among others. Fadugba and Idowu [27] applied
a new numerical method with third-order accuracy to solve initial value problems (IVPs) in ODEs,
analyzing its properties in the process. In this study we will consider a new numerical method via the
transcendental function of exponential type with an initial value problem,

y′ = f(x, y); y(x0) = y0, x ∈ [a, b], −∞ < y <∞ (1)

A trigonometric function-based numerical integration formula is applicable if the answer to (1) is
known to be periodic or oscillate with a known frequency [15]. On the other hand, a numerical
approach will be far more useful if the solution of (1) contains singularities.

2. Methodology

This section presents the derivation of a new numerical method and its properties.
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2.1. Derivation of newly proposed numerical method. In this paper, we derive a new numerical
method via the combination of Chebyshev polynomials of first kind and exponential function of the
form

F (x) =

3∑
i=0

biHi(x) + b4e
−2x (2)

for the solution of (1). By assumption, the theoretical solution y(x) to equation (1) can be represented
locally in the interval [xn, xn + 1], n ≥ 0 by interpolating polynomial (1). From (2), we have

F (x) = b0H0(x) + b1H1(x) + b2H2(x) + b3H3(x) + b4e
−2x (3)

where b0......b4 are constants and H0(x), H1(x), H2(x), and H3(x) are the first, second, third and
fourth Chebyshev polynomials of the first kind. Therefore,

H0(x) = 1 (4)

H1(x) = x (5)

H2(x) = 2x2 − 1 (6)

H3(x) = 4x3 − 3x (7)

Using (3)-(7)
F (x) = a0 + a1x+ a2(2x

2 − 1) + a3(4x
3 − 3x) + a4e

−2x (8)

Assuming yn is the numerical estimate to the theoretical solution y(x) and Fn = F (xn, yn), we define
mesh points as

xn+1 − xn = h, n = 0, 1, 2, 3, ...

To obtain undetermined coefficients, the following constants are imposed on the interpolating poly-
nomial (8). Interpolating function must coincide with theoretical solution at x = xn and x = xn+1

F (xn) = a0 + a1xn + a2(2x
2
n − 1) + a3(4x

3
n − 3xn) + a4e

−2xn (9)

and

F (xn + 1) = a0 + a1xn + 1 + a2(2xn + 12 − 1) + a3(4xn + 13 − 3xn + 1) + a4e
−2xn+1 (10)

The derivatives F ′(x), F ′′(x), F ′′′(x), F ′′′′ coincide with fn, f ′n, f ′′n , f ′′′n
respectively.

F (xn) = fn (11)

F ′′(xn) = f ′n (12)

F ′′′(xn) = f ′′n (13)
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F iv(xn) = f ′′′n (14)

Therefore
F ′(x) = a1 + 4a2xn + a3(12x2n − 3)− 2a4e

−2x
n = fn (15)

F ′′(x) = 4a2 + a3(24xn) + 4a4e
−2xn = f ′n (16)

F ′′′(x) = 24a3 − 8a4 − 4e−2xn = f ′′n (17)

F iv(x) = 16a4e
−2xn = f ′′′n (18)

From (18),
a4 =

f ′′′n
16e2xn

(19)

Substituting (19) into (17), we obtain
a3 =

2f ′′n + f ′′′n
48

(20)

Now substituting (19), (20) into (16), we obtain

a2 =
4f ′n − 4nhf ′′n − 2nhf ′′′n − f ′′n

16
(21)

In order to obtain a1, we substitute (19), (20) and (21) into (15). then one obtains

a1 = fn − nhf ′n +

(
(nh)2

2
+

1

8

)
f ′′n +

(
(nh)2

4
+
nh

4
+

3

16

)
f ′′′n (22)

The undetermined coefficients a1 a2 a3 and a4 are given by (19), (20), (21) and (22). By definition,
the mesh points xn and xn+1 are given by

xn = x0 + nh (23)

xn+1 = x0 + (n+ 1)h (24)

Let x0 = 0 from (23) and (24), we obtain

xn = nh, xn + 1 = (n+ 1)h

Thus,
xn+1 − xn = (n+ 1)h− (nh) = h (25)

x2n+1 − x2n =
[
(n+ 1)h2

]
− (nh)2 = h2(2n+ 1) (26)

x3n+1 − x3n =
[
(n+ 1)h3

]
− (nh)3 = h3(3n2 + 3n+ 1) (27)

Subtracting (9) from (10), we obtain

F (xn + 1)− F (xn) = a0 + a1xn + 1 + a2(2x
2
n + 1− 1) + a3(4x

3
n + 1− 3xn + 1

+ a4e
(−2xn+1))−

[
a0 + a1xn + a2(2x

2
n − 1) + a3(4x

3
n − 3xn) + a4e

−(2xn)
]
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F (n+ 1)− F (xn) = a1(xn + 1− xn) + a2(2x
2
n + 1− 2x2n)

+ a3
[
4xn + 1− 4x3n − (3xn + 1 + 3xn)

]
+ a4(e

(−2xn+1) − e(−2xn)) (28)

Substituting (25), (26) and (27) into (28), we have

a1(h) + 2a2h
2(2n + 1) + a3

[
4h3(3n2 + 3n+ 1)− 3h

]
+ a4

[
e−(2n+1)h − e(−2nh)

]
(29)

From (19), (20), (21) and (22) with xn = nh, we have

a4 =
f ′′′n

16e(−2nh)
(30)

a3 =
2f ′′n + f ′′′n

48
(31)

a2 =
4f ′n − 4nhf ′′n − 2nhf ′′′n − f ′′′n

16
(32)

a1 = fn − nhf ′n +

[
(nh)2

2
+

1

8

]
f ′′n +

[
(nh)2

4
+

(nh)

4
+

3

16

]
f ′′′n (33)

Then, substituting (30), (31), (32) and (33) into (29), we have

fn − nhf ′n +

[
(nh)2

2
+

1

8

]
f ′′n =

[
(nh)2

4
+

(nh)

4
+

3

16

]
f ′′′n (h)+(

4f ′n − 4nhf ′′n − 2nhf ′′′n − f ′′′n
16

)
2h2(2n + 1) +

2f ′′n + f ′′′n
48

[
4h3(3n2 + 3n+ 1)− 3h

]
+

f ′′′n
16e(−2nh)

[
e−(2n+1)h − e(−2nh)

]
= F (xn+1)− F (xn) (34)

Simplifying (34) yields

F (xn+1)− F (xn) = hfn + h2
[
f ′n
2
− f ′′′n

8

]
+ h3

[
f ′′n
6

+
f ′′′n
12

]
+

[
h

8
+
e−2h

16
− 1

16

]
f ′′′n (35)

Let

F (xn+1)− F (xn) = yn+1 − yn (36)

Therefore,

yn+1 = yn + hfn + h2
[
f ′n
2
− f ′′′n

8

]
+ h3

[
f ′′n
6

+
f ′′′n
12

]
+

[
h

8
+
e−2h

16
− 1

16

]
f ′′′n (37)

Thus, (37) is the newly derived numerical method from the combination of both exponential function
and Chebyshev polynomial of the first kind
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3. Analysis of the Newly Derived Numerical Method

3.1. Convergence property of the derived method. The convergence property of the newly derived
method is presented in the result below.

Theorem 1. Let y∗n be defined as a point in the interior of the interval whose end points are yn and ȳn. Applying

the mean value theorem, then the derived scheme (37) is convergent and the increment function is Lipschitzian.

Proof. The newly derived scheme is simplified as

yn+1 − yn = h(fn +D1f
′
n +D2f

′′
n +D3f

′′′
n ) (38)

with
D1 =

h

2
, D2 =

h2

3!
, D3 =

h3

4!
(39)

Comparing equation (39) with the general one-step method, we have the increment function defined
as

Φ(xn, y;h) = f(xn, yn) +D1f
′(xn, yn) +D2f

′′(xn, yn) +D3f
′′′(xn, yn) (40)

Similarly,
φ(xn, ȳn) = f(xn, ȳn) +D1f

′(xn, ȳn) +D2f
′′(xn, ȳn) +D3f

′′′(xn, ȳn)

Therefore,

Φ(xn, y;h)− φ(xn, ȳn) = [f(xn, yn)− f(xn, ȳn)] +D1[f
′(xn, yn)− f ′(xn, yn)]

+D2[f
′′(xn, yn)− f ′′(xn, yn)] +D3[f

′′′(xn, yn)− f ′′′(xn, yn)] (41)

Where

f(xn, yn)− f(xn, ȳn) = sup
(xn,yn)∈D

∂f(xn, y∗n)

∂y
(yn − ȳn) = P (yn − ȳn)

f ′(xn, yn)− f ′(xn, ȳn) = sup
(xn,yn)∈D

∂f1(xn, y∗n)

∂y
(yn, ȳn) = Q(yn − ȳn) (42)

f ′′(xn, yn)− f ′′(xn, ȳn) = sup
(xn,yn)∈D

∂f2(xn, y∗n)

∂y
(yn, ȳn) = R(yn − ȳn)

f ′′′(xn, yn)− f ′′′(xn, ȳn) = sup
(xn,yn)∈D

∂f3(xn, y∗n)

∂y
(yn, ȳn) = S(yn − ȳn)

Thus, substituting (42) into (41) and taking modulus, yields

|Φ(xn, y;h)− φ(xn, ȳn)| = |(P +D1Q+D2R+D3S)(yn − ȳn)|

|Φ(xn, y;h)− φ(xn, ȳn)| ≤ |(P +D1Q+D2R+D3S)||(yn − ȳn)|

Hence,
|Φ(xn, y;h)− φ(xn, ȳn)| ≤ L|yn − ȳn|, L = |(P +D1Q+D2R+D3S)| (43)



Asia Pac. J. Math. 2023 10:44 7 of 15

This completes the proof. �

3.2. Local truncation error (LTE) of the derived method. To find the order of the scheme derived, the
derived numerical scheme is subtracted from Taylor’s series expansion for y(x) in power of h which is
illustrated as follows:

y(xn + h) = y(xn) +
hy′(xn)

1!
+
hy′′(xn)

2!
+
hy′′′(xn)

3!
+
hyiv(xn)

4!
+O(h5) (44)

By (11), (12), (13), (14), we obtain

F ′(xn) = y′(xn) = fn (45)

F ′′(xn) = y′′(xn) = f ′n (46)

F ′′′(xn) = y′′′(xn) = f ′′n (47)

F iv(xn) = yiv(xn) = f ′′′n (48)

Using (45) - (48) and (37), then we obtain

LTE = y(xn + h)− yn+1

=

[
y(xn) +

hy′(xn)

1!
+
hy′′(xn)

2!
+
hy′′′(xn)

3!
+
hyiv(xn)

4!
+O(h5)

]
(49)

−
[
yn + hfn + h2

(
f ′n
3
− f ′′′n

8

)
+ h3

(
f ′′n
6

+
f ′′′n
12

)
+

(
h

8
+

1

16
f ′′′n (e−2h − 1)

)]
Replacing ε−2h by Maclaurin’s series and implifying further, we obtain our local truncation error with
the leading term containing h5.

LTE = O(h5)

. This shows that our newly derived scheme is of order four.

3.3. Consistency property of the method. A numerical method is said to be consistent if φ(xn, yn;h) =

fn. From the derived scheme, we have

yn+1 = yn + hfn +
h2

2
f ′n −

h2

8
f ′′′n +

h3

6
f ′′n +

h

12
f ′′′n +

[
h

8
+

1

16
(e−2h − 1)

]
f ′′′n (50)

. Thus,
yn + 1− yn

h
= fn + h

(
f ′n
2
− f ′′′n

8

)
+ h2

(
f ′′n +

f ′′′n
12

)
+

4h2

32
f ′′′n + .... (51)

From the RHS, the increment function is obtained as:

φ(xn, yn;h) = fn + h

(
f ′′n
2
− f ′′′n

8

)
+ h2

(
f ′′n +

f ′′′n
12

)
+

4h2

32
f ′′′n (52)

Therefore, as h→ 0, (52) becomes
φ(xn, yn; 0) = fn (53)
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Equation (53) confirms the consistency of the derived method.

3.4. Stability of the derived Method. Consider the test problem

y′ = −λy y(0) = 1 (54)

In which its theoretical solution is given as

y(x) = e−λx, λ > 0

where λ is in general a complex constant. The exact solution of (54) at point x = xn+1 is

y(xn+1) = e−λ(xn+h) (55)

From the derived method (37)

yn+1 = yn + h[−λe−λxn ] + h2
[
λ2e−λxn

2
− λ4e−λxn

8

]
(56)

+ h3
[
−λeλxn

6
+
λ4e−λxn

12

]
+

[
h

8
− (e−2h)− 1

16

]
λ4e−λxn

Let

e−λxn = yn (57)

Then (56) becomes

yn+1 = yn

[
1− λh+

h2λ2

2
+
h2λ4

8
− h3λ3

6
+
h3λ4

12
+

(
h

8
− e−2h − 1

16
λ4
)]

(58)

Setting

B = 1− λh+
h2λ2

2
+
h2λ4

8
− h3λ3

6
+
h3λ4

12
+

(
h

8
− e(−2h) − 1

16
λ4

)
(59)

Therefore, (58) yields
yn+1 = Byn (60)

Comparing (55) and (59), show the factor D is merely an approximation for the factor e−λh in the
exact solution. The factor D error growth can be control by ||D|| ≤ 1, in order for the error not to be
magnify. Therefore, the stability of the derived method requires that

|B| =

∣∣∣∣∣1− λh+
h2λ2

2
+
h2λ4

8
− h3λ3

6
+
h3λ4

12
+

(
h

8
− e(−2h) − 1

16
λ4

)∣∣∣∣∣ ≤ 1 (61)

Also, let ζ = hλ, the stability function of the derived method is given by

B = 1− ζ +
ζ2

2
+
ζ2λ2

8
− ζ3

6
+
ζ3λ

12
+

(
h

8
− e−2h − 1

16

)
(λ4)

= 1− ζ +
ζ2

2
− ζ3

6
+
ζ4

24
− ...

(62)
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This shows that the derived method is absolutely stable. Alternatively, the stability property of the
derived method is given by the following result [18].

Theorem 2. Let yn = y(xn) andMn = M(xn) be two different numerical solutions of differential equation

y′ = f(x, y) with initial conditions as y(x0) = α andM(x0) = ᾱ, respectively. If the numerical estimates are

generated by interpolation scheme derived, we have

yn+1 = yn + hφ(xn, yn;h)

Mn+1 = Mn + hφ(xn,mn;h)

The condition that |yn+1 −mn+1| ≤W |α− ᾱ| is the necessary and sufficient condition that our derived scheme

is stable and convergent

Proof. From the derived method, we have that

yn+1 = yn + f(xn, yn) +D1f
′(xn, yn) +D2f

′′(xn, yn) +D3f
′′′(xn, yn)

Also, define

mn+1 = mn + f(xn,mn) +D1f
′(xn,mn) +D2f

′′(xn,mn) +D3f
′′′(xn,mn)

Therefore,

yn+1 −mn+1 = yn −mn + [f(xn, yn)− f(xn,mn)] +D1

[
f ′(xn, yn)− f ′(xn,mn)

]
+D2

[
f ′′(xn, yn)− f ′′(xn,mn)

]
+D3

[
f ′′′(xn, yn)− f ′′′(xn,mn)

] (63)

Apply the mean value theorem with an assumption that y∗n is a point in the interval whose end points
are yn andmn. we have

yn+1 −mn+1 = (1 + P +D1Q+D2R+D3S)(yn −mn) (64)

Taking absolute value of (64), yields

|yn+1 −mn + 1| ≤ |1 + P +D1Q+D2R+D3S||yn −mn| (65)

Let

|1 + P +D1Q+D2R+D3S| = W, yn(x0) = α,mn(x0) = ᾱ (66)

Hence,

|yn+1 −mn+1| 6W |α− ᾱ| (67)

This establishes the proof. �
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4. Numerical Examples

Example 1. Consider an initial value problem:
dy

dx
= y, 0 ≤ x ≤ 1, (68)

whose exact solution is
y(x) = ex. (69)

Table 1. Table of results for comparison

h XN NNM PJS ES
0.1 1.0000 2.718279744135 2.718277728147 2.718281828459
0.05 1.0000 2.718281692656 2.718281559098 2.718281828459
0.025 1.0000 2.718281819793 2.718281811199 2.718281828459
0.0125 1.0000 2.718281827912 2.718281827367 2.718281828459

Table 2. Table of results for comparison

h XN AE(NNM) AE(PJS)
0.1 1.0000 0.000002084324 0.000004100312
0.05 1.0000 0.000000135803 0.000000269361
0.025 1.0000 0.000000008666 0.000000017260
0.0125 1.0000 0.000000000547 0.000000001092

Figure 1. The comparative absolute errors analyses using Table 2
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Example 2. Suppose an investment fund is growing continuously at a rate of 5% per year. The initial
investment made was GH¢100. What is the value of the investment after 7 years?

Using the continuous growth model, the value of the investment after 7 years can be modeled by the
first-order differential equation:

dV (t)

dt
= rV (t) , V (0) = 100 , (70)

where V (t) represents the value of the investment at time t and r = 0.05 is the rate. Solving this
differential equation using separation of variables, the exact solution is

V (t) = 100 e0.05t . (71)

Table 3. Table of results for comparison

h XN NNM PJS ES
0.1 7.0000 141.906754859068 141.906754854005 141.906754859326
0.05 7.0000 141.906754859310 141.906754858990 141.906754859326
0.025 7.0000 141.906754859324 141.906754859305 141.906754859326
0.0125 7.0000 141.906754859326 141.906754859324 141.906754859326

Table 4. Table of results for comparison

h XN AE(NNM) AE(PJS)
0.1 7.0000 0.000000000258 0.000000005321
0.05 7.0000 0.000000000016 0.000000000336
0.025 7.0000 0.000000000001 0.000000000021
0.0125 7.0000 0.000000000000 0.000000000002

Figure 2. The comparative absolute errors analyses using Table 4
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Example 3. Suppose there is a group of bacteria reproducing at a rate of 0.8 per hour per individual. If
there are no limitations to the growth of the colony, how many bacteria will there be after one hour?

The growth of the colony can be represented by a first-order differential equation of the form
dN(t)

dt
= rN(t) , N(0) = 1000 , (72)

where N(t) represents the number of bacteria at time t, r is the rate of growth per individual per hour.
The exact solution is obtained as

N(t) = 1000 e0.8t . (73)

Table 5. Table of results for comparison

h XN NNM PJS ES
0.1 1.0000 2225.540359928990 2225.539670205250 2225.540928492460
0.05 1.0000 2225.540891754530 2225.540846515410 2225.540928492460
0.025 1.0000 2225.540926157780 2225.540923261220 2225.540928492460
0.0125 1.0000 2225.540928345320 2225.540928162100 2225.540928492460

Table 6. Table of results for comparison

h XN AE(NNM) AE(PJS)
0.1 1.0000 0.000568563474 0.001258287212
0.05 1.0000 0.000036737933 0.000081977051
0.025 1.0000 0.000002334681 0.000005231242
0.0125 1.0000 0.000000147141 0.000000330365

Figure 3. The comparative absolute errors analyses using Table 6



Asia Pac. J. Math. 2023 10:44 13 of 15

Example 4. Suppose we have a sample of radioactive material with an initial mass of 500 grams. The
half-life of the material is 10 days. How much radioactive material will be left after 30 days have
elapsed? Radioactive decay can be modeled by the exponential decay equation:

dN(t)

dt
= −λN(t) , N(0) = 500 , (74)

where N(t) is the amount of radioactive material remaining at time t and λ is the decay constant. The
half-life is 10 days, so the decay constant is

λ =
ln(2)

10
≈ 0.0693 .

Solving this differential equation using separation of variables, the exact solution is

N(t) = 500 e−0.0693t . (75)

Table 7. Table of results for comparison

h XN NNM PJS ES
0.1 30.0000 62.527602450870 62.527602415162 62.527602448357
0.05 30.0000 62.527602448514 62.527602446271 62.527602448357
0.025 30.0000 62.527602448367 62.527602448227 62.527602448357
0.0125 30.0000 62.527602448358 62.527602448348 62.527602448357

Table 8. Table of results for comparison

h XN AE(NNM) AE(PJS)
0.1 30.0000 0.000000002513 0.000000033195
0.05 30.0000 0.000000000157 0.000000002086
0.025 30.0000 0.000000000010 0.000000000130
0.0125 30.0000 0.000000000001 0.000000000009

Figure 4. The comparative absolute errors analyses using Table 8
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5. Discussion of Results and Concluding Remarks

The results presented in Tables 1, 3, 5 and 7 and Tables 2, 4, 6 and 8 indicate that the proposed
numerical method is more accurate than the PJS method [28] in terms of accuracy and convergence,
respectively. Moreover, an analysis of the computational progress with different step sizes, as depicted
in Figures 1, 2, 3, and 4, reveals that the proposed method incurs smaller errors compared to the PJS
method. Also, this finding is further supported by Figures 1 to 4, which demonstrates that the proposed
method closely aligns with the exact solution as the step size decreases. It can be concluded that the
proposed method indeed exhibits fourth-order accuracy. Therefore, the proposed numerical method
represents an improvement over the PJS method [28].
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