

$\theta p(\Lambda, p)$ -OPEN FUNCTIONS AND $\theta p(\Lambda, p)$ -CLOSED FUNCTIONS

CHAWALIT BOONPOK, NAPASSANAN SRISARAKHAM*

Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand *Corresponding author: napassanan.sri@msu.ac.th

Received Sep. 28, 2023

ABSTRACT. This article deals with the concepts of $\theta p(\Lambda, p)$ -open functions and $\theta p(\Lambda, p)$ -closed functions. Moreover, several characterizations of $\theta p(\Lambda, p)$ -open functions and $\theta p(\Lambda, p)$ -closed functions are considered. 2020 Mathematics Subject Classification. 54A05, 54C10.

Key words and phrases. $\theta p(\Lambda, p)$ -open set; $\theta p(\Lambda, p)$ -open function; $\theta p(\Lambda, p)$ -closed function.

1. INTRODUCTION

The concept of weakly open functions was first introduced by Rose [12]. Rose and Janković [11] investigated some of the fundamental properties of weakly closed functions. Caldas and Navalagi [5] introduced two new classes of functions called weakly preopen functions and weakly preclosed functions as generalization of weak openness and weak closedness due to [12] and [11], respectively. Moreover, Caldas and Navalagi [4] introduced and investigated the concepts of weakly semi-open functions and weakly semi-closed functions as a new generalization of weakly open functions and weakly closed functions, respectively. Noiri and Popa [8] studied a new class of functions called *M*-closed functions as functions defined between sets satisfying some conditions. Pal et al. [10] introduced and studied the notion of pre- θ -closed sets in topological spaces. Caldas et al. [3] introduced the notions of pre- θ -border, pre- θ -frontier and pre- θ -exterior of a set. Noiri [9] introduced and investigated the notion of θ -precopenness and θ -preclosedness as a natural dual to the θ -precontinuity due to Noiri [9]. In [2], the present authors investigated some properties of (Λ , *sp*)-closed sets and (Λ , *sp*)-open sets. Boonpok and Viriyapong [1] introduced and studied the notions of (Λ , *p*)-closed sets and (Λ , *p*)-open sets.

DOI: 10.28924/APJM/10-48

 $\delta p(\Lambda, s)$ -closure operator. In this article, we introduce the concepts of $\theta(\Lambda, p)$ -open functions and $\theta(\Lambda, p)$ -closed functions. Moreover, several characterizations of $\theta(\Lambda, p)$ -open functions and $\theta(\Lambda, p)$ -closed functions are investigated.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a topological space (X, τ) , Cl(A) and Int(A), represent the closure and the interior of A, respectively. A subset A of a topological space (X, τ) is said to be *preopen* [7] if $A \subseteq Int(Cl(A))$. The complement of a preopen set is called *preclosed*. The family of all preopen sets of a topological space (X, τ) is denoted by $PO(X, \tau)$. A subset $\Lambda_p(A)$ [6] is defined as follows: $\Lambda_p(A) = \cap\{U \mid A \subseteq U, U \in PO(X, \tau)\}$. A subset A of a topological space (X, τ) is called a Λ_p -set [1] (*pre*- Λ -set [6]) if $A = \Lambda_p(A)$. A subset A of a topological space (X, τ) is called (Λ, p) -closed [1] if $A = T \cap C$, where T is a Λ_p -set and C is a preclosed set. The complement of a (Λ, p) -closed set is called (Λ, p) -open. The family of all (Λ, p) -open (resp. (Λ, p) -closed) sets in a topological space (X, τ) is denoted by $\Lambda_pO(X, \tau)$ (resp. $\Lambda_pC(X, \tau)$). Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, p) -cluster point [1] of A if $A \cap U \neq \emptyset$ for every (Λ, p) -open set U of X containing x. The set of all (Λ, p) -open sets of A is called the (Λ, p) -interior [1] of A and is denoted by $A_{(\Lambda,p)}$.

The $\theta(\Lambda, p)$ -closure [1] of A, $A^{\theta(\Lambda, p)}$, is defined as follows: $A^{\theta(\Lambda, p)} = \{x \in X \mid A \cap U^{(\Lambda, p)} \neq \emptyset \text{ for each } (\Lambda, p)\text{-open set } U \text{ containing } x\}$. A subset A of a topological space (X, τ) is called $\theta(\Lambda, p)\text{-closed } [1]$ if $A = A^{\theta(\Lambda, p)}$. The complement of a $\theta(\Lambda, p)\text{-closed set is said to}$ be $\theta(\Lambda, p)\text{-open}$. A point $x \in X$ is called a $\theta(\Lambda, p)\text{-interior point } [14]$ of A if $x \in U \subseteq U^{(\Lambda, p)} \subseteq A$ for some $U \in \Lambda_p O(X, \tau)$. The set of all $\theta(\Lambda, p)\text{-interior points of } A$ is called the $\theta(\Lambda, p)\text{-interior } [14]$ of A and is denoted by $A_{\theta(\Lambda, p)}$.

Lemma 1. [14] For subsets A and B of a topological space (X, τ) , the following properties hold:

- (1) $X A^{\theta(\Lambda,p)} = [X A]_{\theta(\Lambda,p)}$ and $X A_{\theta(\Lambda,p)} = [X A]^{\theta(\Lambda,p)}$.
- (2) *A* is $\theta(\Lambda, p)$ -open if and only if $A = A_{\theta(\Lambda, p)}$.
- (3) $A \subseteq A^{(\Lambda,p)} \subseteq A^{\theta(\Lambda,p)}$ and $A_{\theta(\Lambda,p)} \subseteq A_{(\Lambda,p)} \subseteq A$.
- (4) If $A \subseteq B$, then $A^{\theta(\Lambda,p)} \subseteq B^{\theta(\Lambda,p)}$ and $A_{\theta(\Lambda,p)} \subseteq B_{\theta(\Lambda,p)}$.
- (5) If A is (Λ, p) -open, then $A^{(\Lambda, p)} = A^{\theta(\Lambda, p)}$.

A subset *A* of a topological space (X, τ) is said to be $p(\Lambda, p)$ -open [1] (resp. $\alpha(\Lambda, p)$ -open [15], $r(\Lambda, p)$ open [1]) if $A \subseteq [A^{(\Lambda,p)}]_{(\Lambda,p)}$ (resp. $A \subseteq [[A_{(\Lambda,p)}]^{(\Lambda,p)}]_{(\Lambda,p)}$, $A = [A^{(\Lambda,p)}]_{(\Lambda,p)}$). The complement of a $p(\Lambda, p)$ -open (resp. $\alpha(\Lambda, p)$ -open, $r(\Lambda, p)$ -open) set is called $p(\Lambda, p)$ -closed (resp. $\alpha(\Lambda, p)$ -closed, $r(\Lambda, p)$ closed). The intersection of all $p(\Lambda, p)$ -closed sets of X containing A is called the $p(\Lambda, p)$ -closure of Aand is denoted by $A^{p(\Lambda,p)}$. Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a $\theta p(\Lambda, p)$ -cluster point of A if $A \cap U^{p(\Lambda,p)} \neq \emptyset$ for every $p(\Lambda, p)$ -open set U of X containing x. The set of all $\theta p(\Lambda, p)$ -cluster points of A is called the $\theta p(\Lambda, p)$ -closure of A and is denoted by $A^{\theta p(\Lambda,p)}$. If $A = A^{\theta p(\Lambda,p)}$, then A is called $\theta p(\Lambda, p)$ -closed. The complement of a $\theta p(\Lambda, p)$ -closed set is called $\theta p(\Lambda, p)$ -open. The $\theta p(\Lambda, p)$ -interior of A is defined by the union of all $\theta p(\Lambda, p)$ -open sets of X contained in A and is denoted by $A_{\theta p(\Lambda,p)}$.

Lemma 2. For subsets A and B of a topological space (X, τ) , the following properties hold:

- (1) $X A^{\theta p(\Lambda,p)} = [X A]_{\theta p(\Lambda,p)}$ and $X A_{\theta p(\Lambda,p)} = [X A]^{\theta p(\Lambda,p)}$.
- (2) A is $\theta p(\Lambda, p)$ -open if and only if $A = A_{\theta p(\Lambda, p)}$.
- (3) $A \subseteq A^{p(\Lambda,p)} \subseteq A^{\theta p(\Lambda,p)}$ and $A_{\theta p(\Lambda,p)} \subseteq A_{p(\Lambda,p)} \subseteq A$.
- (4) If $A \subseteq B$, then $A^{\theta p(\Lambda,p)} \subseteq B^{\theta p(\Lambda,p)}$ and $A_{\theta p(\Lambda,p)} \subseteq B_{\theta p(\Lambda,p)}$.
- (5) If A is $p(\Lambda, p)$ -open, then $A^{p(\Lambda, p)} = A^{\theta p(\Lambda, p)}$.

3. Characterizations of $\theta p(\Lambda, p)$ -open functions

In this section, we introduce the concept of $\theta p(\Lambda, p)$ -open functions. Moreover, some characterizations of $\theta p(\Lambda, p)$ -open functions are discussed.

Definition 1. A functions $f : (X, \tau) \to (Y, \sigma)$ is said to be $\theta p(\Lambda, p)$ -open if $f(U) \subseteq [f(U^{(\Lambda, p)})]_{\theta p(\Lambda, p)}$ for each (Λ, p) -open set U of X.

Theorem 1. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is $\theta p(\Lambda, p)$ -open;
- (2) $f(A_{\theta(\Lambda,p)}) \subseteq [f(A)]_{\theta p(\Lambda,p)}$ for every subset A of X;
- (3) $[f^{-1}(B)]_{\theta(\Lambda,p)} \subseteq f^{-1}(B_{\theta p(\Lambda,p)})$ for every subset B of Y;
- (4) $f^{-1}(B^{\theta p(\Lambda,p)}) \subseteq [f^{-1}(B)]^{\theta(\Lambda,p)}$ for every subset B of Y;
- (5) $f(K_{(\Lambda,p)}) \subseteq [f(K)]_{\theta p(\Lambda,p)}$ for each (Λ, p) -closed set K of X;
- (6) $f([U^{(\Lambda,p)}]_{(\Lambda,p)}) \subseteq [f(U^{(\Lambda,p)})]_{\theta p(\Lambda,p)}$ for each (Λ,p) -open set U of X;
- (7) $f(U) \subseteq [f(U^{(\Lambda,p)})]_{\theta p(\Lambda,p)}$ for each $r(\Lambda,p)$ -open set U of X;
- (8) $f(U) \subseteq [f(U^{(\Lambda,p)})]_{\theta p(\Lambda,p)}$ for each $\alpha(\Lambda,p)$ -open set U of X.

Proof. The proofs of $(5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (1)$ are straightforward and are omitted.

 $(1) \Rightarrow (2)$: Let A be any subset of X and $x \in A_{\theta(\Lambda,p)}$. Then, there exists a (Λ, p) -open set U of X such that

$$x \in U \subseteq U^{(\Lambda,p)} \subseteq U.$$

Then, $f(x) \in f(U) \subseteq f(U^{(\Lambda,p)}) \subseteq f(A)$. Since f is $\theta p(\Lambda,p)$ -open, $f(U) \subseteq [f(U^{(\Lambda,p)})]_{\theta p(\Lambda,p)} \subseteq [f(A)]_{\theta p(\Lambda,p)}$. It implies that

$$f(x) \in [f(A)]_{\theta p(\Lambda, p)}.$$

Therefore, $x \in f^{-1}([f(A)]_{\theta p(\Lambda,p)})$. Thus, $A_{\theta(\Lambda,p)} \subseteq f^{-1}([f(A)]_{\theta p(\Lambda,p)})$ and hence $f(A_{\theta(\Lambda,p)}) \subseteq [f(A)]_{\theta p(\Lambda,p)}$.

 $(2) \Rightarrow (3)$: Let *B* be any subset of *Y*. Then by (2),

$$f([f^{-1}(B)]_{\theta(\Lambda,p)}) \subseteq B_{\theta p(\Lambda,p)}$$

Thus, $[f^{-1}(B)]_{\theta(\Lambda,p)} \subseteq f^{-1}(B_{\theta p(\Lambda,p)}).$

 $(3) \Rightarrow (4)$: Let *B* be any subset of *Y*. Using (3), we have

$$X - [f^{-1}(B)]^{\theta(\Lambda,p)} = [X - f^{-1}(B)]_{\theta(\Lambda,p)}$$
$$= [f^{-1}(Y - B)]_{\theta(\Lambda,p)}$$
$$\subseteq f^{-1}([Y - B]_{\theta p(\Lambda,p)})$$
$$= f^{-1}(Y - B^{\theta p(\Lambda,p)})$$
$$= X - f^{-1}(B^{\theta p(\Lambda,p)})$$

and hence $f^{-1}(B^{\theta p(\Lambda,p)}) \subseteq [f^{-1}(B)]^{\theta(\Lambda,p)}$.

 $(4) \Rightarrow (5)$: Let *K* be any (Λ, p) -closed set of *X*. Thus, by (4),

$$f^{-1}([Y - f(K)]^{\theta p(\Lambda, p)}) \subseteq [f^{-1}(Y - f(K))]^{\theta(\Lambda, p)}$$

We have

$$f^{-1}([Y - f(K)]^{\theta p(\Lambda, p)}) = f^{-1}(Y - [f(K)]_{\theta p(\Lambda, p)})$$
$$= X - f^{-1}([f(K)]_{\theta p(\Lambda, p)})$$

On the other hand,

$$[f^{-1}(Y - f(K))]^{\theta(\Lambda, p)} = [X - f^{-1}(f(K))]^{\theta(\Lambda, p)}$$
$$\subseteq [X - K]^{\theta(\Lambda, p)}$$
$$= X - K_{\theta(\Lambda, p)}$$
$$= X - K_{(\Lambda, p)},$$

since K is (Λ, p) -closed. Thus, $K_{(\Lambda, p)} \subseteq f^{-1}([f(K)]_{\theta p(\Lambda, p)})$ and hence $f(K_{(\Lambda, p)}) \subseteq [f(K)]_{\theta p(\Lambda, p)}$. \Box

Theorem 2. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective function. Then, the following properties are equivalent:

- (1) f is $\theta p(\Lambda, p)$ -open;
- (2) $[f(U)]^{\theta p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every (Λ, p) -open set U of X;
- (3) $[f(K_{(\Lambda,p)})]^{\theta p(\Lambda,p)} \subseteq f(K)$ for every (Λ,p) -closed set K of X.

Proof. (1) \Rightarrow (3): Let *K* be any (Λ , *p*)-closed set of *X*. Then, we have

$$Y - f(K) = f(X - K)$$
$$\subseteq [f([X - K]^{(\Lambda, p)})]_{\theta p(\Lambda, p)}$$

and hence $Y - f(K) \subseteq Y - [f(K_{(\Lambda,p)})]^{\theta p(\Lambda,p)}$. Thus,

$$[f(K_{(\Lambda,p)})]^{\theta p(\Lambda,p)} \subseteq f(K).$$

(3) \Rightarrow (2): Let U be any (Λ, p) -open set of X. Since $U^{(\Lambda, p)}$ is (Λ, p) -closed and $U \subseteq [U^{(\Lambda, p)}]_{(\Lambda, p)}$, by (3) we have

$$[f(U)]^{\theta p(\Lambda,p)} \subseteq [f([U^{(\Lambda,p)}]_{(\Lambda,p)})]^{\theta p(\Lambda,p)}$$
$$\subseteq f(U^{(\Lambda,p)}).$$

 $(2) \Rightarrow (1)$: Let *U* be any (Λ, p) -open set of *X*. By (2), we have

$$[f(X - U^{(\Lambda, p)})]^{\theta p(\Lambda, p)} \subseteq f([X - U^{(\Lambda, p)}]^{(\Lambda, p)}).$$

Since f is bijective, $[f(X - U^{(\Lambda,p)})]^{\theta p(\Lambda,p)} = Y - [f(U^{(\Lambda,p)})]_{\theta p(\Lambda,p)}$ and

$$f([X - U^{(\Lambda, p)}]^{(\Lambda, p)}) = f(X - [U^{(\Lambda, p)}]_{(\Lambda, p)})$$
$$\subseteq f(X - U)$$
$$= Y - f(U).$$

Thus, $f(U) \subseteq [f(U^{(\Lambda,p)})]_{\theta p(\Lambda,p)}$ and hence f is $\theta p(\Lambda,p)$ -open.

4. Characterizations of $\theta p(\Lambda, p)$ -closed functions

In this section, we introduce the notion of $\theta p(\Lambda, p)$ -closed functions. Furthermore, several characterizations of $\theta p(\Lambda, p)$ -closed functions are considered.

Definition 2. A functions $f : (X, \tau) \to (Y, \sigma)$ is said to be $\theta p(\Lambda, p)$ -closed if $[f(K_{(\Lambda, p)})]^{\theta p(\Lambda, p)} \subseteq f(K)$ for each (Λ, p) -closed set K of X.

Theorem 3. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) $f \text{ is } \theta p(\Lambda, p)\text{-closed};$
- (2) $[f(U)]^{\theta p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every (Λ, p) -open set U of X;
- (3) $[f(U)]^{\theta p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for every $p(\Lambda,p)$ -open set U of X;

- (4) $[f(K_{(\Lambda,p)})]^{\theta p(\Lambda,p)} \subseteq f(K)$ for every $p(\Lambda,p)$ -closed set K of X;
- (5) $[f(K_{(\Lambda,p)})]^{\theta p(\Lambda,p)} \subseteq f(K)$ for every $\alpha(\Lambda,p)$ -closed set K of X;
- (6) $[f([A^{(\Lambda,p)}]_{(\Lambda,p)})]^{\theta p(\Lambda,p)} \subseteq f(A^{(\Lambda,p)})$ for every subset A of X.

Proof. (1) \Rightarrow (2): Let *U* be any (Λ , *p*)-open set of *X*. Then by (1),

$$[f(U)]^{\theta p(\Lambda,p)} = [f(U_{(\Lambda,p)})]^{\theta p(\Lambda,p)} \subseteq [f([U^{(\Lambda,p)}]_{(\Lambda,p)})]^{\theta p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)}).$$

 $(2) \Rightarrow (3)$: Let *U* be any $p(\Lambda, p)$ -open set of *X*. Using (2), we have

$$[f(U)]^{\theta p(\Lambda,p)} \subseteq [f([U^{(\Lambda,p)}]_{(\Lambda,p)})]^{\theta p(\Lambda,p)} \subseteq f([[U^{(\Lambda,p)}]_{(\Lambda,p)}]^{(\Lambda,p)}) \subseteq f(U^{(\Lambda,p)}).$$

 $(3) \Rightarrow (4)$: Let *K* be any $p(\Lambda, p)$ -closed set of *X*. Then, we have

$$[f(K_{(\Lambda,p)})]^{\theta p(\Lambda,p)} \subseteq f([K_{(\Lambda,p)}]^{(\Lambda,p)}) \subseteq f(K).$$

It is clear that $(4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (1)$.

Definition 3. [1] A topological space (X, τ) is said to be Λ_p -regular if for each (Λ, p) -closed set F and each $x \notin F$, there exist disjoint (Λ, p) -open sets U and V such that $x \in U$ and $F \subseteq V$.

Lemma 3. [1] A topological space (X, τ) is Λ_p -regular if and only if for each $x \in X$ and each (Λ, p) -open set U containing x, there exists a (Λ, p) -open set V such that $x \in V \subseteq V^{(\Lambda, p)} \subseteq U$.

Theorem 4. Let (Y, σ) be a Λ_p -regular space. Then, for a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is $\theta p(\Lambda, p)$ -closed;
- (2) $[f(U)]^{\theta p(\Lambda,p)} \subseteq f(U^{(\Lambda,p)})$ for each $r(\Lambda,p)$ -open set U of X;
- (3) for each subset B of Y and each (Λ, p) -open set U of X with $f^{-1}(B) \subseteq U$, there exists a $\theta p(\Lambda, p)$ -open set V of Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq U^{(\Lambda,p)}$;
- (4) for each point $y \in Y$ and each (Λ, p) -open set U of X with $f^{-1}(y) \subseteq U$, there exists a $\theta p(\Lambda, p)$ -open set V of Y containing y and $f^{-1}(V) \subseteq U^{(\Lambda,p)}$.

Proof. $(1) \Rightarrow (2)$ and $(3) \Rightarrow (4)$: The proofs are obvious.

(2) \Rightarrow (3): Let *B* be any subset of *Y* and *U* be any (Λ, p) -open set of *X* with $f^{-1}(B) \subseteq U$. Then, $f^{-1}(B) \cap [X - U^{(\Lambda,p)}]^{(\Lambda,p)} = \emptyset$ and hence $B \cap f([X - U^{(\Lambda,p)}]^{(\Lambda,p)}) = \emptyset$. Since $X - U^{(\Lambda,p)}$ is $r(\Lambda, p)$ -open, $B \cap [f(X - U^{(\Lambda,p)})]^{\theta p(\Lambda,p)} = \emptyset$ by (2). Put $V = Y - [f(X - U^{(\Lambda,p)})]^{\theta p(\Lambda,p)}$. Then, *V* is a $\theta p(\Lambda, p)$ -open set of *Y* such that $B \subseteq V$ and

$$f^{-1}(V) \subseteq X - f^{-1}([f(X - U^{(\Lambda, p)})]^{\theta p(\Lambda, p)})$$
$$\subseteq X - f^{-1}(f(X - U^{(\Lambda, p)}))$$
$$\subseteq U^{(\Lambda, p)}.$$

 $(4) \Rightarrow (1): \text{Let } K \text{ be any } (\Lambda, p) \text{-closed set of } Y \text{ and } y \in Y - f(K). \text{ Since } f^{-1}(y) \subseteq X - K, \text{ there exists } a \ \theta p(\Lambda, p) \text{-open set } V \text{ of } Y \text{ such that } y \in V \text{ and } f^{-1}(V) \subseteq [X - K]^{(\Lambda, p)} = X - K_{(\Lambda, p)} \text{ by } (4). \text{ Thus, } V \cap f(K_{(\Lambda, p)}) = \emptyset \text{ and hence } y \in Y - [f(K_{(\Lambda, p)})]^{\theta p(\Lambda, p)}. \text{ It implies that } [f(K_{(\Lambda, p)})]^{\theta p(\Lambda, p)} \subseteq f(K). \text{ This shows that } f \text{ is } \theta p(\Lambda, p) \text{-closed.} \square$

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math. 15 (2022), 415–436. https://doi.org/10.29020/nybg.ejpam.v15i2.4274.
- [2] C. Boonpok, J. Khampakdee, (Λ, sp)-open sets in topological spaces, Eur. J. Pure Appl. Math. 15 (2022), 572–588. https://doi.org/10.29020/nybg.ejpam.v15i2.4276.
- [3] M. Caldas, S. Jafari, G. Navalagi, T. Noiri, On pre-θ-open sets and two classes of functions, Bull. Iran. Math. Soc. 32 (2006), 45–63.
- [4] M. Caldas, G. Navalagi, On weak forms of semi-open and semi-closed functions, Missouri J. Math. Sci. 18 (2006), 165–178. https://doi.org/10.35834/2006/1803165.
- [5] M. Caldas, G. Navalagi, On weak forms of preopen and preclosed functions, Arch. Math. 40 (2004), 119–128. https: //dml.cz/handle/10338.dmlcz/107896.
- [6] M. Ganster, S. Jafari, T. Noiri, On pre-Λ-sets and pre-V-sets, Acta Math. Hung. 95 (2002), 337–343.
- [7] A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [8] T. Noiri, V. Popa, A unified theory of closed functions, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 49 (2006), 371–382. https://www.jstor.org/stable/43679044.
- [9] T. Noiri, On θ-precontinuous functions, Int. J. Math. Math. Sci. 28 (2001), 285–292. https://doi.org/10.1155/ S0161171201006500.
- [10] M. C. Pal and Bhattacharyya, Feeble and strong forms of preirresolute functions, Bull. Malays. Math. Soc. 19 (1996), 63–75. https://cir.nii.ac.jp/crid/1570291226285279104.
- [11] D.A. Rose, D.S. Janković, Weakly closed functions and Hausdorff spaces, Math. Nachr. 130 (1987), 105–110. https: //doi.org/10.1002/mana.19871300109.
- [12] D.A. Rose, Weak openness and almost openness, Int. J. Math. Math. Sci. 7 (1984), 35–40. https://doi.org/10.1155/ s0161171284000041.
- [13] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces, Int. J. Math. Comp. Sci. 18 (2023), 743–747.
- [14] M. Thongmoon, C. Boonpok, Strongly $\theta(\Lambda, p)$ -continuous functions, Int. J. Math. Comp. Sci. 19 (2024), 475–479.
- [15] N. Viriyapong, C. Boonpok, On (Λ , p)-extremally disconnected spaces, Int. J. Math. Comp. Sci. 18 (2023), 289–293.