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Abstract. The purpose of this paper is to introduce and investigate a new dynamic system that describes
the infection of the human immunodeficiency virus (HIV) involving cytotoxic T-lymphocytes (CTL), while
also exploring and studying two saturated rates. The model incorporates two treatments that represent the
effectiveness of drug therapy in inhibiting viral production and preventing new infections. Furthermore,
themodel undergoes qualitative analysis, andwe provide numerical simulations to illustrate our theoretical
results.
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1. Introduction

The human immunodeficiency virus (HIV) is a type of lentivirus, which belongs to the retrovirus
subgroup. This virus damages immune system cells, ultimately leading to the well-known condition
known as acquired immunodeficiency syndrome (AIDS) (see [1, 2]). Presently, there is neither a cure
nor a vaccine for HIV [3]. Nevertheless, antiretroviral therapy (ART) is employed for managing HIV
infections. Two main categories of antiretroviral medications are approved for treating individuals
infected with HIV: reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs) [4]. RTIs
function by inhibiting the conversion of the virus’s RNA into DNA during reverse transcription. This
action helps keep the viral population in check and maintains a higher count of CD4+ T cells. On the
other hand, PIs work by blocking the production of viruses within actively infected CD4+ T cells.

Over the past few decades, numerous mathematical models have been formulated to comprehensively
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describe, comprehend, and manage the dynamics of HIV infection, for example in [5–13] and the
references therein. More recently, an adaptedmodel that accounts for two saturated rates, CTL response
and therapy has been presented in a study by Lahm et al. [14]:

ẋ(t) = λ− d x(t)−
(
1− u1(t)

) β vI x

1 + a vI
+ r y,

ẏ(t) =
(
1− u1(t)

) β vI x

1 + a vI
−
(
δ + r

)
y − pyz,

v̇I(t) =
(
1− u2(t)

)
ky − µ vI ,

v̇NI(t) = u2(t) k y − µ vNI ,

ż(t) =
c y z

1 + α y
− b z

(1)

In this proposedmodel, the variables x, y, vI ,vNI and z correspond to distinct concentrations: uninfected
cells, infected cells, free virus unaffected by protease inhibitors (PIs), free virus influenced by PIs,
and cytotoxic T lymphocyte (CTL) cells, respectively. The population of susceptible host cells, CD4+

T cells, is generated at a rate λ, experiences natural death at a rate dx, and becomes infected by the
virus at a rate (1− u1(t))βvIx

1 + ax
. The parameter ry characterizes the rate at which infected cells are

reverted to susceptible host cells due to noncytolytic processes (for more details see [15, 16]). Infected
cells are eliminated at a rate δy and are targeted by the CTL response at a rate pyz. Free virus not
influenced by PIs is produced by infected cells at a rate (1− u2(t))ky, while free virus influenced by PIs
is generated by infected cells at a rate u2(t)ky. CTLs proliferate in response to viral antigens derived
from infected cells at a rate cyz

1 + αy
and undergo decay in the absence of antigenic stimulation at a

rate bz. The control vector u = (u1(t), u2(t)) represents time-dependent antiviral therapy. The first
component u1(t) signifies the efficacy of drug therapy in impeding new infections, whereas the second
component u2(t) denotes the efficacy of drug therapy in suppressing viral production.
The model incorporates two key saturated rates, denoted as ”a” and ”α”. These rates serve distinct
purposes: ”a” captures the saturated mass action linked to viral infection rates, with its behavior being
well-documented by sources such as [17, 18]. On the other hand, ”α” represents a saturated function
that characterizes the proliferation of cytotoxic T lymphocytes (CTLs). This proliferation is tempered by
the influence of immune impairment caused by HIV infection, a phenomenon discussed in [19]. In the
context of this paper, we adopt a simplification by treating the two considered treatments as constants.
Consequently, the dynamic variables, previously represented by functions ”u1(t)” and ”u2(t)”, are now
approximated by the constants ”η” a and ”ε”, respectively. As a result, the mathematical representation
of the model, initially expressed by equation (1), can be redefined as follows:
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

ẋ(t) = λ− d x(t)−
(
1− η

) β vI x

1 + a vI
+ r y,

ẏ(t) =
(
1− η

) β vI x

1 + a vI
−
(
δ + r

)
y − pyz,

v̇I(t) =
(
1− ε

)
ky − µ vI ,

v̇NI(t) = ε k y − µ vNI ,

ż(t) =
c y z

1 + α y
− b z

(2)

The objective of this study is to analyze the dynamic characteristics of the newly modified model. To
achieve this, the remainder of the paper is structured as follows: Section 2, is dedicated to exploring
the positivity and boundedness of solutions within the context of the model. In Section 3, a detailed
analysis of the new described model. Results obtained by numerical simulations are given in Section 4

and we conclude in the last section.

2. Positivity and Boundedness of Solutions

In this section, our focus is directed towards substantiating two fundamental aspects concerning
the solutions within the framework of system (2). Given that this system governs the dynamics of
a cell population, it is imperative to establish both the positivity and boundedness of the solutions.
These attributes hold paramount importance as they ensure that the cell densities, integral to the
system, remain not only non-negative but also confined within reasonable limits. By attaining these
crucial properties, we lay the groundwork for asserting the global existence of solutions. This, in
turn, underscores the model’s capacity to sustain its solutions over extended temporal domains, thus
reinforcing the credibility and applicability of our cell population evolution depiction. To this end and
for biological reasons, we assume that the initial data for system (2) satisfy:

x0 ≥ 0, y0 ≥ 0, VI0 ≥ 0 andVNI0 ≥ 0.

Hence, we have the following result:

Proposition 2.1. For any initial conditions (x0, y0, VI0 , VNI0), system (2) has a unique solution. Moreover,

this solution is nonnegative and bounded for all t > 0. Additionally, if we note

x1(t) = x(t) + y(t) and δ1 = min(d; δ),

Then, we have:

i) x1(t) ≤ x1(0) +
λ

δ1
,

ii) vI(t) ≤ vI(0) +
(
1− ε

)
k

µ
‖y‖∞,

iii) vNI(t) ≤ vNI(0) +
ε k

µ
‖y‖∞,
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iv) z(t) ≤ z(0) + c

p

[
max(1; 2− d

b
)x(0) + y(0) + max(

λ

b
;
λ

d
) + max(0; 1− δ

b
) |y‖∞

]
.

Proof. By the classical proposition [20, A.1], we can confirm that the unique solution,

(x(t), y(t), vI(t), vNI(t), z(t)) ∈ R5
+.

Move now to prove (i). To this end, we add the first and second equation in (2), to get

ẋ1 = λ− dx− δy − pyz,

then,
x1(t) ≤ x1(0)e−δ1t +

λ

δ1
(1− e−δ1t) where δ1 = min(d; δ).

Using the fact that 0 ≤ e−δ1t ≤ 1, we deduce (i).

Next, from the equation v̇I = (1− ε)ky − µvI , we obtain

vI(t) = vI(0)e
−µt + (1− ε)k

∫ t

0
y(ξ)e(ξ−t)µdξ,

then,
vI(t) ≤ vI(0) +

(1− ε)k
µ

‖y‖∞ (1− e−µt)

Since 1− e−µt ≤ 1, we get (ii).

Now, the equation v̇NI = εky − µvNI implies

vNI(t) = vNI(0)e
−µt + εk

∫ t

0
y(ξ)e(ξ−t)µdξ

then,
vNI(t) ≤ vNI(0) +

εk

µ
‖y‖∞ (1− e−µt)

Note that 0 ≤ 1− e−µt ≤ 1. Them, we can now deduce (iii).

Finally, from the equation ż = cyz

1 + αy
− bz implies

ż + bz ≤ cyz.

Since cyz = c

p
[λ− (ẋ+ dx)− (ẏ + δy)], we have

z(t) ≤ [
c

p
(x(0) + y(0)− λ

b
) + z(0)]e−bt

+
c

p
{λ
b
+

∫ t

0
[(b− d)T (ξ) + (b− δ)y(ξ)]eb(ξ−t)dξ − x(t)− y(t)}.

Then,
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Case 1: If b− d ≤ 0 et b− δ ≤ 0, we have

z(t) ≤ z(0) + c

p

[λ
b
+ x(0) + y(0)

]
.

Case 2: If b− d ≤ 0 et b− δ ≥ 0, we have

z(t) ≤ z(0) + c

p

[λ
b
+ x(0) + y(0) + (1− δ

b
)‖y‖∞

]
.

Case 3: If b− d ≥ 0 et b− δ ≤ 0, we have

z(t) ≤ z(0) + c

p

[λ
d
+
(
2− d

b

)
x(0) + y(0)

]
.

Case 4: If b− d ≥ 0 et b− δ ≥ 0, we have

z(t) ≤ z(0) + c

p

[λ
d
+
(
2− d

b

)
x(0) + y(0) + (1− δ

b
)‖y‖∞

]
.

Therfore, we have proved that all the cases imply (iv). �

3. Stability Analysis of the Model

This section is dedicated to conducting a stability analysis of both the disease-free equilibrium and
the endemic equilibrium points. Additionally, numerical simulations will be provided for each specific
case.

3.1. Stability of the disease-free equilibrium. System (2) has an infection-free equilibrium Ef =

(
λ

d
, 0, 0, 0, 0), corresponding to the maximal level of healthy CD4+ T-cells. By a simple calculation, the

basic reproduction number of (2) is given by

R0 =
(1− θ)βkλ
dµ(δ + r)

. (3)

Here, we put θ = η + ε− ηε, which represents the combined efficacy of the two drugs. Then 1− θ =

(1− η)(1− ε) which implies that each drug acts independently. At any arbitrary point, the Jacobian
matrix of the system (2), is given by

J =



−d− (1− η)βvI
1 + avI

r − (1− η)βx
(1 + avI)2

0 0

(1− η)βvI
1 + avI

−(δ + r)− pz (1− η)βx
(1 + avI)2

0 −py

0 (1− ε)k −µ 0 0

0 εk 0 −µ 0

0
cz

(1 + αy)2
0 0

cy

1 + αy
− b


(4)

Then, we have the following result,

Theorem 3.1. The disease-free equilibrium, Ef , is locally asymptotically stable for R0 < 1.
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Proof. At the disease-free equilibrium point, Ef , we can characterize the Jacobian matrix as follows:

JEf
=



−d r −(1− η)βλ
d

0 0

0 −(δ + r)
(1− η)βλ

d
0 0

0 (1− ε)k −µ 0 0

0 εk 0 −µ 0

0 0 0 0 −b


. (5)

The characteristic polynomial of JEf
is

PEf
(ξ) = (ξ + d)(ξ + b)(ξ + µ)[ξ2 + (δ + r + µ)ξ + (δ + r)µ(1−R0)],

then the eigenvalues of the matrix JEf
are

ξ1 = −d,

ξ2 = −b,

ξ3 = −µ,

ξ4 =
−(δ + r + µ)−

√
(δ + r + µ)2 − 4(δ + r)µ(1−R0)

2
,

ξ5 =
−(δ + r + µ) +

√
(δ + r + µ)2 − 4(δ + r)µ(1−R0)

2
.

It is evident that ξ1, ξ2, ξ3 and ξ4 are negative Furthermore, when R0 < 1, ξ5 also becomes negative,
implying that Ef is locally asymptotically stable. �

To confirm the above theoretical result, we give the following numerical result.
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Figure 1. Behavior of the infection during the time for λ = 5, β = 0.000024, d = 0.02,
δ = 0.5, p = 0.001, k = 250, µ = 3, r = 0.01, a = 0.001, α = 0.001, c = 0.03, b = 0.2,
η = 0.4 and ε = 0.55, which pertain to the stability of the free equilibrium Ef .
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3.2. Infection steady states. In this section, we focus on the existence and stability of the infection’s
steady state. Indeed, it is easily verified that the system (2) encompasses two such states:

E1 = (x1, y1, vI1 , vNI1 , 0) and E2 = (x2, y2, vI2 , vNI2 , z2),

where

x1 =
λ(µδ + a(1− ε)kλ)
d(µδR0 + a(1− ε)kλ)

, y1 =
λµ(R0 − 1)

(µδR0 + a(1− ε)kλ)
,

vI1 =
(1− ε)k

µ
.y1, vNI1 =

εk

µ
y1,

and

x2 =
(a(1− ε)kr)y22 + (a(1− ε)kλ+ µr)y2 + µλ

(1− ε)k(ad+ (1− η)β)y2 + µd
, y2 =

b

c− αb

vI2 =
(1− ε)ky2

µ
, vNI2 =

εky2
µ

,

z2 =
−(1− ε)k[adr + δ(ad+ (1− η)β)]y2 + ((1− θ)βkλ− dµ(r + δ))

p((1− ε)k(ad+ (1− η)β)y2 + µd)
.

In order to study the local stability of the points E1 and E2, we first define the following numbers:

D0 =
cλ

bδ
, H0 =

1
1

R0
+

1

D̃0

D̃0 = D0
µδR0

a(1− ε)kλ+ µδR0 + αµλ(R0 − 1)
,

We begin with the following result concerning the first point E1,

Theorem 3.2. We have the following cases,

(1) If R0 < 1, then the point E1 does not exist.

(2) If R0 = 1, then E1 = Ef .

(3) If R0 > 1 and H0 < 1 then E1 is locally asymptotically stable.

(4) If R0 > 1 and H0 > 1 then E1 is unstable.

Proof. It is easy to observe that if R0 < 1, then the point E1 does not exist. Additionally, when R0 = 1,
the two points E1 and Ef coincide. In the case of R0 > 1, the Jacobian matrix at E1 is given by:

JE1 =



−d− (1− η)βvI1
1 + avI1

r − (1− η)βx1
(1 + avI1)

2
0 0

(1− η)βvI1
1 + avI1

−(δ + r)
(1− η)βx1
(1 + avI1)

2
0 −py1

0 (1− ε)k −µ 0 0

0 εk 0 −µ 0

0 0 0 0
cy1

1 + αy1
− b


.



Asia Pac. J. Math. 2023 10:49 8 of 12

Then, its characteristic equation is

(ξ + µ)(ξ + b− cvI1
1 + αvI1

)(ξ3 + a1ξ
2 + a2ξ + a3) = 0,

where
a1 = d+ δ + µ+ r +

(1− η)βvI1
1 + avI1

,

a2 = (δ + µ+ r)d+ (µ+ δ)
(1− η)βvI1
1 + avI1

+ µ(δ + r)− (1− θ)Nδβx1
(1 + avI1)

2
,

a3 = µd(δ + r) +
µδ(1− η)βvI1

1 + avI1
− (1− θ)Nδβx1d

(1 + avI1)
2

.

We have ξ1 = −µ < 0 and ξ2 =
cvI1

1 + αvI1
− b = bD̃0(H0 − 1)

H0
as the two eigenvalues of JE1 . The sign of

the eigenvalue ξ1 is negative whenH0 < 1, zero whenH0 = 1, and positive whenH0 > 1. Moreover,
since R0 > 1, we have a1 > 0 and a1 a2 − a3 > 0. According to the Routh-Hurwitz Theorem [21], the
remaining eigenvalues of JE1 have negative real parts. Therefore, E1 is unstable when H0 > 1 and
locally asymptotically stable when R0 > 1 and H0 < 1. �

To validate the aforementioned theoretical result, we present the following numerical result,
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Figure 2. Behavior of the infection during the time for λ = 5, β = 0.000024, d = 0.02,
δ = 0.5, p = 0.001, k = 600, µ = 3, r = 0.01, a = 0.001, α = 0.001, c = 0.03, b = 0.2,
η = 0.1 and ε = 0.2, which correspond to the stability of the endemic-equilibrium point
E1.

Now, let’s proceed to the second point, E2, to demonstrate the following result,

Theorem 3.3. We have the following cases,
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(1) If α > c

b
or H0 < 1, then the point E2 does not exist and E2 = E1 when H0 = 1.

(2) If α < c

b
and H0 > 1 , then E2 is locally asymptotically stable.

Proof. We notice that the condition α < c

b
and H0 > 1 is equivalent to y2 < y1. It easy to verify that the

point E2 does not exists ifH0 < 1 or α > c

b
. Moreover, we have E2 = E1 for H0 = 1. We assume now

that α < c

b
and H0 > 1; the Jacobian matrix at E2 is

JE2 =



−d− (1− η)βvI2
1 + avI2

r − (1− η)βx2
(1 + avI2)

2
0 0

(1− η)βvI2
1 + avI2

−(δ + r)− pz2
(1− η)βx2
(1 + avI2)

2
0 −py2

0 (1− ε)k −µ 0 0

0 εk 0 −µ 0

0
cz2

(1 + αy2)2
0 0 0


The characteristic equation associated with JE2 is given by,

(ξ + µ)(ξ4 + c1ξ
3 + c2ξ

2 + c3ξ + c4) = 0 (6)

where
c1 = B1 + d+ r + δ + µ+ pz2,

c2 = pz2(B1 + cB3y2 + d+ µ) + dµ+ dr + dδ

+ µr + µB1 + µδ +B1δ + (1− ε)kB2,

c3 = cB3py2z2(d+ µ+B1) + µpz2(d+B1)

+ dµr + dµδ + µB1δ ++dk(1− ε)B2,

c4 = cz2B3py2µ(d+B1).

where

B1 =
(1− η)βvI2
1 + avI2

, B2 =
(1− η)βx2
(1 + avI2)

2
, B3 = (1 + αy2)

−2.

We note that ξ1 = −µ < 0 an eigenvalue of JE2 . Moreover, c1 > 0 and c1c2 − c3 > 0. Then, The
Routh-Hurwitz Theorem found in [21], implies that the other eigenvalues of JE2 have negative real
parts. Consequently, E2 is unstable when H0 < 1, locally asymptotically stable when H0 > 1. �

The numerical result in Figure 3, confirms the above theoretical result.
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Figure 3. Behavior of the infection during the time for λ = 15, β = 0.000024, d = 0.02,
δ = 0.5, p = 0.001, k = 600, µ = 3, r = 0.01, a = 0.001, α = 0.001, c = 0.03, b = 0.2,
η = 0.02 and ε = 0.07, which correspond to the stability of the endemic-equilibrium
point E2.

4. Numerical simulations

For our numerical simulations, we employed the Euler finite-difference scheme method to discretize
the system of five equations. The simulation parameters were inspired by references [12,13,22,23]. We
also incorporated initial conditions that align with clinical data for HIV-infected individuals during the
symptomatic phase [24].
In Figure 1, we present the infection’s evolution during the first 250 days for the free-equilibrium case.
Figure 2 illustrates a scenario where R0 > 1 and H0 < 1, resulting in a rapid decline in CTL cells and
persistent infection over time. A straightforward calculation reveals that when R0 > 1, the condition
for the local asymptotic stability of E1 is equivalent to:

D0 < (
R0

R0 − 1
)
a(1− ε)kλ+ µδR0 + αµλ(R0 − 1)

µδR0
,

this condition indicates that if D0 falls below the threshold mentioned above, the immune response
cannot keep pace with the infection, leading to its eventual disappearance.
Figure 3 depicts a scenario where α < c

b
and H0 > 1, resulting in an increase in CD4+ cell count and a

slight reduction in virus load. 4 Through a simple calculation, we establish that under the condition
α <

c

b
, the local asymptotic stability of E2 is equivalent to:

D0 > (
R0

R0 − 1
)
a(1− ε)kλ+ µδR0 + αµλ(R0 − 1)

µδR0
,

this condition signifies that ifD0 surpasses the threshold mentioned, the immune response, particularly
CTL, can effectively reduce the virus concentration.
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5. Conclusion

In this study, we have delved into the dynamics of Human Immunodeficiency Virus (HIV) during
therapy and the activation of cytotoxic T-lymphocytes (CTL) cells. Our model incorporates two
saturated rates to provide a more accurate representation of viral infection and CTL proliferation. We
have rigorously demonstrated the positivity and boundedness of solutions, and we have thoroughly
examined the stability of both disease-free equilibrium and endemic equilibria.
The disease-free steady state exhibits local asymptotic stability when the basic reproduction number
(R0) is less than unity (R0 < 1). When R0 > 1, we establish the existence of two infection steady states.
The local stability of these infection steady states depends on both the basic reproduction number R0

and the CTL immune response reproduction number D0.
Interestingly, the formula for R0 reveals that it is independent of the parameters governing CTL
activation (b, c, α, and p). This suggests that CTL alone may not eliminate the virus entirely. However,
they can effectively reduce the viral load concentration and increase the concentration of healthy
CD4+ cells. This becomes evident when comparing the components of viral load and those of CD4+

concentration before and after CTL activation, especially under the condition H0 > 1.
In fact, simple calculations demonstrate that x1 < x2 and VI2 < VI1 , where x1, x2, VI1 , and VI2 are
defined above. These findings indicate that the cellular immune response can effectively control the
virus load.
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