$\left(\in, \in \vee q_{k}\right)$ - FUZZY SOFT BOOLEAN NEAR RINGS

GADDE SAMBASIVA RAO ${ }^{1}$, D. RAMESH $^{1, *}$, B. SATYANARAYANA ${ }^{2}$
${ }^{1}$ Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah Educational Foundation, Vaddeswaram, Andhra Pradesh-522302, India
${ }^{2}$ Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh-522510, India
*Corresponding author: ram.fuzzy@gmail.com

Received Sep. 19, 2023

Abstract. In this paper, We present the ideas of $\left(\epsilon, \in \vee q_{k}\right)$ - FSBN and $\left(\epsilon, \in \vee q_{k}\right)$ - FSI over a BN, which are generalizations of $\left(\epsilon, \in \vee q_{k}\right)-$ FSBN and $\left(\epsilon, \in \vee q_{k}\right)$ - FSI resp., and investigate some of its aspects with examples. We also present the idea of a $\left(\epsilon, \in \vee q_{k}\right)$ - FS-sub-BN of an $\left(\epsilon, \in \vee q_{k}\right)$ - FSBN and achieve some related findings
2020 Mathematics Subject Classification. 16Y30, 08A72, 06D72.
Key words and phrases. boolean near ring; fuzzy soft; fuzzy soft set; fuzzy soft boolean near ring; fuzzy soft ideal.

1. Introduction

The foundational idea of a fuzzy set was first introduced by Zadeh [12], and it offers a framework for the generalization of many fundamental ideas in algebraic constructions. The idea of a $\left(\in, \in \vee q_{k}\right)$ - fuzzy subgroup, which was first introduced by Sandeep Kumar Bhakat and Pratulanada Das [7]. The concepts of a $\left(\epsilon, \in \vee q_{k}\right)$ - fuzzy subnear-ring and $\left(\epsilon, \in \vee q_{k}\right)$ - fuzzy ideals of near-rings have been introduced by Narayanan and Manikantan [9]. In, Dheena and Coumaressane specified the terms $\left(\in, \in \vee q_{k}\right)$ - fuzzy sub-near-ring and $\left(\epsilon, \in \vee q_{k}\right)$ - fuzzy ideals of near-rings, resp,. We refer readers to $[4,5,9,10,13]$ for more information on $\left(\in, \in \vee q_{k}\right)$ - fuzzy algebraic structures. The idea of a soft set, which can be thought of as an efficient mathematical tool to deal with uncertainty, was first introduced by Russian researcher Molodtsov in 1999. The definitions of fuzzy soft set and fuzzy soft set operations were provided by Maji et al. [7]. The terms fuzzy soft ring and ($\left.\in, \in \vee q_{k}\right)$ - fuzzy soft ring over a ring were defined by Inan and Ozturk [6]. Ozturk and Inan have expanded these ideas to near-rings
in [10]. In this article, we establish the concepts of $\left(\epsilon, \in \vee q_{k}\right)$ - FSBN and $\left(\epsilon, \in \vee q_{k}\right)$ - FSI over BN, respectively, which are generalizations of $\left(\epsilon, \in \vee q_{k}\right)$ - FSBN and $\left(\epsilon, \in \vee q_{k}\right)$ - FSI, and we study some of their properties using examples. Additionally, we present the definitions of a $\left(\in, \in \vee q_{k}\right)$ - FSSBN of an $\left(\in, \in \vee q_{k}\right)$ - FSBN and derive some results that are related to them.

2. Preliminaries

The fundamental ideas that will be used in the following sections are presented in this section.

Definition 2.1. A near-ring (NR) is a set \mathcal{N} that is not empty and has the binary operations " + " and "." that satisfy the axioms that,
(i) \mathcal{N} is a group under the operation + ,
(ii) \mathcal{N} is a semigroup under the operation -,
(iii) $(\mathrm{b}+\mathrm{e}) \mathrm{c}=\mathrm{b} \mathrm{c}+\mathrm{e} \mathrm{c}$ for all $b, e, c \in \mathcal{N}$

Definition 2.2. A near-ring \mathcal{N} is said to be Boolean Near ring if $a^{2}=a$.

Definition 2.3. [1] A F-subset α of \mathcal{N} is named as F-sub-NR of \mathcal{N} if $\forall g, s \in \mathcal{N}$,
(i) $\alpha(g-s) \geq M\{\alpha(g), \alpha(s)\},[\mathrm{M}$ is min, in short $]$
(ii) $\alpha(g s) \geq M\{\alpha(g), \alpha(s)\}$

Definition 2.4. [1] A F-subset α of \mathcal{N} is named as FI of \mathcal{N} if $\forall g, s, r \in \mathcal{N}$,
(i) $\alpha(g-s) \geq M\{\alpha(g), \alpha(s)\}$
(ii) $\alpha(s+g-s) \geq \alpha(g)$
(iii) $\alpha(g s) \geq \alpha(g)$
(iv) $\alpha(g(s+r)-g s) \geq \alpha(r)$

Definition 2.5. [18] A F-subset α of \mathcal{N} is named as $\left(\in, \in \vee q_{k}\right)$-F-sub-NR of \mathcal{N} if
(i) $g_{a} \in \alpha, s_{b} \in \alpha \Rightarrow(g+s)_{M\{a, b\}} \in \vee q_{k} \alpha$
(ii) $g_{a} \in \alpha \Rightarrow(-g)_{a} \in \vee q_{k} \alpha$
(iii) $g_{a} \in \alpha, s_{b} \in \alpha \Rightarrow(g s)_{M\{a, b\}} \in \vee q_{k} \alpha, \forall g, s \in N$ and $a, b \in(0,1]$.

An $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-NR of \mathcal{N} with $\mathrm{K}=0$ is an $(\epsilon, \in \vee q)$-F-sub-NR of \mathcal{N} (see [9]).
Definition 2.6. [18] A F-subset α of \mathcal{N} is named as $\left(\in, \in \vee q_{k}\right)$-FI of \mathcal{N} if
(i) $g_{a} \in \alpha, s_{b} \in \alpha \Rightarrow(g-s)_{M\{a, b\}} \in \vee q_{k} \alpha$,
(ii) $g_{a} \in \alpha, s \in \mathcal{N} \Rightarrow(s+g-s)_{a} \in \vee q_{k} \alpha$,
(iii) $g_{a} \in \alpha, s \in \mathcal{N} \Rightarrow(g s)_{a} \in \vee q_{k} \alpha$,
(iv) $r_{a} \in \alpha, g, s \in \mathcal{N} \Rightarrow(g(s+r)-g s)_{a} \in \vee q_{k} \alpha$, for all $g, s, r \in \mathcal{N}$ and $a, b \in(0,1]$.

An $\left(\epsilon, \in \vee q_{k}\right)$-FI of \mathcal{N} with $K=0$ is an $(\epsilon, \in \vee q)$-FI of \mathcal{N} (see [9]).

Unless otherwise stated, $\mathcal{P}(\mathrm{M})$ is the power set of M and $R \subseteq E$ is a set of parameters, the universe set M.

Definition 2.7. [8] A pair (V, R) is named as soft set M , where $V: R \rightarrow \mathcal{P}(\mathrm{M})$ is a mapping and $R \subseteq E$.

Definition 2.8. [7] Let $\mathcal{P}(\mathrm{M})$ be the collection of all F -subsets of M and $R \subseteq E$. Then the pair (∇, R) is named as FSS over M, where $\nabla: R \rightarrow \mathcal{P}(M)$ is a mapping. i.e., for each $\varrho \in R, \nabla(\varrho)=\nabla_{\varrho}: M \rightarrow[0,1]$ is a F-subset of M.

Definition 2.9. [11] Let (∇, R) is a FSS M. Then the set $\operatorname{Supp}(\nabla, R)=\{\varrho \in R \mid \nabla(\varrho) \neq \emptyset)\}$ is named as Support of (∇, R).
A FSS (∇, R) is named as notnull, if $\operatorname{Supp}(\nabla, R) \neq \emptyset$. It's represented as $(\nabla, R) \neq \emptyset$
Definition 2.10. [7] Let $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ are a FSS's M. Then the set
(i) " $\left(\nabla, R_{1}\right)$ AND $\left(\Psi, R_{2}\right)$ ", then $\left(\nabla, R_{1}\right) \wedge\left(\Psi, R_{2}\right)$ is described as $\left(\nabla, R_{1}\right) \wedge\left(\Psi, R_{2}\right)=(\Omega, R)$, where $R=R_{1} \times R_{2}$ and $\Omega(\varrho, \phi)=\nabla(\varrho) \cap \Psi(\phi)$ forall $(\varrho, \phi) \in R_{1} \times R_{2}$.
(ii) " $\left(\nabla, R_{1}\right)$ OR $\left(\Psi, R_{2}\right)$ ", then $\left(\nabla, R_{1}\right) \vee\left(\Psi, R_{2}\right)$ is described as $\left(\nabla, R_{1}\right) \vee\left(\Psi, R_{2}\right)=(\Omega, R)$, where $R=R_{1} \times R_{2}$ and $\Omega(\varrho, \phi)=\nabla(\varrho) \cup \Psi(\phi)$ forall $(\varrho, \phi) \in R_{1} \times R_{2}$.

Definition 2.11. [7] Then the union of two FSS's " $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ " is the FSS (Ω, R), Where $R=R_{1} \cup R_{2}$ and $\forall \varrho \in R$,

$$
\Omega(\varrho)=\left\{\begin{array}{c}
\nabla(\varrho), i f \varrho \in R_{1}-R_{2} \\
\Psi(\varrho), i f \varrho \in R_{2}-R_{1} \\
\nabla(\varrho) \cup \Psi(\varrho), i f \varrho \in R_{1} \cap R_{2}
\end{array}\right.
$$

Then it's represented as $(\Omega, R)=\left(\nabla, R_{1}\right) \sqcup\left(\Psi, R_{2}\right)$.
Definition 2.12. [3] Then the restricted intersection (R-int, in short) of two FSS's " $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ ", then $\left(\nabla, R_{1}\right) \sqcap_{r}\left(\Psi, R_{2}\right)=(\Omega, R)$, Where $R=R_{1} \cap R_{2} \neq \emptyset$ and $\Omega(\varrho)=\nabla(\varrho) \cap \Psi(\varrho), \forall \varrho \in R$.

Definition 2.13. [3] Then the extended intersection (E-int, in short) of two FSS's " $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ ", is the FSS (Ω, R), Where $R=R_{1} \cup R_{2}$ and $\forall \varrho \in R$,

$$
\Omega(\varrho)=\left\{\begin{array}{c}
\nabla(\varrho), \text { if } \varrho \in R_{1}-R_{2} \\
\Psi(\varrho), \text { if } \varrho \in R_{2}-R_{1} \\
\nabla(\varrho) \cup \Psi(\varrho), \text { if } \varrho \in R_{1} \cap R_{2}
\end{array}\right.
$$

Then it's represented by $(\Omega, R)=\left(\nabla, R_{1}\right) \sqcap_{e}\left(\Psi, R_{2}\right)$.
Definition 2.14. [2] The Family of FSS's $\left\{\left(\nabla_{i}, R_{i}\right) \mid i \in I\right\}$ over M.
(i) Then the R-int of these FSS's is the FSS $\left\{\square_{r}\left(\nabla_{i}, R_{i}\right) \mid i \in I\right\}=(\nabla, R)$, where $R=\cap_{i \in I} R_{i} \neq \emptyset$ and $\nabla(\varrho)=\cap_{i \in I} \nabla_{i}(\varrho) \forall \varrho \in R$.
(ii) Then the union of these FSS's is the FSS $\left\{\sqcup\left(\nabla_{i}, R_{i}\right) \mid i \in I\right\}=(\nabla, R)$, where $R=\cup_{i \in I} R_{i}$ and $\nabla(\varrho)=\cup_{i \in I} \nabla_{i}(\varrho) \forall \varrho \in R$.
(iii) Then the AND of these FSS's is the FSS $\left\{\wedge\left(\nabla_{i}, R_{i}\right) \mid i \in I\right\}=(\nabla, R)$, where $R=\prod_{i \in I} R_{i}$ and $\nabla(\varrho)=\cap_{i \in I} \nabla_{i}\left(\varrho_{i}\right) \forall \varrho \in R$.

Definition 2.15. [10] Let (∇, R) is the FSS \mathcal{N}. Then (∇, R) is named as FSN \mathcal{N}, if $\nabla(\varrho)$ be an F-sub-NR of $\mathcal{N}, \forall \varrho \in R$.

Definition 2.16. [10] Let ϑ and ξ be F-sub-NR \mathcal{N}. Then ϑ is named as F-sub-NR of ξ. If $\vartheta(g) \leq$ $\xi(g), \forall g \in \mathcal{N}$.

Definition 2.17. [10] Let ϑ be a F-subset \mathcal{N}, and ξ be a F-sub-NR, \mathcal{N}. Then ϑ is an FI of ξ, if $\vartheta(g) \leq$ $\xi(g), \forall g \in \mathcal{N}$ is a FI of \mathcal{N}.

Definition 2.18. [10] Let " $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ " are two FSN \mathcal{N}. Then $\left(\nabla, R_{1}\right)$ is named as FS-sub-BN of $\left(\Psi, R_{2}\right)$ ", if
(i) $R_{1} \subseteq R_{2}$ and (ii) $\nabla(\varrho)$ is a F-sub-BN of $\Psi(\varrho), \forall \varrho \in R_{1}$

3. $\left(\epsilon, \in \vee q_{k}\right)$-Fuzzy Soft Boolean Near-Rings and $\left(\epsilon, \in \vee q_{k}\right)$-Fuzzy Soft idels

The concepts of $\left(\in, \in \vee q_{k}\right)$-FSBN and $\left(\in, \in \vee q_{k}\right)$-FSI over \mathcal{N} are introduced in this section. The concept of a $\left(\epsilon, \in \vee q_{k}\right)$-FS-sub-BN of a $\left(\epsilon, \in \vee q_{k}\right)$-FSBN is further defined, and some of its attributes are examined.

Definition 3.1. Let (∇, R) is a FSS \mathcal{N}. Then (∇, R) is named as $\left(\epsilon, \in \vee q_{k}\right)$-FSBN \mathcal{N}, if for each $\varrho \in$ $R, \nabla(\varrho)=\nabla_{\varrho}$ is an $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-BN of \mathcal{N}. i.e.,
(i) $g_{a}, s_{b} \in \nabla_{\varrho} \Rightarrow(g+s)_{M\{a, b\}} \in \vee q_{k} \nabla_{\varrho}$,
(ii) $g_{a} \in \nabla_{\varrho} \Rightarrow(-g)_{a} \in \vee q_{k} \nabla_{\varrho}$,
(iii) $g_{a}, s_{b} \in \nabla_{\varrho} \Rightarrow(g s)_{M\{a, b\}} \in \vee q_{k} \nabla_{\varrho}, \forall g, s \in \mathcal{N}$ and $a, b \in(0,1]$.

A F-subset ∇_{ϱ} of \mathcal{N} is known to satisfy requirements (i) and (ii) iff the following conditions are met: (iv) $g_{a}, s_{b} \in \nabla_{\varrho} \Rightarrow(g-s)_{M\{a, b\}} \in \vee q_{k} \nabla_{\varrho}, \forall g, s \in \mathcal{N}$ and $a, b \in(0,1]$.
$\operatorname{An}\left(\epsilon, \in \vee q_{k}\right)$-FSBN \mathcal{N}, with $\mathrm{k}=0$ is an $\left(\epsilon, \in \vee q_{k}\right)$-FSBN \mathcal{N}.
Lemma 3.2. The definitions 3.1 conditions (i) and (iv) are identical to
(i) $\left.\nabla_{\varrho}(g+s) \geq M\left\{\nabla_{\varrho}(g), \nabla_{\varrho}(s),(1-k) / 2\right)\right\}$,
(ii) $\left.\nabla_{\varrho}(-g) \geq M\left\{\nabla_{\varrho}(g),(1-k) / 2\right)\right\}$,
(iii) $\left.\nabla_{\varrho}(g s) \geq M\left\{\nabla_{\varrho}(g), \nabla_{\varrho}(s),(1-k) / 2\right)\right\}$,
(iv) $\left.\nabla_{\varrho}(g-s) \geq M\left\{\nabla_{\varrho}(g), \nabla_{\varrho}(s),(1-k) / 2\right)\right\}, \forall g, s \in \mathcal{N}$.

Proof. The proof can be made from [18] Lemma 3.2 and Lemma 3.3.

Remark 3.3. Lemma 3.1 condition (i) and (ii) is equivalent to the condition (iv).
Theorem 3.4. Let (∇, R) is a FSS \mathcal{N}. The (∇, R) is named as $\left(\in, \in \vee q_{k}\right)$-FSBN \mathcal{N}, iff $\varrho \in R$ and $g, s \in \mathcal{N}$,
(i) $\nabla_{\varrho}(g+s) \geq M\left\{\nabla_{\varrho}(g), \nabla_{\varrho}(s),(1-k) / 2\right\}$.
(ii) $\nabla_{\varrho}(g s) \geq M\left\{\nabla_{\varrho}(g), \nabla_{\varrho}(s),(1-k) / 2\right\}$.

Proof. The evidence is provided by Lemma 3.2.
Example 3.5. Let the nonempty set $\mathcal{N}=\{0, s, v, l\}$ have the binary operations " + " and ".", in the following terms:

+	0	s	v	1
0	0	s	v	1
s	s	0	1	0
v	v	l	0	s
l	l	0	s	0

$*$	0	s	v	1
0	0	0	0	0
s	0	s	0	s
v	0	0	v	v
l	0	s	v	1

The set of parameters is $R=\{\alpha, \beta, \gamma\}$ and now define $\operatorname{FSS}(\nabla, R)$ on a BN \mathcal{N} by

R	α	β	γ
0	0.7	0.6	0.4
s	0.5	0.5	0.1
v	0.6	0.2	0.3
1	0.5	0.2	0.1

It is simple to verify that (∇, R) is an $\left(\epsilon, \in \vee q_{k}\right)-F S B N, \mathcal{N}$ with $\mathrm{k}=0.4$.
Definition 3.6. Let (ϑ, S) is a FSS \mathcal{N}. Then (ϑ, S) is named as $\left(\in, \in \vee q_{k}\right)$-FSI \mathcal{N}, if for each $\varrho \in S, \vartheta(\varrho)=$ ϑ_{ϱ} is an $\left(\epsilon, \in \vee q_{k}\right)$-FI of \mathcal{N}, i.e.,
(i) $g_{a}, s_{b} \in \vartheta_{\varrho} \Rightarrow(g+s)_{M\{a, b\}} \in \vee q_{k} \vartheta_{\varrho}$,
(ii) $g_{a} \in \vartheta_{\varrho}, s \in \mathcal{N} \Rightarrow(s+g-s)_{a} \in \vee q_{k} \vartheta_{\varrho}$,
(iii) $g_{a} \in \vartheta_{\varrho}, s \in \mathcal{N} \Rightarrow(g s)_{a} \in \vee q_{k} \vartheta_{\varrho}$,
(iv) $g_{a} \in \vartheta_{\varrho}, s, r \in \mathcal{N} \Rightarrow(s(r+g)-s r)_{r} \in \vee q_{k} \vartheta_{\varrho}, \forall g, s, r \in \mathcal{N}$ and $a, b \in(0,1]$.

An $\left(\epsilon, \in \vee q_{k}\right)$-FSI \mathcal{N}, with $\mathrm{k}=0$ is named as $\left(\epsilon, \in \vee q_{k}\right)$-FSI \mathcal{N}.

Lemma 3.7. The preceding definition's conditions (i) through (iv) are identical to,
(i) $\vartheta_{\varrho}(g+s) \geq M\left\{\vartheta_{\varrho}(g), \vartheta_{\varrho}(s),(1-k) / 2\right\}$,
(ii) $\vartheta_{\varrho}(s+g-s) \geq M\left\{\vartheta_{\varrho}(g),(1-k) / 2\right\}$,
(iii) $\vartheta_{\varrho}(g s) \geq M\left\{\vartheta_{\varrho}(g),(1-k) / 2\right\}$,
(iv) $\vartheta_{\varrho}(g(s+r)-g s) \geq M\left\{\vartheta_{\varrho}(r),(1-k) / 2\right\}, \forall g, s, r \in \mathcal{N}$.

Proof. Lemma 3.11 of [18] can be used to achieve the proof.

Theorem 3.8. Let (ϑ, S) is a $F S S \mathcal{N}$. Then (ϑ, S) is an $\left(\in, \in \vee q_{k}\right)-F S I \mathcal{N}$, iff $\forall \varrho \in R$ and $g, s, r \in \mathcal{N}$.
(i) $\vartheta_{\varrho}(g+s) \geq M\left\{\vartheta_{\varrho}(g), \vartheta_{\varrho}(s),(1-k) / 2\right\}$,
(ii) $\vartheta_{\varrho}(s+g-s) \geq M\left\{\vartheta_{\varrho}(g),(1-k) / 2\right\}$,
$(i i i) \vartheta_{\varrho}(g s) \geq M\left\{\vartheta_{\varrho}(g),(1-k) / 2\right\}$,
(iv) $\vartheta_{\varrho}(g(s+r)-g s) \geq M\left\{\vartheta_{\varrho}(r),(1-k) / 2\right\}$.

Proof. The evidence is provided by lemma 3.2.

Example 3.9. Let $\mathcal{N}=\{0, s, v, l\}$ be a BN in example 3.1. Define a $\mathrm{FSS}(\vartheta, S)$, where $S=\{g, s\}$, as depicted below
$\vartheta_{g}=\{(0,0.7),(s, 0.5),(v, 0.2),(l, 0.2)\}$ and
$\vartheta_{s}=\{(0,0.6),(s, 0.3),(v, 0.3),(l, 0.5)\}$.
We can quickly confirm that (ϑ, S) is an $\left(\in, \in \vee q_{k}\right)$-FSBN and an $\left(\in, \in \vee q_{k}\right)$-FSI \mathcal{N}, with k $=0.4$.

Theorem 3.10. The R-int of two $\left(\in, \in \vee q_{k}\right)-F S B N$'s \mathcal{N} is an $\left(\in, \in \vee q_{k}\right)-F S B N \mathcal{N}$, if it's notnull.

Proof. Let $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ are $\left(\in, \in \vee q_{k}\right)$ - FSBN's of \mathcal{N} and let $\left(\nabla, R_{1}\right) \sqcap_{r}\left(\Psi, R_{2}\right)=(\Omega, R)$. Where $R=R_{1} \cap R_{2}$ and $\Omega(\varrho)=\nabla(\varrho) \cap \Psi(\varrho), \forall \varrho \in \operatorname{Supp}(\Omega, R)$. Since $\nabla(\varrho)$ and $\Psi(\varrho)$ are $\left(\in, \in \vee q_{k}\right)$ - F-sub-BN's of \mathcal{N}, by theorem 3.16 in [18], $\nabla(\varrho) \cap \Psi(\varrho)=\Omega(\varrho)$ is $\left(\in, \in \vee q_{k}\right)$ - F-sub-BN's of $\mathcal{N}, \forall \varrho \in \operatorname{Supp}(\Omega, R)$. Hence (Ω, R) is an $\left(\in, \in \vee q_{k}\right)$ - FSBN \mathcal{N}.

In a similar manner, we can demonstrate for $\left(\in, \in \vee q_{k}\right)$ - FSI.

Theorem 3.11. The E-Int of two $\left(\in, \in \vee q_{k}\right)-F S B N$'s \mathcal{N} is an $\left(\in, \in \vee q_{k}\right)-F S B N \mathcal{N}$, if it's notnull.

Proof. Let $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ are $\left(\in, \in \vee q_{k}\right)$ - FSBN's of \mathcal{N} and let $\left(\nabla, R_{1}\right) \sqcap_{e}\left(\Psi, R_{2}\right)=(\Omega, R)$ be the E-Int of $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$. Then $R=R_{1} \cup R_{2}$ and for any $\varrho \in \operatorname{Supp}(\Omega, R)$,
if $\varrho \in R_{1}-R_{2}$ then $\Omega(\varrho)=\nabla(\varrho)$ is an $\left(\in, \in \vee q_{k}\right)$ - F-sub-BN \mathcal{N},
if $\varrho \in R_{2}-R_{1}$ then $\Omega(\varrho)=\Psi(\varrho)$ is an $\left(\in, \in \vee q_{k}\right)$-F-sub-BN \mathcal{N}, and if $\varrho \in R_{1} \cap R_{2}$,
then $\Omega(\varrho)=\nabla(\varrho) \cap \Psi(\varrho)$ is an $\left(\in, \in \vee q_{k}\right)$-F-sub-BN of \mathcal{N}, Since the intersection of two $\left(\in, \in \vee q_{k}\right)$-F-subBN's \mathcal{N} is an $\left(\in, \in \vee q_{k}\right)$-F-sub-BN of \mathcal{N}. Therefore $\Omega(\varrho)$ is an $\left(\in, \in \vee q_{k}\right)$-F-sub-BN of $\mathcal{N}, \forall \varrho \in \operatorname{supp}(\Omega, R)$. Hence (Ω, R) is an $\left(\in, \in \vee q_{k}\right)-\operatorname{FSBN} \mathcal{N}$.

In a similar manner, we can demonstrate for $\left(\in, \in \vee q_{k}\right)$ - FSI.

Theorem 3.12. If $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ are $\left(\in, \in \vee q_{k}\right)-F S B N^{\prime} \mathcal{S} \mathcal{N}$ such that $R_{1} \cap R_{2}=\emptyset$, then their union is an $\left(\in, \in \vee q_{k}\right)-F S B N \mathcal{N}$.

Proof. by applying definition (union), Now we can write $\left(\nabla, R_{1}\right) \sqcup\left(\Psi, R_{2}\right)=(\Omega, R)$, where $R=R_{1} \cup R_{2}$. Since $R_{1} \cap R_{2}=\emptyset$, we have either $\varrho \in R_{1}-R_{2}$ or $\varrho \in R_{2}-R_{1}, \forall \varrho \in \operatorname{Supp}(\Omega, R)$. For any $\varrho \in \operatorname{Supp}(\Omega, R)$,
if $\varrho \in R_{1}-R_{2}$ then $\Omega(\varrho)=\nabla(\varrho)$ is an $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-BN \mathcal{N}, and
if $\varrho \in R_{2}-R_{1}$ then $\Omega(\varrho)=\Psi(\varrho)$ is an $\left(\in, \in \vee q_{k}\right)$-F-sub-BN \mathcal{N}.
Thus $\Omega(\varrho)$ is an $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-BN $\mathcal{N}, \forall \varrho \in \operatorname{Supp}(\Omega, R)$. Hence (Ω, R) is an $\left(\epsilon, \in \vee q_{k}\right)$-FSBN \mathcal{N}. In a similar manner, we can demonstrate for $\left(\epsilon, \in \vee q_{k}\right)$-FSI.

Theorem 3.13. if $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ are $\left(\epsilon, \in \vee q_{k}\right)$-FSBN's \mathcal{N}. Then $\left(\nabla, R_{1}\right) \wedge\left(\Psi, R_{2}\right)$ is an $\left(\epsilon, \in \vee q_{k}\right)$ -FSBN's \mathcal{N}, if it's notnull.

Proof. by applying Definition (AND), we can write $\left(\nabla, R_{1}\right) \wedge\left(\Psi, R_{2}\right)=(\Omega, R)$, where $R=R_{1} \times R_{2}$ and $\Omega(\varrho, \phi)=\nabla(\varrho) \cap \Psi(\phi), \forall(\varrho, \phi) \in R_{1} \times R_{2}$. Since $\nabla(\varrho)$ and $\Psi(\phi)$ are $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-BN's of $\mathcal{N}, \forall \varrho \in R_{1}$ and $\psi \in R_{2}, \nabla(\varrho) \cap \Psi(\phi)=\Omega(\varrho, \phi)$ is also an $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-BN of $\mathcal{N}, \forall(\varrho, \phi) \in R_{1} \times R_{2}$. Therefore (Ω, R) is an $\left(\epsilon, \in \vee q_{k}\right)$ - FSBN N.
In a similar manner, we can demonstrate for $\left(\epsilon, \in \vee q_{k}\right)$-FSI's.
Theorem 3.14. If $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ is $\left(\in, \in \vee q_{k}\right)-F S B N^{\prime} s \mathcal{N}$, and let $\nabla(\varrho) \subseteq \Psi(\phi)$ or $\Psi(\phi) \subseteq \nabla(\varrho), \forall(\varrho, \phi) \in$ $R_{1} \times R_{2}$. Then $\left(\nabla, R_{1}\right) \vee\left(\Psi, R_{2}\right)$ is an $\left(\epsilon, \in \vee q_{k}\right)-F S B N^{\prime} s \mathcal{N}$.

Proof. By applying definition (OR), we can write $\left(\nabla, R_{1}\right) \vee\left(\Psi, R_{2}\right)=(\Omega, R)$, where $R=R_{1} \times R_{2}$ and $\Omega(\varrho, \phi)=\nabla(\varrho) \cup \Psi(\phi), \forall(\varrho, \phi) \in R_{1} \times R_{2}$. For any $(\varrho, \phi) \in R_{1} \times R_{2}$, if $\nabla(\varrho) \subseteq \Psi(\phi)$, then $\Omega(\varrho, \phi)=\nabla(\varrho) \cup \Psi(\phi)=\Psi(\phi)$ is an $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-BN \mathcal{N}, and if $\Psi(\phi) \subseteq \nabla(\varrho)$, then $\Omega(\varrho, \phi)=$ $\nabla(\varrho) \cup \Psi(\phi)=\nabla(\varrho)$ is an $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-BN \mathcal{N}. Hence (Ω, R) is an $\left(\epsilon, \in \vee q_{k}\right)$-FSBN \mathcal{N}.

Theorem 3.15. Let $\left\{\left(\nabla_{i}, R_{i}\right) \mid i \in I\right\}$ be a family of $\left(\in, \in \vee q_{k}\right)-F S B N ' s \mathcal{N}$. Then
(i) $\left\{\square_{r}\left(\nabla_{i}, R_{i}\right) \mid i \in I\right\}$ is an $\left(\in, \in \vee q_{k}\right)-F S B N \mathcal{N}$, if $\left\{\square_{r}\left(\nabla_{i}, R_{i}\right)\right\} \neq \emptyset$.
(ii) $\left\{\wedge\left(\nabla_{i}, R_{i}\right) \mid i \in I\right\}$ is an $\left(\in, \in \vee q_{k}\right)-F S B N \mathcal{N}$, if $\left\{\wedge\left(\nabla_{i}, R_{i}\right)\right\} \neq \emptyset$.

Proof. (i) Let $\left.\left\{\square_{r}\left(\nabla_{i}, R_{i}\right) \mid i \in I\right\}=(\nabla, R)\right\}$, where $R=\cap_{i \in I} R_{i}$ and for each $\varrho \in R, \nabla(\varrho)=\cap_{i \in I} \nabla_{i}(\varrho)$. Suppose that $(\nabla, R) \neq \emptyset$. If $\varrho \in R$, then $\nabla(\varrho)=\cap_{i \in I} \nabla_{i \in I}(\varrho) \neq \emptyset$. Since $\left(\nabla_{i}, R_{i}\right)$ is an $\left(\in, \in \vee q_{k}\right)$-FSBN, $\forall i \in I, \nabla_{i}(\varrho)$ is an $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-BN of $\mathcal{N}, \forall \varrho_{i} \in \operatorname{Supp}\left(\nabla_{i}, R_{i}\right)$ and $i \in I$ and so by the theorem 3.16 in [18], $\cap_{i \in I} \nabla_{i}(\varrho)$ is an $\left(\in, \in \vee q_{k}\right)$-F-sub-BN of $\mathcal{N}, \forall \varrho \in \operatorname{Supp}(\nabla, R)$. Hence $(\nabla, R)=\left\{\square_{r}\left(\nabla_{i}, R_{i}\right) \mid i \in I\right\}$ is an $\left(\epsilon, \in \vee q_{k}\right)$-FSBN \mathcal{N}.
(ii) Let $\left.\left\{\wedge\left(\nabla_{i}, R_{i}\right) \mid i \in I\right)=(\nabla, R)\right\}$, where $R=\prod_{i \in I} R_{i}$ and for each $\varrho \in R, \nabla(\varrho)=\cap_{i \in I} \nabla_{i}\left(\varrho_{i}\right)$. Suppose $(\nabla, R) \neq \emptyset$. If $\varrho \in R$, then $\nabla(\varrho)=\cap_{i \in I} \nabla_{i}\left(\varrho_{i}\right) \neq \emptyset$. Since $\left(\nabla_{i}, R_{i}\right)$ is an $\left(\in, \in \vee q_{k}\right)$-FSBN, $\forall i \in I, \nabla_{i}(\varrho)$ is an $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-BN of $\mathcal{N}, \forall \varrho_{i} \in \operatorname{Supp}\left(\nabla_{i}, R_{i}\right)$ and $i \in I$ and so by the theorem 3.16 in [18], $\cap_{i \in I} \nabla_{i}\left(\varrho_{i}\right)$ is an $\left(\epsilon, \in \vee q_{k}\right)$-F-sub-BN of $\mathcal{N}, \forall \varrho_{i} \in \operatorname{Supp}\left(\nabla_{i}, R_{i}\right)$. Hence $(\nabla, R)=\left\{\wedge\left(\nabla_{i}, R_{i}\right) \mid i \in I\right\}$ is an $\left(\epsilon, \in \vee q_{k}\right)$-FSBN \mathcal{N}.

Definition 3.16. Let $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ are $\left(\epsilon, \in \vee q_{k}\right)$-FSBN's \mathcal{N}. Then $\left(\nabla, R_{1}\right)$ is named as $\left(\in, \in \vee q_{k}\right)$ -FS-sub-BN of (Ψ, R_{2}),
(i) if $R_{1} \subseteq R_{2}$,
(ii) $\nabla(\varrho)$ is an $\left(\in, \in \vee q_{k}\right)$-F-sub-BN of $\Psi(\varrho), \forall \varrho \in \operatorname{Supp}\left(\nabla, R_{1}\right)$.

Theorem 3.17. Let $\left(\nabla, R_{1}\right)$ and $\left(\Psi, R_{2}\right)$ are $\left(\in, \in \vee q_{k}\right)-F S B N$'s N, and if $\nabla(\varrho) \subseteq \Psi(\varrho), \forall \varrho \in \operatorname{Supp}\left(\nabla, R_{1}\right)$, then $\left(\nabla, R_{1}\right)$ is an $\left(\in, \in \vee q_{k}\right)$-FS-sub-BN' of $\left(\Psi, R_{2}\right)$.

Proof. Proof is straight forward.

Definition 3.18. Let (∇, R) is an $\left(\in, \in \vee q_{k}\right)-\operatorname{FSBN} \mathcal{N}$. Then the $\operatorname{FSS}(\vartheta, S) \mathcal{N}$ is named as $\left(\in, \in \vee q_{k}\right)$-FSI of (∇, R) expressed as $(\vartheta, S) \unlhd(\nabla, R)$,
(i) if $S \subseteq R$ and
(ii) $\vartheta(\varrho)$ is an $\left(\in, \in \vee q_{k}\right)$-FI of $\nabla(\varrho)$, represented as $\vartheta(\varrho) \triangleleft \nabla(\varrho), \forall \varrho \in \operatorname{Supp}(\vartheta, S)$.

Example 3.19. Let (∇, R) is an $\left(\in, \in \vee q_{k}\right)$-FSBN \mathcal{N}, as in starting example in this section. Define a FSS (ϑ, S), where $\mathrm{S}=\{\mathrm{a}, \mathrm{m}\}$, as follows:
$\vartheta_{a}=\{(0,0.4),(s, 0.5),(v, 0.6),(l, 0.4)\}$ and $\vartheta_{b}=\{(0,0.3),(s, 0.2),(v, 0.1),(l, 0.1)\}$. We can quickly confirm that (ϑ, S) is an $\left(\epsilon, \in \vee q_{k}\right)$ - FSI of $(\nabla, R) \mathcal{N}$ with $\mathrm{k}=0.2$

Theorem 3.20. The R-Int of two $\left(\in, \in \vee q_{k}\right)$-FSI's \mathcal{N} of an $\left(\in, \in \vee q_{k}\right)$-FSBN \mathcal{N} is an $\left(\in, \in \vee q_{k}\right)$-FSI of (∇, R), when it's notnull.

Proof. Let $\left(\alpha, S_{1}\right) \unlhd(\nabla, R)$ and $\left(\xi, S_{2}\right) \unlhd(\nabla, R)$. By the definition (R-Int), we can write $\left(\alpha, S_{1}\right) \sqcap_{r}$ $\left(\xi, S_{2}\right)=(\vartheta, S)$, where $S=S_{1} \cap S_{2} \neq \emptyset$ and $\vartheta(\varrho)=\alpha(\varrho) \cap \xi(\varrho), \forall \varrho \in S u p p(\vartheta, S)$. Since $S_{1} \subseteq R$ and $S_{2} \subseteq$ R, we have $S_{1} \cap S_{2}=S \subseteq R$. Suppose that (ϑ, R) is notnull. Since $\left(\alpha, S_{1}\right) \unlhd(\nabla, R)$ and $\left(\xi, S_{2}\right) \unlhd(\nabla, R)$, we have $\alpha(\varrho) \triangleleft \nabla(\varrho)$ and $\xi(\varrho) \triangleleft \nabla(\varrho), \forall \varrho \in \operatorname{Supp}(\vartheta, s)$. So $\alpha(\varrho) \cap \xi(\varrho)=\vartheta(\varrho) \triangleleft \nabla(\varrho), \forall \varrho \in \operatorname{Supp}(\vartheta, s)$. Hence $\left(\alpha, S_{1}\right) \sqcap_{r}\left(\xi, S_{2}\right)=(\vartheta, S)$ is an $\left(\in, \in \vee q_{k}\right)$-FSI of (∇, R).

Theorem 3.21. The union of two $\left(\in, \in \vee q_{k}\right)$-FSI's \mathcal{N} of an $\left(\in, \in \vee q_{k}\right)-F S B N(\nabla, R)$ is an $\left(\in, \in \vee q_{k}\right)$-FSI of (∇, R).

Proof. Let $\left(\alpha, S_{1}\right) \unlhd(\nabla, R)$ and $\left(\xi, S_{2}\right) \unlhd(\nabla, R)$. By the definition (Union), we can write $\left(\alpha, S_{1}\right) \sqcup$ $\left(\xi, S_{2}\right)=(\vartheta, S)$, where $S=S_{1} \cup S_{2}$ and for all $\varrho \in \operatorname{Supp}(\vartheta, S) \vartheta(\varrho)=\left\{\begin{array}{c}\alpha(\varrho), \text { if } \varrho \in S_{1}-S_{2} \\ \xi(\varrho), \text { if } \varrho \in S_{2}-S_{1} \\ \alpha(\varrho) \cup \xi(\varrho), i f \varrho \in S_{1} \cap S_{2}\end{array}\right.$
Obviously $S_{1} \cup S_{2}=S \subseteq R$. Since $S_{1} \cap S_{2}=\emptyset$, either $\varrho \in S_{1}-S_{2}$ or $\varrho \in S_{2}-S_{1}, \forall \in S u p p(\vartheta, S)$.
If $\varrho \in S_{1}-S_{2}$, then $\vartheta(\varrho)=\alpha(\varrho) \triangleleft \nabla(\varrho)$ and
if $\varrho \in S_{2}-S_{1}$, then $\vartheta(\varrho)=\xi(\varrho) \triangleleft \nabla(\varrho)$.
Thus $\vartheta(\varrho) \triangleleft \nabla(\varrho), \forall \varrho \in S u p p(\vartheta, S)$. Therefore (ϑ, S) is an $\left(\in, \in \vee q_{k}\right)$-FSI of (∇, R).

4. Conclusion

In this paper, we've discussed the ideas of $\left(\epsilon, \in \vee q_{k}\right)$-FSBN and $\left(\epsilon, \epsilon \vee q_{k}\right)$ - FSI over BN resp., Additionally, we have added the idea of $\left(\epsilon, \in \vee q_{k}\right)$-FS-sub-BN of an $\left(\epsilon, \in \vee q_{k}\right)$-FSBN and examined some of their characteristics using illustrative instances. The FSS's operations have been transferred to the $\left(\epsilon, \in \vee q_{k}\right)$-FSBN's and $\left(\epsilon, \in \vee q_{k}\right)$-FSI's.

References

[1] S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Sets Syst. 44 (1991), 139-146. https://doi.org/10.1016/ 0165-0114(91)90039-s.
[2] B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst. 2009 (2009), 586507. https://doi.org/10.1155/2009/ 586507.
[3] M.I. Ali, F. Feng, X. Liu, W.K. Min, M. Shabir, On some new operations in soft set theory, Comp. Math. Appl. 57 (2009), 1547-1553. https://doi.org/10.1016/j.camwa.2008.11.009.
[4] S.K. Bhakat, P. Das, $\left(\in, \in \vee q_{k}\right)$ fuzzy subgroup, Fuzzy Sets Syst. 80 (1996), 359-368. https://doi.org/10.1016/ 0165-0114(95)00157-3.
[5] Faisal, N. Yaqoob and R. Chinram, A note on $\left(\in, \in \vee q_{k}\right)$-fuzzy G-ideals of G-semigroups, Appl. Math. Sci. 6 (2012), 5013-5028.
[6] E. Inan, M.A. Ozturk, Fuzzy Soft Rings and Ideals, Neural Comp. Appl. 21 (2011), 1-8. https://doi.org/10.1007/ s00521-011-0550-5.
[7] P.K. Maji, R. Biswas, P.R. Roy, Fuzzy soft sets, J. Fuzzy Math. 9 (2001), 589-602.
[8] D. Molodtsov, Soft set theory-First results, Comp. Math. Appl. 37 (1999), 19-31. https://doi.org/10.1016/ s0898-1221 (99) 00056-5.
[9] AL. Narayanan, T. Manikantan, $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy subnear-rings and $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy ideals of near-rings, J. Appl. Math. Comp. 18 (2005), 419-430. https://doi.org/10.1007/bf02936584.
[10] M.A. Ozturk, E. Inan, Fuzzy soft subnear-rings and $\left(\in, \in \vee q_{k}\right)$-fuzzy soft subnear-rings, Comp. Math. Appl. 63 (2012), 617-628. https://doi.org/10.1016/j.camwa.2011.11.008.
[11] B.P. Varol, A. Aygunoglu, H. Aygun, On fuzzy soft rings, J. Hyperstruct. 1 (2012), 1-15.
[12] G. Pilz, Near-Rings, North-holland, Amsterdam, 1983.
[13] M. Shabir, Y.B. Jun, Y. Nawaz, Semigroups characterized by $\left(\in, \in \vee q_{k}\right)$-fuzzy ideals, Comp. Math. Appl. 60 (2010), 1473-1493. https://doi.org/10.1016/j.camwa.2010.06.030.
[14] G.S. Rao, D. Ramesh, A. Iampan, B. Satyanarayana, Fuzzy soft boolean rings, Int. J. Anal. Appl. 21 (2023), 60. https: //doi.org/10.28924/2291-8639-21-2023-60.
[15] G.S. Rao, P. Kolluru, B.P. Munagala, A note on soft boolean near rings, AIP Conf. Proc. 2707 (2023), 020013. https : //doi.org/10.1063/5.0148444.
[16] G.S. Rao, P. Kolluru, N. Thandu, Soft intersection boolean near rings with its applications, AIP Conf. Proc. 2707 (2023), 020012. https://doi.org/10.1063/5.0148443.
[17] G.S. Rao, K. Pushpalatha, D. Ramesh, S.V.M. Sarma, G. Vijayalakshmi, A study on Boolean like algebras, AIP Conf. Proc. 2375 (2021), 020018. https://doi.org/10.1063/5.0066293.
[18] P. Dheena, S. Coumaressane, Generalization of ($\epsilon, \epsilon \vee \mathrm{q})$-fuzzy subnear-rings and ideals, Iran. J. Fuzzy Syst. 5 (2008), 79-97. https://doi.org/10.22111/ijfs.2008.318.

