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Abstract. The copula approach was developed for describing the connection between two or
more quantitative variables. Despite the numerous existing copulas, there is still a need for
new copulas or generalized versions of well-established copulas. In this study, we suggest two
brand-new copulas with three parameters derived from the construction of the Farlie-Gumbel-
Morgenstern copula and unique non-separable logarithmic and exponential perturbation func-
tions. In particular, the exponential-based copula has the merit of naturally extending the
well-known Celebioglu-Cuadras copula. Widely acceptable domains are established for the
involved parameters. The related features and capabilities of the proposed copulas are examined
in detail. It is demonstrated that they possess various kinds of shapes, are diagonally symmetric,
have manageable series expansions, satisfy interesting first-order copula orders, have a versa-
tile quadrant dependence, have no tail dependence, are not Archimedean, are typically not
radially symmetric, and can model a weak or moderate dependence with the rho of Spearman
as a benchmark. Numerical tables and figures are used to illustrate some findings. As a final
remark, some new two-dimensional inequalities are established, and they might be interesting
for reasons unrelated to those of this study.
2020 Mathematics Subject Classification. 60E15; 62H99.
Key words and phrases. copulas; dependence model; exponential function; logarithmic function;
inequalities; correlation.

1. Introduction

In many practical scenarios, modeling the association (or dependence) between two or more
quantitative variables is crucial. To this end, in the quantitative case, the copulas offer efficient
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solutions. Due to the varied complexity of dependence that manifests in heterogeneous current
issues, they have recently attracted a lot of attention. Significant applications are in a variety
of applied fields (see [28], [25], [33], and [29], among others). When only two quantitative
variables are of interest, two-dimensional copulas are required. A definition of such a copula
in the absolutely continuous case is provided below as a mathematical foundation (see [24]).

Definition 1. A two-dimensional function C(x, y), (x, y) ∈ [0, 1]2, is a (absolutely continuous

two-dimensional) copula if and only if, for any (x, y) ∈ [0, 1]2,

(I): we have C(x, 0) = 0 and C(0, y) = 0,

(II): we have C(x, 1) = x and C(1, y) = y,

(III): we have (in the absolutely continuous case)

∂x,yC(x, y) ≥ 0,

where ∂x,y = ∂2/(∂x∂y) denotes the mixed second order partial derivatives according to x and

y.

The basics on the copula theory can be found in [24], [15], [19], [10], and [23], and recent de-
velopments include [1], [26], [3], [17], [6], [7], [30], [31], [16], [22], [13], [34], and [27], among
others. In order to motivate our study, a retrospective on the Farlie-Gumbel-Morgenstern
(FGM) copula is necessary. To begin, it is defined as

C(x, y; θ) = xy + θxy(1− x)(1− y), (x, y) ∈ [0, 1]2,

where θ ∈ [−1, 1]. Thus, we can write this copula as C(x, y; θ) = Π(x, y) + P (x, y; θ), where
Π(x, y) is the independence copula, i.e., Π(x, y) = xy, and P (x, y; θ) is the separable per-
turbation function defined by P (x, y; θ) = θφ(x)φ(y), with φ(u) = u(1 − u). We have
P (x, y; θ) ∈ [−1/16, 1/16], and the parameter θ is known as the dependence parameter; when
θ = 0, we have C(x, y; θ) = Π(x, y). The main informations about the FGM copula can be
found in [24], [15], [19], [10], and [23]. We may also refer to [12], where the numerous
qualities of FGM copula are developed. However, it is limited in terms of possible shapes
and correlation range, which are both crucial in a data fitting scenario. Because of its simple
algebraic features, the FGM copula has attracted the attention of researchers to a large extent.
For these reasons, new types of FGM copula have been suggested by researchers. We may
refer to [17], [20], [2], [14], and [5], among others.
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Following the spirit of the above references, we introduce two new copulas of the general
form C(x, y;α) = Π(x, y) +Q(x, y;α), whereQ(x, y;α) is a perturbation function defined with
original logarithmic or exponential transformations, and which share the characteristics of (i)
being not separable with respect to x and y (unlike P (x, y; θ)), and of (ii) being dependent on
three parameters represented by α. In particular, the established exponential-based copula
has the merit of extending in a natural way the well-known Celebioglu-Cuadras copula
(see [4], [11], and [8]). Thus, we aim to present a new way of constructing such copulas
beyond the standard forms and with the use of three parameters. In 2023, with computer
developments having broken down the barriers of mathematical complexity, the practical
management of three parameters in a function is not a problem anymore, as long as we know
their admissible values. Hence, for each copula, we determine the admissible values of their
parameters. The limits, two-dimensional differentiations, factorizations, and mathematical
inequalities, are the main foundations for the underlying proofs. The characteristics of the
proposed copulas are then examined, including their shapes, associated functions (survival
copula, copula density, etc.), symmetry (diagonal, radial, etc.), tractable series expansions,
quadrant dependence, first-order copula ordering, tail dependence, medial and Spearman
correlations, and generation of two-dimensional distributions. In particular, we show that
the proposed copulas are suitable for modeling weak or moderate dependence. Analyses
in both value tables and graphics are offered when appropriate. This research can be seen
as the first step in creating new multi-dimensional copulas, which continue to hold special
interest in many practical fields. On the other hand, based on our copula findings, a number
of two-dimensional inequalities are found and may be of independent interest.
The rest of the paper is divided into three sections: Section 2 is devoted to the proposed

logarithmic-type copula, and Section 3 investigates the proposed exponential-type copula. A
short conclusion is given in Section 4.

2. Logarithmic copula

This section is devoted to the first proposed copula involving an original logarithmic per-
turbed function.

2.1. Main result. The main result of this section is presented below.
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Proposition 2.1. Let us consider the following two-dimensional function:

C(x, y;α) = xy + a log [1 + bxcyc(1− x)(1− y)] , (x, y) ∈ [0, 1]2,(1)

where α = (a, b, c), and a, b and c are such that c ≥ 1, and one of the following condition set is satisfied:

Condition set 1: b ≥ 0, and |a|bc2 ≤ 1,

Condition set 2: b ∈ (−(c+ 1)2(c+1)/c2c, 0], and (1 + bc2c/(c+ 1)2(c+1))2 + |a|bc2 ≥ 0.

Then C(x, y;α) is a two-dimensional copula.

Proof. We aim to show that the proposed function satisfies the items (I), (II) and (III) of
Definition 1.

(I): For any x ∈ [0, 1], since c ≥ 1, we have

C(x, 0;α) = x× 0 + a log [1 + bxc × 0c × (1− x)(1− 0)] = 0 + a log(1) = 0.

Using a similar development, for any y ∈ [0, 1], we get C(0, y;α) = 0.
(II): For any x ∈ [0, 1], we have

C(x, 1;α) = x× 1 + a log [1 + bxc × 1c × (1− x)(1− 1)] = x+ a log(1) = x.

Similarly, for any y ∈ [0, 1], we have C(1, y;α) = y.
(III): After differentiation, several simplifications and factorizations, we get

∂x,yC(x, y;α) =

bxc+1yc {a(c+ 1)[c(y − 1) + y]− 2(y − 1)y} − abcxc [c(y − 1) + y] yc

+ b2(y − 1)2x2c+1y2c+1 − 2b2(y − 1)2x2c+2y2c+1

+ b2(y − 1)2x2c+3y2c+1 + 2b(y − 1)xc+2yc+1 + xy

xy [1 + bxcyc(1− x)(1− y)]2

= 1 +
abxc−1yc−1 [c(x− 1) + x] [c(y − 1) + y]

[1 + bxcyc(1− x)(1− y)]2
,

which is a quite manageable condensed expression.
For any (x, y) ∈ [0, 1]2, with the manipulation of absolute values, the following

inequality holds:

∂x,yC(x, y;α) ≥ 1− |a||b|x
c−1yc−1 |c(x− 1) + x| |c(y − 1) + y|

[1 + bxcyc(1− x)(1− y)]2
.
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Clearly, since c ≥ 1, for (x, y) ∈ [0, 1]2, we have c(x−1)+x ∈ [−c, 1] and c(y−1)+y ∈

[−c, 1], implying that |c(x−1)+x| ≤ max(|c|, 1) = c and |c(y−1)+y| ≤ max(|c|, 1) = c.
Furthermore, under the same conditions, we have xc−1yc−1 ≤ 1. We deduce that

∂x,yC(x, y;α) ≥ 1− |a||b|c2

[1 + bxcyc(1− x)(1− y)]2
.

In order to prove the positivity of ∂x,yC(x, y;α), let us work on the right term by
distinguishing the two condition sets on the parameters.
Condition set 1: We recall that b ≥ 0, and |a|bc2 ≤ 1.

Since b ≥ 0, and (x, y) ∈ [0, 1]2, we have bxcyc(1 − x)(1 − y) ≥ 0, implying that
[1 + bxcyc(1− x)(1− y)]2 ≥ 1. This inequality and the assumption |a|bc2 ≤ 1

imply that

∂x,yC(x, y;α) ≥ 1− |a|bc2 ≥ 0.

Condition set 2: We recall that b ∈ (−(c+ 1)2(c+1)/c2c, 0], and (1 + bc2c/(c+ 1)2(c+1))2 +

|a|bc2 ≥ 0.
Since b ∈ (−(c + 1)2(c+1)/c2c, 0] with c ≥ 1, a function study gives m =

supx∈[0,1] x
c(1− x) = cc/(c+ 1)c+1. Therefore we have

1 + bxcyc(1− x)(1− y) ≥ 1 + bm2 = 1 + b
c2c

(c+ 1)2(c+1)
,

which is strictly positive, implying that
[1 + bxcyc(1− x)(1− y)]2 ≥ (1 + bc2c/(c + 1)2(c+1))2. By virtue of this inequality,
|b| = −b and the assumption (1 + bc2c/(c+ 1)2(c+1))2 + |a|bc2 ≥ 0, we get

∂x,yC(x, y;α) ≥ 1 +
|a|bc2

(1 + bc2c/(c+ 1)2(c+1))2
≥ 0.

Thus, under the two considered sets, we have

∂x,yC(x, y;α) ≥ 0.

The item (III) is proved.
The proof of the proposition ends. �

For the purposes of this study, the copula presented in Equation (1) is called the logarithmic
(L) copula. The L copula is then presumably taken into account under Configurations sets
1 or 2 from Proposition 2.1. The independence copula is a special case of the L copula; it is
obtained by taking a = 0 or b = 0. To the best of our knowledge, the other parameter values
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produce new two-dimensional copulas. Furthermore, there is some connection between the L
copula and an extended version of the FGM copula; this will be discussed later.

Plots of the L copula are presented in Figures 1 and 2 for arbitrary parameters that belong
to Configuration sets 1 and 2, respectively.
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Figure 1. Display of the (a) perspective plot and (b) contour plot of the L copula
for a = 1/2, b = 1/4 and c = 2, belonging to Configuration set 1
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Figure 2. Display of the (a) perspective plot and (b) contour plot of the L copula
for a = 3/2, b = −1/4 and c = 3/2, belonging to Configuration set 2

Different form morphologies for the L copula are seen in these figures. These forms are
undoubtedly impacted by a, b and c.

Remark 2.2. Based on the definition of the L copula, it is natural to think of the following two-

dimensional function as an alternative:

C(x, y;α) = xy + axcyc log [1 + b(1− x)(1− y)] , (x, y) ∈ [0, 1]2,

where α = (a, b, c). However, the item (III) of Definition 1 is difficult to deal with, particularly in

determining the admissible values for a, b, and c that satisfy it. This is thus a mathematical challenge

that we postponed for a future study.
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Remark 2.3. The expression of the L copula can inspire the construction of higher-dimensional

copulas. For instance, one can consider the following three-dimensional function:

C(x, y, z; ν) = xyz + a log [1 + bxyz(1− x)(1− y)(1− z)] ,

(x, y, z) ∈ [0, 1]3,

with ν = (a, b); to reduce the functional complexity, we have put c = 1. Then one can prove that it is a

three-dimensional copula under the following configuration sets:

Condition set 1: b ∈ [0, 1], and |a|b ≤ 1,

Condition set 2: b > 1, and |a|b(1 + b/43) ≤ 1,

Condition set 3: b ∈ (−43, 0], and (1 + b/43)2 + |a|b(1− b/43) ≥ 0.

These statements are made possible primarily by a manageable mixed third order partial derivative of

C(x, y, z; ν) with respect to x, y, and z; we have

∂x,y,zC(x, y, z; ν) =

1− ab(2x− 1)(2y − 1)(2z − 1)[1− bxyz(1− x)(1− y)(1− z)]

[1 + bxyz(1− x)(1− y)(1− z)]3
,

(x, y, z) ∈ [0, 1]3.

For more information about the potential applicability of such an original three-dimensional copula; we

may refer the reader to [18] and [9], and the references therein.

2.2. Related functions. To begin, based on Equation (1), the L copula density is calculated as

c(x, y;α) = ∂x,yC(x, y;α)

= 1 +
abxc−1yc−1 [c(x− 1) + x] [c(y − 1) + y]

[1 + bxcyc(1− x)(1− y)]2
, (x, y) ∈ [0, 1]2.

We can examine the modeling potential of the L copula as well as the effects of the parameters
a, b, and c on its shapes by looking at the forms of this function. Figures 3 and 4 display the L
copula density plots for arbitrary parameters from Configuration sets 1 and 2, respectively.
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Figure 3. Display of the (a) perspective plot and (b) contour plot of the L copula
density for a = 1/2, b = 1/4 and c = 2, belonging to Configuration set 1
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Figure 4. Display of the (a) perspective plot and (b) contour plot of the L copula
density for a = 3/2, b = −1/4 and c = 3/2, belonging to Configuration set 2

These figures demonstrate a type of dependence flexibility by showing completely different
shapes of the L copula density. It is important to consider how a, b and c affect these shapes,
particularly in the neighborhood of the extrema (0, 0), (1, 1), (0, 1), and (1, 0).

The L survival copula is given by

Ĉ(x, y;α) = x+ y − 1 + C(1− x, 1− y;α)

= xy + a log [1 + bxy(1− x)c(1− y)c] , (x, y) ∈ [0, 1]2.

The main difference between the L copula and the L survival copula is the effect of c which is
not the same. The L survival copula is a brand-new three-parameter copula as well, which is
added to the body of current research.

2.3. Properties. In this part, some fundamental properties of the L copula are established in
order to comprehend its modeling capabilities. The book of [24] contains all of the details of
the future mentioned notions.
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To begin, since C(x, y;α) = C(y, x;α) for any (x, y) ∈ [0, 1]2, the L copula is diagonally
symmetric. It is not Archimedean because, for example, when a = 1, b = 1, and c = 1,

C

[
1

4
, C

(
1

2
,
1

3
;α

)
;α

]
= 0.08692625 6= 0.0879255

= C

[
C

(
1

4
,
1

2
;α

)
,
1

3
;α

]
,

proving that it is not associative. For a 6= 0 and c > 1, the L copula is not radially symmetric
because of the moving of the parameter c in the two expressions; there exists (x, y) such that
Ĉ(x, y;α) 6= C(x, y;α). In the cases a = 0, or a 6= 0 and c = 1, it is radially symmetric.

Of course, as for any copula, the Fréchet-Hoeffding bounds hold: For any (x, y) ∈ [0, 1]2, we
have max(x+ y − 1, 0) ≤ C(x, y;α) ≤ min(x, y).

Remark 2.4. Immediate mathematical consequences of the Fréchet-Hoeffding bounds are the following

two-dimensional inequalities: for any (x, y) ∈ [0, 1]2, we have

max(x+ y − 1, 0)− xy ≤ a log [1 + bxcyc(1− x)(1− y)]

≤ min(x, y)− xy,

where a, b, and c, satisfy either Configuration sets 1 or 2. This three-dimensional logarithmic inequality

can be used in various two-dimensional analysis studies beyond the copula’s scope.

Let us now investigate the diverse quadrant dependence properties with respect to the
parameters.

• For a ≥ 0 and b ≥ 0 (which is compatible with Configuration set 1, with some
restrictions), or a ≤ 0 and b ∈ [−1, 0] (which is compatible with Configuration set
2, with some restrictions), because a log [1 + bxcyc(1− x)(1− y)] ≥ 0, the L copula is
positively quadrant dependent, i.e., C(x, y;α) ≥ xy for any (x, y) ∈ [0, 1]2.
• For a ≥ 0 and b ∈ [−1, 0] (which is compatible with Configuration set 2, with some
restrictions), or a ≤ 0 and b ≥ 0 (which is compatible with Configuration set 1,
with some restrictions), because a log [1 + bxcyc(1− x)(1− y)] ≤ 0, the L copula is
negatively quadrant dependent, i.e., C(x, y;α) ≤ xy for any (x, y) ∈ [0, 1]2.

In addition, interesting first-order copula orders are satisfied. Thanks to the following loga-
rithmic inequality: log(1 + x) ≤ x for x > −1, the results below are established.
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• For a ≥ 0, we have C(x, y;α) ≤ C?(x, y;α) for any (x, y) ∈ [0, 1]2, where

C?(x, y;α) = xy + abxcyc(1− x)(1− y), (x, y) ∈ [0, 1]2,(2)

is an extended version of the FGM copula with dependence parameter ab (see [17]).
• For a ≤ 0, we have C(x, y;α) ≥ C?(x, y;α) for any (x, y) ∈ [0, 1]2.

For b ∈ (−1, 1) and any (x, y) ∈ [0, 1)2, the logarithmic series expansion gives

C(x, y;α) = xy + a

∞∑
i=1

(−1)i+1

i
bixciyci(1− x)i(1− y)i.(3)

This expansion can express or approximate various crucial correlation measures, which makes
it useful in particular situations.

The tail dependence of the L copula is examined below. Using standard limit and equivalence
techniques, since c ≥ 1, we have

λlow = lim
x→0

C(x, x;α)

x

= lim
x→0

{
x+

a log [1 + bx2c(1− x)2]

x

}
= lim

x→0

(
x+ abx2c−1

)
= 0.

Thus, the L copula has no lower tail dependence. Concerning the upper tail dependence,
using similar arguments, we have

λup = lim
x→1

1− 2x+ C(x, x;α)

1− x

= lim
x→1

1− 2x+ x2 + a log [1 + bx2c(1− x)2]

1− x

= lim
x→1

(
1− x+

a log [1 + bx2c(1− x)2]

1− x

)
= lim

x→1
[1− x+ ab(1− x)] = 0.

Thus, the L copula has no upper tail dependence.
The medial correlation (or coefficient of Blomqvist) of the L copula is expressed as

Mcor = 4C

(
1

2
,
1

2
;α

)
− 1 = 4a log

(
1 + b2−2(c+1)

)
.
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The rho of Spearman of the L copula is defined by

ρ = 12

∫ 1

0

∫ 1

0

[C(x, y;α)− xy] dxdy

= 12a

∫ 1

0

∫ 1

0

log [1 + bxcyc(1− x)(1− y)] dxdy.

There is no a simple expression of this measure, but the following expansion is derived from
Equation (3):

ρ = 12a
∞∑
i=1

(−1)i+1

i
biB(ci+ 1, i+ 1)2,

where B(u, v) =
∫ 1

0
tu−1(1− t)v−1dtwith u > 0 and v > 0, is the standard beta function. Tables

1 and 2 determine numerical values of ρ for arbitrary parameters that belong to Configuration
sets 1 and 2, respectively.

Table 1. Some values of ρ of the L copula for b = 1/2 and c =
√

2, and varying
a ∈ [−1, 1], belonging to Configuration set 1

a -1.0 -0.7 -0.4 -0.1 0.2 0.5 0.8

ρ -0.0878 -0.0615 -0.0351 -0.0088 0.0176 0.0439 0.0702

Table 2. Some values of ρ of the L copula for b = −1 and c = 1, and varying
a ∈ [−(15/16)2, (15/16)2], belonging to Configuration set 2

a -0.87890625 -0.57890625 -0.27890625 0.02109375 0.32109375 0.62109375

ρ 0.299 0.197 0.0949 -0.0072 -0.1092 -0.2113

According to the obtained values in these tables, ρ can have a moderate amplitude and
can be either positive or negative. The L copula is hence the best choice for modeling a mild
dependence.
The L copula has the same ability to define new parametric distributional models as all

other two-dimensional copulas. In fact, by merging two uni-dimensional cumulative distribu-
tion functions, say F (x) and G(x), we build a new two-dimensional cumulative distribution
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function as follows:

H(x, y; ξ) = C(F (x), G(y);α)

= F (x)G(y) + a log [1 + bF (x)cG(y)c(1− F (x))(1−G(y))] ,

(x, y) ∈ R2,

where ξ represents the vector of the involved parameters, including a, b and c (so α), and
those appearing in F (x) and G(x).
Based on this function, novel two-dimensional distributions could be produced. Among

other references, the discussion of motivated lifetime cumulative distribution functions is
found in [32]. As an example, let us consider two exponential distributions with parameters γ
and τ , respectively, then F (x) = 1− e−γx and G(x) = 1− e−τx for x ≥ 0, and F (x) = G(x) = 0

for x ≤ 0. Then the related distribution based on the L copula is defined by the following
cumulative distribution function:

H(x, y; ξ) =

(1− e−γx)(1− e−τy) + a log
[
1 + be−γxe−τy(1− e−γx)c(1− e−τy)c

]
,

(x, y) ∈ [0,∞)2,

and H(x, y; ξ) = 0 for (x, y) 6∈ [0,∞)2, where ξ = (a, b, c, γ, τ). To the best of our knowledge,
such a two-dimensional logarithmic distribution is new in the literature. On the topic of FGM
two-dimensional distributions, we may refer to [21], and the references therein.

3. Exponential copula

This section is devoted to the second proposed copula involving an original exponential
perturbed function.

3.1. Main result. The main result of this section is presented below.

Proposition 3.1. Let us consider the following two-dimensional function:

C(x, y;α) = xy + axcyc
(
eb(1−x)(1−y) − 1

)
, (x, y) ∈ [0, 1]2,(4)

where α = (a, b, c), and a, b and c are such that c ≥ 1, and one of the following condition set is satisfied:

Condition set 1: b ∈ [0, 1], a ≥ 0, and abc ≤ 1,

Condition set 2: b ∈ [−1, 0], a ≥ 0, and ac2 ≤ 1,

Condition set 3: b ∈ [−1, 0], a ≤ 0, and abc ≤ 1.
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Then C(x, y;α) is a two-dimensional copula.

Proof. We aim to show that the proposed function satisfies the items (I), (II) and (III) of
Definition 1.

(I): For any x ∈ [0, 1], since c ≥ 1, we have

C(x, 0;α) = x× 0 + axc × 0c ×
(
eb(1−x)(1−0) − 1

)
= 0.

Using a similar development, for any y ∈ [0, 1], we get C(0, y;α) = 0.
(II): For any x ∈ [0, 1], we have

C(x, 1;α) = x× 1 + axc × 1c ×
(
eb(1−x)(1−1) − 1

)
= x+ axc ×

(
e0 − 1

)
= x.

Similarly, for any y ∈ [0, 1], we have C(1, y;α) = y.
(III): We have

∂x,yC(x, y;α) = axc−1yc−1eb(1−x)(1−y)×{
bc [x(2y − 1)− y] + bxy [1 + b(1− x)(1− y)] + c2

}
+ 1− ac2xc−1yc−1

= axc−1yc−1eb(1−x)(1−y)f(x, y; β) + 1− ac2xc−1yc−1,(5)

where

f(x, y; β) = bc [xy + (1− x)(1− y)] + bxy [1 + b(1− x)(1− y)] + c2 − bc,

and β = (b, c).
In order to prove the positivity of ∂x,yC(x, y;α), let us work on the right term, and

the function f(x, y; β) in particular, by distinguishing the three condition sets on the
parameters.
Condition set 1: We recall that b ∈ [0, 1], a ≥ 0, c ≥ 1, and abc ≤ 1.

To begin, let us prove that f(x, y; β) ≥ 0. Since b ∈ [0, 1], c ≥ 1, and (x, y) ∈ [0, 1]2,
we have bc [xy + (1− x)(1− y)] ≥ 0, bxy [1 + b(1− x)(1− y)] ≥ 0 and c2 − bc =

c(c− b) ≥ c(1− b) ≥ 0, implying that f(x, y; β) ≥ 0.
On the other hand, we have b(1 − x)(1 − y) ≥ 0, so eb(1−x)(1−y) ≥ 1. Therefore,
since a ≥ 0, we obtain
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∂x,yC(x, y;α) ≥ axc−1yc−1f(x, y; β) + 1− ac2xc−1yc−1

= axc−1yc−1×

{bc [xy + (1− x)(1− y)] + bxy [1 + b(1− x)(1− y)]}

+ 1− abcxc−1yc−1.

The first main term (involving the curly brackets) is clearly positive as a sum of
positive terms. Since c ≥ 1, for any (x, y) ∈ [0, 1]2, have xc−1yc−1 ≤ 1, and owing
to the condition abc ≤ 1 (so abc ∈ [0, 1]), we have 1− abcxc−1yc−1 ≥ 1− abc ≥ 0.
It follows from the above results and Equation (5), as a sum of positive terms,
we have

∂x,yC(x, y;α) ≥ 0.

Condition set 2: We recall that b ∈ [−1, 0], a ≥ 0, c ≥ 1, and ac2 ≤ 1.
Let us now prove that f(x, y; β) ≥ 0, which is more technical than the develop-
ments in Condition set 1. After a well-arranged factorization, we can write

f(x, y; β) = −bc(1− xy) + b2xy(1− x)(1− y) + c(c+ b)

− bcx(1− y)− by(c− x).

Since b ∈ [−1, 0], c ≥ 1, and (x, y) ∈ [0, 1]2, we have−bc(1−xy) ≥ 0, b2xy(1−x)(1−

y) ≥ 0, −bcx(1− y) ≥ 0, c(c+ b) ≥ c(1 + b) ≥ 0, and −by(c− x) ≥ −by(1− x) ≥ 0.
By putting all these results together, we get f(x, y; β) ≥ 0.
On the other hand, it is clear that axc−1yc−1eb(1−x)(1−y) ≥ 0. Since c ≥ 1 and ac2 ≤ 1

(so ac2 ∈ [0, 1]), we have 1− ac2xc−1yc−1 ≥ 1− ac2 ≥ 0. It follows from the above
results and Equation (5) that

∂x,yC(x, y;α) ≥ 0.

Condition set 3: We recall that b ∈ [−1, 0], a ≤ 0, c ≥ 1 and abc ≤ 1.
We still have f(x, y; β) ≥ 0 thanks to the same developments made for Condition
set 2 because f(x, y; β) is independent of a.
On the the hand, since b ∈ [−1, 0] and (x, y) ∈ [0, 1]2, we have b(1− x)(1− y) ≤ 0

and eb(1−x)(1−y) ≤ 1. Therefore, since a ≤ 0, we obtain
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∂x,yC(x, y;α) ≥ axc−1yc−1f(x, y; β) + 1− ac2xc−1yc−1

= axc−1yc−1×

{bc [xy + (1− x)(1− y)] + bxy [1 + b(1− x)(1− y)]}

+ 1− abcxc−1yc−1.

Since b ∈ [−1, 0] and c ≥ 1 and (x, y) ∈ [0, 1]2, we have bc [xy + (1− x)(1− y)] ≤ 0

and bxy [1 + b(1− x)(1− y)] ≤ bxy [1− (1− x)(1− y)] ≤ 0. Therefore, the term
in curly brackets is negative. Since a ≤ 0 and xc−1yc−1 ≥ 0, we have

axc−1yc−1 {bc [xy + (1− x)(1− y)] + bxy [1 + b(1− x)(1− y)]} ≥ 0.

For the remaining term, since c ≥ 1, abc ≤ 1 (so abc ∈ [0, 1] since a and b are
negative), and (x, y) ∈ [0, 1]2, we have 1− abcxc−1yc−1 ≥ 1− abc ≥ 0. Therefore,
as a sum of positive terms, we have

∂x,yC(x, y;α) ≥ 0.

Thus, under the two considered sets, we have

∂x,yC(x, y;α) ≥ 0.

The item (III) is proved.
This ends the proof of the proposition. �

For the purposes of this study, the copula presented in Equation (4) is called the exponential
(E) copula. Following this, it is assumed that the E copula is considered under Configurations
sets 1, 2, or 3 of Proposition 3.1. The independence copula is a special case of the E copula by
assuming that a = 0. For a = 1 and c = 1, the E copula is simply expressed as

C(x, y;α) = xyeb(1−x)(1−y), (x, y) ∈ [0, 1]2,

which is exactly the CC copula as described in [4], [11], and [8]. In this sense, the E copula is
a generalization of the CC copula; the significance of the parameters b will be emphasized
throughout this study. To the best of our knowledge, the other parameter values produce new
two-dimensional copulas. There is some relationship with an extended version of the FGM
copula, which will be covered later.
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Plots of the E copula are presented in Figures 5, 6, and 7 for arbitrary parameters that belong
to Configuration sets 1, 2, and 3, respectively.
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Figure 5. Display of the (a) perspective plot and (b) contour plot of the E copula
for a = 1/2, b = 1 and c = 2, belonging to Configuration set 1
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Figure 6. Display of the (a) perspective plot and (b) contour plot of the E copula
for a = 1/2, b = −1 and c =

√
2, belonging to Configuration set 2
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Figure 7. Display of the (a) perspective plot and (b) contour plot of the E copula
for a = −1, b = −1/2 and c = 2, belonging to Configuration set 3

Different formmorphologies for the E copula are seen in these figures. They are undoubtedly
impacted by a, b and c.
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3.2. Related functions. To begin, based on Equation (4), the E copula density is given by

c(x, y;α) = ∂x,yC(x, y;α) = axc−1yc−1eb(1−x)(1−y)×{
bc [x(2y − 1)− y] + bxy [1 + b(1− x)(1− y)] + c2

}
+ 1− ac2xc−1yc−1,

(x, y) ∈ [0, 1]2.

We can examine the modeling potential of the E copula as well as the effects of the parameters
a, b, and c on its shapes by looking at the forms of this function. Figures 8, 9 and 10 display the
E copula density plots for arbitrary parameters from Configuration sets 1, 2, and 3, respectively.

x

0.0

0.2

0.4
0.6

0.8
1.0

y

0.0
0.2

0.4

0.6

0.8

1.0

z

1.0

1.2

1.4

0.9

1.0

1.1

1.2

1.3

1.4

(a) (b)
Figure 8. Display of the (a) perspective plot and (b) contour plot of the E copula
density for a = 1/2, b = 1 and c = 2, belonging to Configuration set 1
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Figure 9. Display of the (a) perspective plot and (b) contour plot of the E copula
density for a = 1/2, b = −1 and c =

√
2, belonging to Configuration set 2
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Figure 10. Display of the (a) perspective plot and (b) contour plot of the E
copula density for a = −1, b = −1/2 and c = 2, belonging to Configuration set 3

The entirely diverse shapes of the E copula density in these figures exhibit a type of depen-
dence flexibility. The effects of a, b, and c on them are significant.

The E survival copula is defined by

Ĉ(x, y;α) = x+ y − 1 + C(1− x, 1− y;α)

= xy + a(1− x)c(1− y)c
(
ebxy − 1

)
, (x, y) ∈ [0, 1]2.

The effect of c, which differs from that of c in the E copula, is the primary distinction between
the two. Furthermore, the E survival copula is a novel three-parameter copula to be included
in the body of current literature.

3.3. Properties. In order to better understand its modeling capacities, several essential char-
acteristics of the E copula are developed in this part.
To begin, the E copula is diagonally symmetric because C(x, y;α) = C(y, x;α) for any

(x, y) ∈ [0, 1]2. It is not Archimedean because, for example, when a = 1, b = 1, and c = 1, it
corresponds to a special case of the CC copula, which is not (the associative property is not
satisfied, see [8]).
For a 6= 0 and b 6= 0, the E copula is not radially symmetric because of the moving of the

parameter c in the two expressions; there exists (x, y) such that Ĉ(x, y;α) 6= C(x, y;α). For
a = 0 or b = 0, it is radially symmetric.
The Fréchet-Hoeffding bounds are satisfied, as for any other two-dimensional copula: For

any (x, y) ∈ [0, 1]2, we have max(x+ y − 1, 0) ≤ C(x, y;α) ≤ min(x, y).

Remark 3.2. Immediate mathematical consequences of the Fréchet-Hoeffding bounds are the

following two-dimensional inequalities: for any (x, y) ∈ [0, 1]2, we have
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max(x+ y − 1, 0)− xy ≤ axcyc
(
eb(1−x)(1−y) − 1

)
≤ min(x, y)− xy,

where a, b, and c, satisfy either Configuration sets 1, 2, or 3.

The following quadrant dependence properties hold:

• For a ≥ 0 and b ≥ 0 (which is compatible with Configuration set 1, with some
restrictions), or a ≤ 0 and b ∈ [−1, 0] (which is compatible with Configuration set 3,
with some restrictions), because axcyc (eb(1−x)(1−y) − 1

)
≥ 0, the E copula is positively

quadrant dependent, i.e., C(x, y;α) ≥ xy for any (x, y) ∈ [0, 1]2.
• For a ≥ 0 and b ∈ [−1, 0] (which is compatible with Configuration set 2, with some
restrictions), because axcyc (eb(1−x)(1−y) − 1

)
≤ 0, the E copula is negatively quadrant

dependent, i.e., C(x, y;α) ≤ xy for any (x, y) ∈ [0, 1]2.

In addition, interesting first-order copula orders are satisfied. Thanks to the following expo-
nential inequality: ex − 1 ≥ x for x ∈ R, the results below are obtained.

• For a ≥ 0, we have C(x, y;α) ≥ C?(x, y;α) for any (x, y) ∈ [0, 1]2, where C?(x, y;α) is
defined by Equation (2).
• For a ≤ 0, we have C(x, y;α) ≤ C?(x, y;α) for any (x, y) ∈ [0, 1]2.

The exponential series expansion gives

C(x, y;α) = xy + axcyc
∞∑
i=1

1

i!
bi(1− x)i(1− y)i.(6)

This expansion is helpful in specific circumstances since it may represent or approximate a
variety of important correlation measures.

The tail dependence of the E copula is investigated below. Using standard limit and equiva-
lence techniques, since c ≥ 1, we have

λlow = lim
x→0

C(x, x;α)

x
= lim

x→0

[
x+ ax2c−1

(
eb(1−x)

2 − 1
)]

= lim
x→0

[
x+ ax2c−1(eb − 1)

]
= 0.

There is no lower tail dependence in the E copula as a result. Regarding the upper tail
dependence, we have
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λup = lim
x→1

1− 2x+ C(x, x;α)

1− x
= lim

x→1

1− 2x+ x2 + ax2c
(
eb(1−x)

2 − 1
)

1− x
= lim

x→1
[1− x+ ab(1− x)] = 0.

Thus, the E copula has no upper tail dependence.
The medial correlation of the E copula is expressed as

Mcor = 4C

(
1

2
,
1

2
;α

)
− 1 = a22(1−c) (eb/4 − 1

)
.

The rho of Spearman of the E copula is defined by

ρ = 12

∫ 1

0

∫ 1

0

[C(x, y;α)− xy] dxdy

= 12a

∫ 1

0

∫ 1

0

xcyc
(
eb(1−x)(1−y) − 1

)
dxdy.

There is no a simple expression of this measure, but the following expansion is derived from
Equation (6):

ρ = 12a
∞∑
i=1

1

i!
biB(c+ 1, i+ 1)2.

Tables 3, 4, and 5 show numerical values of ρ for arbitrary parameters that belong to Configu-
ration sets 1, 2, and 3, respectively.

Table 3. Some values of ρ of the E copula for b = 1/2 and c = 2, and varying
a ∈ [0, 1], belonging to Configuration set 1

a 0.00 0.12 0.24 0.36 0.48 0.60 0.72 0.84 0.96

ρ 0 0.0052 0.0104 0.0156 0.0208 0.026 0.0313 0.0365 0.0417

Table 4. Some values of ρ of the E copula for b = −1 and c =
√

2, and varying
a ∈ [0, 1/2], belonging to Configuration set 2

a 0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.485

ρ 0 -0.0096 -0.0192 -0.0288 -0.0384 -0.0481 -0.0577 -0.0673 -0.0769
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Table 5. Some values of ρ of the E copula for b = −1/2 and c = 2, and varying
a ∈ [−1, 0], belonging to Configuration set 3

a -1.00 -0.88 -0.76 -0.64 -0.52 -0.40 -0.28 -0.16 -0.04

ρ 0.0401 0.0353 0.0305 0.0256 0.0208 0.016 0.0112 0.0064 0.0016

The values in these tables show that ρ can have a small amplitude and be either negative or
positive. As a result, the E copula is ideal for modeling various weak correlations between
two random variables. However, this conclusion is formulated in the light of the considered
values of the parameters; since the CC copula is a special case of the E copula and has a greater
amplitude for ρ, similar properties can be reached for the E copula.
Like all other two-dimensional copulas, the E copula has the capacity to define novel

parametric distributional models. In fact, we construct a new two-dimensional cumulative
distribution function by combining two uni-dimensional cumulative distribution functions,
say F (x) and G(x), as follows:

H(x, y; ξ) = C(F (x), G(y);α)

= F (x)G(y) + aF (x)cG(y)c
{
eb[1−F (x))(1−G(y)] − 1

}
,

(x, y) ∈ R2,

where ξ represents the vector of the involved parameters, including a, b and c, and those
appearing in F (x) and G(x).

Based on this function, various novel two-dimensional distributions could be produced. As
an example derived from the example made in the framework of the L copula, let us consider
two exponential distributions with parameters γ and τ , respectively, then F (x) = 1− e−γx and
G(x) = 1− e−τx for x ≥ 0, and F (x) = G(x) = 0 for x ≤ 0. Then the related distribution based
on the E copula is defined by the following cumulative distribution function:

H(x, y; ξ) =(1− e−γx)(1− e−τy) + a
(
1− e−γx

)c (
1− e−τy

)c×{
ebe

−(γx+τy) − 1
}
, (x, y) ∈ [0,∞)2,

andH(x, y; ξ) = 0 for (x, y) 6∈ [0,∞)2, where ξ = (a, b, c, γ, τ). We believe this two-dimensional
exponential distribution to be novel in the literature.



Asia Pac. J. Math. 2023 10:8 22 of 24

4. Conclusion

In this study, we introduced and examined two copulas of the following forms:

C(x, y;α) = xy + a log [1 + bxcyc(1− x)(1− y)] , (x, y) ∈ [0, 1]2,

and

C(x, y;α) = xy + axcyc
(
eb(1−x)(1−y) − 1

)
, (x, y) ∈ [0, 1]2,

where α = (a, b, c). The logarithmic-type copula is totally new, whereas the exponential-type
copula can be viewed as a three-parameter generalization of the Celebioglu-Cuadras copula.
The range of admissible values for a, b, and c, were determined. In addition, we emphasized
their main features. Among other results, it was demonstrated that they possess interesting
shapes, are diagonally symmetric, have manageable series expansions, satisfy precise first-
order copula orders, have a versatile quadrant dependence, have no tail dependence, are
not Archimedean, are typically not radially symmetric, and can model a weak or moderate
dependence with the rho of Spearman as a benchmark. Although the contributions are mostly
theoretical, the suggested copulas provide a foundation for cutting-edge dependence models
that may be useful in a number of domains. Finally, our results indicate some two-dimensional
inequalities that may be of independent interest.
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