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NON-DEGENERATE ROTATIONAL SURFACES OF COORDINATE FINITE II-TYPE
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Abstract. We study rotational surfaces in the 3-dimensional Euclidean space E3. Furthermore,
We classify non-degenerate rotational surfaces in E3 in terms of its finite Chen type Gauss map.
We show that the only rotational surfaces in E3 whose Gauss map is of coordinate finite type are
those of constant mean curvature.
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1. Introduction

The idea of surfaces of finite type was born in the early 1970s by B-Y. Chen [12], and since
then, this field of research has been spread widely and became a source of research for many
geometers up to this moment.
LetM be a surface in the Euclidean 3-space E3 with z is its isometric immersion. Denote

by ∆I the Laplacian operator ofM acting on the space of regular functions C∞(S). For any
function h referred to the system of coordinates ofM , if ∆Ih = λh, then we say that h is an
eigenfunction of ∆I corresponding to the eigenvalue λ ∈ R. When λ = 0, then we say h is
harmonic. Following this, we say that a surfaceM is of finite I-type, if its position vector z
can be decomposed as a finite sum of eigenvectors of ∆I ofM , that is

(1) z = c+ z1 + z2 + . . .+ zk,
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where c is a fixed vector, and

(2) ∆Izi = λi zi, i = 1, . . . , k,

λ1, λ2, . . . , λk are eigenvalues of the operator ∆I .
A special case followed in [23] when T. Takahashi showed that a surface M for which

∆Iz = λz i.e. for which all coordinate functions are eigenfunctions of ∆I with the same
eigenvalue λ are either the minimals with λ = 0 or the spheres with eigenvalue λ = 2. As a
generalization of this, one can study surfaces in E3 whose position vector z satisfies

(3) ∆Iz = Pz,

where P ∈ R3×3. Surfaces satisfying the above condition are called of coordinate finite type.
This kind of research can be also applied to any smooth map, not only for the position vector

of the surface, i.e., the normal vector ξ of a surface [13].
The theory of Gauss map is always one of the interesting topics in a Euclidean and pseudo-

Euclidean space, see for example [7, 14–17,19]. Considering condition (3), we ask:
"Find all surfaces in E3 whose normal vector ξ satisfies

(4) ∆Iξ = Pξ, P ∈ R3×3”.

According to relation (4), tubes, quadric surfaces, ruled surfaces, cyclides of Dupin, heli-
coidal surfaces, and surfaces of revolution were investigated in [2, 4, 5, 9–11,18] respectively.
In [6] authors studied the class of tubular surfaces according to (4) by applying the Laplacian
to the second fundamental form ofM . Recently, in [3] similar study has been done for the
classes of ruled and quadric surfaces.

2. Fundamentals

LetM be a regular surface in E3 given by a patch z = z(u1, u2) on a region U := (a, b)× R

of R2. We define the second fundamental form II ofM by

(5) II = bijdu
iduj.

For any function h referred to the system of coordinates ofM , the second Laplace operator
is defined by

(6) ∆IIh = −bij∇II
i h/j,
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where ∇II
i is the covariant derivative in the ui direction regarding the second fundamental

form [1].
In [8] authors classified the rotational surfaces in the Lorentz-Minkowski space in terms of

coordinate finite type regarding the second fundamental form. An interesting study can be
drawn by applying relation (6) using the definition of the fractional vector operators [20].

Our main result is the following

Theorem 1. The only rotational surfaces in E3 whose Gauss map of coordinate finite type are those

whose mean curvature H is constant.

3. Non-degenerate rotational surfaces

Let C be a regular curve lies on the x1x3-plane parametrized by

r(s) = (a(s), 0, b(s)), s ∈ J, (J ⊂ R),

where a, b are regular functions and a > 0. When C is revolved about the x3-axis, the resulting
point setM is called the rotational surface or surface of revolution generated by C which is
called the profile curve of M . In this case, the x3-axis is called the axis of revolution of M .
Then the position vector ofM is given by [18]

(7) r(s, t) =
(
a(s) cos t, a(s) sin t, b(s)

)
, s ∈ J, 0 ≤ t < 2π.

Suppose that C is arc-length parametrized, then

(8) (a′)2 + (b′)2 = 1,

where ′ := d
ds
. Moreover, if a′b′ = 0, then one of the functions a or b is constant, andM would

be part of a plane or a circular cylinder. In this case,M would consist only of parabolic points,
a case that has been excluded [22].

The partial derivatives of (7) are

rs = (a′(s) cos t, a′(s)sint, b′(s)) ,

and
rt = (−a(s) sin t, b(s) cos t, 0)

Computing the components gij of I , we get

g11 =< rs, rs >= 1, g12 =< rs, rt >= 0, g22 =< rt, rt >= a2.
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Let κ denotes the curvature of the curve C. Then the Gauss and the mean curvature ofM
are respectively

K =
κb′
a

= −a′′
a
, 2H = κ+

b′
a
.

The Gauss map ξ ofM is given by

(9) ξ(s, t) =
rs × rt√

g
=
(
− b′ cos t,−b′ sin t, a′

)
,

where g := det(gij).
The components bij of II are given as follows

b11 = κ, b12 = 0, b22 = ab′.

The Laplacian ∆ in terms of local coordinates (s, t) ofM can be expressed as follows

∆ = −1

κ

∂2

∂s2
− 1

ab′
∂2

∂t2
+

1

2

(
κ′
κ2
− a′b′+ κaa′

κab′

)
∂

∂s
.(10)

On account of (8) we put

(11) a′ = cos β, b′ = sin β,

where β = β(s). Then κ = β′ and the parametric representation (9) of the normal vector ξ of
M becomes

(12) ξ(s, t) =
(
− sinβcost,−sinβsint, cosβ

)
.

Also relation (10) takes the following form

∆ = − 1

β′
∂2

∂s2
− 1

asinβ

∂2

∂t2

+
1

2

(
β′′
β′2
− cosβsinβ + aβ′cosβ

aβ′sinβ

)
∂

∂s
.(13)

The mean and the Gaussian curvature become

(14) 2H = β′+ sin β

a
,

(15) K =
β′ sin β
a

.

Let (ξ1, ξ2, ξ3) be the coordinate functions of (9). From (13), one can find

(16) ∆ξ1 =

(
β′′cosβ

2β′
− 1

a
+
H cos2 β

sinβ
− β′sinβ

)
cost,
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(17) ∆ξ2 =

(
β′′cosβ

2β′
− 1

a
+
H cos2 β

sinβ
− β′ sin β

)
sin t,

(18) ∆ξ3 =
β′′
2β′

sinβ + β′cosβ +Hcosβ.

Now we will study surfaces of revolution in E3 whose Gauss map satisfies the relation

(19) ∆ξ = Pξ,

where P ∈ R3×3. We denote by λuv, u, v = 1, 2, 3 be the entries of the matrix P . From (19) and
taking into account relations (16-18), we have(

β′′ cos β

2β′
− 1

a
+
H cos2 β

sin β
− β′sinβ

)
cost

= −µ11sinβ cos t− µ12sinβ sin t+ µ13cosβ,(20)
(
β′′
2β′

cosβ − 1

a
+
H cos2 β

sin β
− β′sinβ

)
sint

= −µ21sinβcost− µ22sinβ sin t+ µ23cosβ,(21)

β′′
2β′

sinβ + β′cosβ +H cos β

= µ31sinβ cos t− µ32sinβsint+ µ33cosβ.(22)

Differentiating (20) and (21) twice with respect to v we obtain(
β′′ cos β

2β′
− 1

a
+
H cos2 β

sin β
− β′ sin β

)
cos t

= −µ11 sin β cos t− µ12 sin β sin t,

(
β′′ cos β

2β′
− 1

a
+
H cos2 β

sin β
− β′ sin β

)
sin t

= −µ21 sin β cos t− µ22 sin β sin t.

Thus we have µ13 = µ23 = 0. From (22) it can be easily verified that µ31 = µ32 = 0. Also the
functions sin t, cos t are linearly independent of the variable t, so finally we get µ11 = µ22 and
µ12 = µ21 = 0. For simplicity we put µ11 = µ22 = m and µ33 = n. Then the system of equations
(20), (21) and (22) reduces to the following two equations

(23) β′′ cos β

2β′
− 1

a
+
H cos2 β

sin β
− β′ sin β = −m sin β,
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(24) β′′ sin β
2β′

+ β′ cos β +H cos β = n cos β.

We obtain the following cases:
Case I.m = n = 0. Equations (23) and (24) become

(25) β′′ cos β

2β′
− 1

a
+
H cos2 β

sin β
− β′ sin β = 0,

(26) β′′ sin β
2β′

+ β′ cos β +H cos β = 0.

We multiply (25) by sin β and (26) by − cos β then we add the resulting of these two
equations it follows β′ + sinβ

a
= 2H = 0. Consequently, M , being a minimal surface of

revolution, is a catenoid.
Case II.m = n 6= 0. Equations (23) and (24) become

(27) β′′ cos β

2β′
− 1

a
+
H cos2 β

sin β
− β′ sin β = −m sin β,

(28) β′′ sin β
2β′

+ β′ cos β +H cos β = m cos β.

Wemultiply (27) by sinβ and (28) by−cosβ thenwe add the resulting of these two equations
it follows β′+ sinβ

a
= 2H = m. Consequently,M has a none zero constant mean curvature.

Case III.m 6= 0, n = 0. Equations (23) and (24) become

(29) β′′ cos β

2β′
− 1

a
+
H cos2 β

sinβ
− β′ sin β = −msinβ,

(30) β′′ sin β
2β′

+ β′ cos β +Hcosβ = 0.

Wemultiply (29) by sinβ and (30) by−cosβ thenwe add the resulting of these two equations
which follow

β′+ sinβ

a
= m sin2 β,

or

(31) β′ = m sin2 β − sinβ

a
.

Differentiating the last equation we have

(32) β′′ = 2mβ′sinβcosβ − β′cosβ
a

+
sinβcosβ

a2
.
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On account of (3) relation (32) becomes

(33) β′′ =
(
2m2 sin2 β − 3msinβ

a
+

2

a2
)
sinβcosβ.

Taking into account (14) We write (30) as follows

(34) β′′ = − β′
sinβ

(
3β′cosβ +

1

a
sinβcosβ

)
,

where because of (3) becomes

(35) β′′ =
(1

a
−msinβ

)(
3msinβ − 2

a

)
sinβcosβ.

From (33) and (35) we have

(36) 5m2a2 sin2 β + 8ma sin β + 4 = 0.

The last equation is a second-order polynomial of the variablema sin βwhich has no solution.
So in this case condition (19) cannot be satisfied.

Case IV. n 6= 0,m = 0. Equations (23) and (24) become

(37) β′′ cos β

2β′
− 1

a
+
H cos2 β

sinβ
− β′ sin β = 0,

(38) β′′sinβ
2β′

+ β′cosβ +H cos β = n cos β.

Wemultiply (37) by sinβ and (38) by−cosβ thenwe add the resulting of these two equations
which follow

β′+ 1

a
sinβ = ncos2β,

or

(39) β′ = n cos2 β − 1

a
sinβ.

Differentiating the last equation we have

(40) β′′ = −2nβ′sinβcosβ −
a
β′cosβ +

1

a2
sinβcosβ.

From (39) and (40) relation (38) becomes

(41) n2(5 sin4 β − 6 sin2 β + 1)a2 + 4n sin β(2 sin2 β − 1)a+ 4 sin2 β = 0.

Equation (41) as a second-degree polynomial of a, cannot be satisfied for all values of a(s)

unless only when all coefficients equal zero. A contradiction since we will have n = 0.
Case IV. n 6= 0,m 6= 0,m 6= n.
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Wemultiply (23) by sinβ and (24) by−cosβ thenwe add the resulting of these two equations
it follows

β′+ 1

a
sinβ = msin2β + n cos2 β,

or

(42) β′ = m sin2 β + n cos2 β − sin β

a
.

Differentiating the last equation we have

(43) β′′ = 2(m− n)β′sinβcosβ − 1

a
β′ cos β +

1

a2
sinβcosβ.

On account of (42) and (43) relation (24) becomes

(5(m− n)2 sin4 β + 6n(m− n) sin2 β + n2)a2

−4sinβ(2(m− n) sin2 β + n)a+ 4 sin2 β = 0.(44)

In the same way, it can be easily verified that equation (44), as a second-degree polynomial
of a, cannot be satisfied for all values of a(s) unless only when all coefficients equal zero. A
contradiction, and so our theorem is proved.

References

[1] H. Al-Zoubi, A. Dababneh, M. Al-Sabbagh, Ruled surfaces of finite II-type, WSEAS Trans. Math. 18 (2019),
1-5.

[2] H. Al-Zoubi, T. Hamadneh, M. Abu Hammad, M. Al-Sabbagh, Tubular surfaces of finite type Gauss map, J.
Geom. Graph. 25 (2021), 45-52.

[3] H. Al-Zoubi, T. Hamadneh, M. Abu Hammad, M. Al-Sabbagh, M. Ozdemir, Ruled and quadric surfaces
satisfying4IIN = λN, Symmetry. 15 (2023), 300. https://doi.org/10.3390/sym15020300.

[4] H. Al-Zoubi, H. Alzaareer, T. Hamadneh, M. Al Rawajbeh, Tubes of coordinate finite type Gauss map in the
Euclidean 3-space, Indian J. Math. 62 (2020), 171-182.

[5] H. Al-Zoubi, T. Hamadneh, A. Alkhatib, Quadric surfaces of coordinate finite type Gauss map in the
Euclidean 3-space, Indian J. Math. 64 (2022), 385–399.

[6] H. Al-Zoubi, T. Hamadneh, H. Alzaareer, M. Al-Sabbagh, Tubes in the Euclidean 3-space with coordinate
finite type Gauss map, in: 2021 International Conference on Information Technology (ICIT), IEEE, Amman,
Jordan, 2021: pp. 85-88. https://doi.org/10.1109/ICIT52682.2021.9491118.

[7] H. Al-Zoubi, M. Al-Sabbagh, Anchor rings of finite type Gauss map in the Euclidean 3-space, Int. J. Math.
Comput. Methods. 5 (2020), 9-13.

[8] H. Al-Zoubi, A.K. Akbay, T. Hamadneh, M. Al-Sabbagh, Classification of surfaces of coordinate finite type
in the Lorentz-Minkowski 3-space, Axioms. 11 (2022), 326. https://doi.org/10.3390/axioms11070326.

https://doi.org/10.3390/sym15020300
https://doi.org/10.1109/ICIT52682.2021.9491118
https://doi.org/10.3390/axioms11070326


Asia Pac. J. Math. 2023 10:9 9 of 9

[9] C. Baikoussis, D.E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), 355-359. https:
//doi.org/10.1017/s0017089500008946.

[10] C. Baikoussis, F. Denever, P. Emprechts, L. Verstraelen, On the Gauss map of the cyclides of Dupin, Soochow
J. Math. 19 (1993), 417-428.

[11] C. Baikoussis, L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II. 2
(1993), 31-42.

[12] B.Y. Chen, Total mean curvature and submanifolds of finite type, Second edition, World Scientific, Singapore,
(2015).

[13] B. Chen, P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), 161-186.
https://doi.org/10.1017/s0004972700013162.

[14] M.K. Choi, D.S. Kim, Y.H. Kim, Helicoidal surfaces with pointwise 1-type gauss map, J. Korean Math. Soc.
46 (2009), 215-223. https://doi.org/10.4134/JKMS.2009.46.1.215.

[15] M. Choi, D.S. Kim, Y.H. Kim, D.W. Yoon, Circular cone and its Gauss map, Colloq. Math. 129 (2012),
203-210. https://doi.org/10.4064/cm129-2-4.

[16] S.M. Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J.
Math. 19 (1995), 351–367. https://www.jstor.org/stable/43685932.

[17] S.M. Choi, On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space, Tsukuba J. Math. 19
(1995), 285–304. https://www.jstor.org/stable/43685928.

[18] F. Dillen, J. Pass, and L. Verstraelen, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad.
Sinica 18 (1990), 239-246.

[19] U. Dursun, Flat surfaces in the Euclidean space E3 with pointwise 1-type Gauss map, Bull. Malays. Math.
Sci. Soc. (2) 33 (2010), 469–478.

[20] M. Mhailan, M. Abu Hammad, M. Al Horani, R. Khalil, On fractional vector analysis, J. Math. Comput. Sci.
10 (2020), 2320-2326. https://doi.org/10.28919/jmcs/4863.

[21] Z.M. Nemrawi, Levels of understanding of trigonometric functions (sine, cosine, tangent) by mathematics
students at Al-Zaytoonah University of Jordan, Sohag Univ. Int. J. Educ. Res. 74 (2020), 176-203.

[22] S. Stamatakis, H. Al-Zoubi, Surfaces of revolution satisfying 4IIIx = Ax, J. Geom. Graph. 14 (2010),
181-186.

[23] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385. https:
//doi.org/10.2969/jmsj/01840380.

https://doi.org/10.1017/s0017089500008946
https://doi.org/10.1017/s0017089500008946
https://doi.org/10.1017/s0004972700013162
https://doi.org/10.4134/JKMS.2009.46.1.215
https://doi.org/10.4064/cm129-2-4
https://www.jstor.org/stable/43685932
https://www.jstor.org/stable/43685928
https://doi.org/10.28919/jmcs/4863
https://doi.org/10.2969/jmsj/01840380
https://doi.org/10.2969/jmsj/01840380

	1. Introduction
	2. Fundamentals
	3. Non-degenerate rotational surfaces
	References

