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Abstract. Considering an extreme shock maintenance model for a degenerative simple repairable system,
explicit expression for the long run average cost under the bivariate replacement policy (U,N) has been
obtained. Comparison of this bivariate optimal replacement policy (U,N)∗ with the univariate optimal
replacement policies U∗ and N∗ is also carried out.
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1. Introduction

The study of replacement model for a simple repairable system is a fundamental and important
problem in classical reliability theory. R.E. Barlow and Hunter (1960) proposed and studied the basic
replacement policies. R.E. Barlow and F. Proschan (1965) have introduced age replacement model [3].
P. Govindaraju, U. Rizwan and V. Thangaraj (2011) have studied an extreme shock maintenance model
under a bivariate replacement policy [6]. D. Babu, P. Govindaraju and U. Rizwan (2018) introduced
and studied replacement models where the consecutive repair time follow an increasing partial product
process [1]. A common assumption in replacement problems is that the repair of a failed system may
yield a functions system, which may be either as good as new or as old as just prior to failure.

In this paper, we study an extreme shock maintenance model, we present the maintenance problem
using the bivariate replacement policy (U,N). We also show that the bivariate optimal replacement
policy (U,N)∗ is better than the univariate optimal replacement U∗ and N∗ policies.

2. Model Description

Definition 1. Partial product process (Babu, Govindaraju and Rizwan (2019))
Let {Xn, n = 1, 2, 3, . . .} be a sequence of independent and non-negative random variables and let
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F (x) be the distribution function of X1. Then {Xn, n = 1, 2, 3 . . .} is called partial product process,
if the distribution function of Xk+1 is F (αkx) (k = 1, 2, 3 · · · ), where αk > 0 are real constants and
αk = α0α1α2 . . . αk−1. In what follows, F (x) denotes the distribution function of non-negative random
variable X1.
Definition 2. A partial product process is called a decreasing partial product process, if α0 > 1 and is
called an increasing partial product process, if 0 < α0 < 1. It is clear that if α0 = 1, then the partial product
process is a renewal process.
Lemma1. LetE(Y1) = µ, var(Y1) = σ2.Then for k = 1, 2, 3, . . . . E (Yk+1) =

µ

β2k−1
0

and var(Yk+1) =
σ2

β02
k ,

where β0 > 0.

Definition 3. A bivariate replacement policy (U,N) is a replacement model under which the system is
replaced at the time of N -th failure or the total repair time exceeds U , whichever occurs earlier.

We make the following assumptions about the model for a simple degenerative reparable system
subject to shocks.

Assumption 2.1: At time t = 0, a new system is installed . Whenever the system fails it will be
repaired. The System will be replaced by an identical new one, sometimes later.

Assumption 2.2: Once the system is operating , the shocks from the environment arrive according
to a renewal process. LetXni, i = 1, 2, . . . be the intervals between the (i− 1)-st and i-th shock,
after the (n− 1)-st repair. Let E(X11) = λ. Assume that Xni, i=1,2,. . .. are independent and
identically distributed random variables, for all n ∈ N.

Assumption 2.3: Let Yni, i = 1, 2, . . . be the sequence of the random amount of damage produced
by the i-th shock, after the (n − 1)-st repair. Let E(Y11) = µ. Then {Yni, i = 1, 2, . . .} are iid
sequences, for all n ∈ N. If the system fails, it is closed, so that the random shocks have no effect
on the system during the repair time. In the n-th operating stage, that is, after the (n− 1)-st
repair, the system will fail, if the amount of the shock damage first exceed α2n−1

0 M, where
0 < α0 ≤ 1 andM is a positive constant.

Assumption 2.4: LetZn, n = 1, 2, . . . be the repair time after the n-th repair and {Zn, n = 1, 2, . . .}

constitute a non decreasing Partial product process with E(Z1) = δ and ratio β0, such that
0 < β0 < 1. Nn(t) is the counting process denoting the number of shocks after the (n− 1)-st
repair. It is clear that E(Zn) =

µ

β2n−1
0

.

Assumption 2.5: Let r be the reward rate per unit time of the system, when it is operating and c be
the repair cost rate per unit time of the system and the replacement cost is R. The replacement
time is a random variable Z with E(Z) = τ.

Assumption 2.6: The sequences {Xni, i = 1, 2, . . .} , {Yni, i = 1, 2, . . .} , {Zn, n = 1, 2, . . .} and Z
are independent.

Assumption 2.7: The replacement policy (U,N) is adapted.
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3. The Bivariate Replacement Policy (U,N)

In this section, we study an extreme shock model for the maintenance problem of a simple repairable
system under (U,N) policy. Let

Ln = min{l : Ynl > α2n−1

0 M}

and

Wn =

Ln∑
i=1

Xni.

Thus Ln is the number of shocks until the first deadly shock occurred following (n−1)-st failure and Ln
has a geometric distribution with P [Ln = k] = pnq

k−1
n , k = 1, 2, . . . , where pn = P [Ynl > α2n−1

0 M ] and
qn = 1− pn.We have E(Ln) =

1

pn
. Since {Xni, i = 1, 2, . . .} and {Yni, i = 1, 2, . . .} are independent, it

is clear that Ln and {Xni}are independent. By Wald’s equation

E(Wn) = E

(
Ln∑
i=1

Xni

)
= E (Ln) E (Xn1)

=
λ

pn
.

The distribution function ofWn is Fn( · ).
The working age T of the system at time t is the cumulative life time given by

T (t) =

 t− Vn, Un + Vn ≤ t < Un+1 + Vn

Un+1, Un+1 + Vn ≤ t < Un+1 + Vn+1,

where Un =
∑n

i=1Wi and Vn =
∑n

i=1 Zi and U0 = V0 = 0.

Let U1 be the first replacement time; in general for n = 2, 3, . . . , let Un be the time between the
(n− 1)-st replacement and the n-th replacement. Thus the sequence {Un, n = 1, 2, . . .} forms a renewal
process. A cycle is completed, if a replacement is done. A cycle is actually the time interval between
the installation of the system and the first replacement or the time interval between two consecutive
replacements. Finally, the successive cycles together with the cost incurred in each cycle will constitute
a renewal reward process.

The length of the cycle under the replacement policy (U,N) is

W =

[
U +

η∑
n=1

Yn

]
χ(Mn>U) +

[
N∑
n=1

Wn +

N−1∑
n=1

Yn

]
χ(Mn≤U) + Z,
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where η = 0, 1, 2, . . . N − 1 is the number of failures before the total repair time of the system exceeds
U and χ(A) denotes the indicator function. The expected length of a cycle is

E(W ) = E

[
U +

(
η∑

n=1

Yn

)
χ(Mn>U)

]

+E

[(
N∑
n=1

Wn +

N−1∑
n=1

Yn

)
χ(Mn≤U)

]
+ E(Z)

= E

[[
Uχ(Mn>U)

]
+ E

(
η∑

n=1

Yn

)
χ(Mn>U)

]

+E

[
E

(
N∑
n=1

Wn +
N−1∑
n=1

Yn

)
χ(Mn≤U)

∣∣∣∣Mn = u

]
+ E(Z)

E(W ) = UGN (U) + µ

[
G2(U) +

∞∑
n=2

Gn+1(U)

β2
n−1

0

]
E[χ(MN≤U<Mn)

+

∫ U

0
E

[
N∑
n=1

Wn

]
udGN (u)

+

∫ U

0

[
N−1∑
n=1

E(Yn)

]
dGN (u) + τ

= UGN (U) + µ

[
G2(U) +

∞∑
n=2

Gn+1(U)

β2
n−1

0

]
P (MN ≤ U < Mn)

+

N∑
n=1

λ

pn

∫ U

0
udGN(u) + µ

[
1 +

N−1∑
n=2

1

β2
n−2

0

]
GN (U) + τ

= UGN (U) + µ

[
G2(U) +

∞∑
n=2

Gn+1(U)

β2
n−1

0

] [
Gn(U)−GN (U)

]

+

N∑
n=1

λ

pn

∫ U

o
udGN (u) + µ

[
1 +

N−1∑
n=2

1

β2
n−2

0

]
GN (U) + τ

= UGN (U) + µ

[
G2(U) +

∞∑
n=2

Gn+1(U)

β2
n−1

0

]
GN (U)

+
N∑
n=1

λ

pn

∫ U

o
udGN (u) + µ

[
1 +

N−1∑
n=2

1

β2
n−2

0

]
+ τ. (1)

Let C(U,N) be the long run average cost per unit unit per time under the bivariate replacement policy
(U,N).
By the elementary renewal theorem , the long run average cost per unit time under the replacement
policy (U,N) is given by
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C(U,N) =
expected cost incurred in a cycle

expected length of a cycle

=


E

[[
c

η∑
n=1

Yn − rU

]
χ(Mn>U)

]

+E

[[
c

N−1∑
n=1

Yn − r
N∑
n=1

Wn

]
χ(Mn≤U)

]
+R+ cpE(Z)


E(W )

. (2)

Consider

E

[
c

(
η∑

n=1

Yn

)
χ(Mn>U)

]
= E

[
c

(
η∑

n=1

Yn

)
χ(MN≤U<Mn)

]

= c

η∑
n=1

E(Yn)E[χ(MN≤U<Mn)]

= c

η∑
n=1

E(Yn)P [(MN ≤ U < Mn)]

= cµ

(
G2(U) +

∞∑
n=2

Gn+1(U)

β2
n−1

0

)[
GN (U)

]
(3)

Now,

E

[(
c
N−1∑
n=1

Yn

)
χ(Mn≤U)

]
= E

[(
c
N−1∑
n=1

Yn

∣∣∣∣MN = Uχ(Mn≤U)

)]

=

∫ U

o
cE

(
N−1∑
n=1

Yn

∣∣∣∣MN = U

)
dGn(U)

=

∫ U

o
c

(
N−1∑
n=1

E(Yn)

)
dGn(U)

=
N−1∑
n=1

E(Yn)

∫ U

o
cdGnU

=

N−1∑
n=1

E(Yn)cGn(U)

= cµ

[
1 +

N−1∑
n=2

1

β2
n−2

0

]
Gn(U) (4)

E

[(
r

N∑
n=1

Wn

)
χ(Mn≤U)

]
= E

[
rE

(
N∑
n=1

Wn

)∣∣∣∣Mn = Uχ(MN≤U)

]

=

∫ U

o
rE

(
N∑
n=1

Wn

∣∣∣∣MN = U

)
dGn(U)
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=

∫ U

o
r

(
N∑
n=1

E(Wn)

)
dGn(U)

E

[(
r

N∑
n=1

Wn

)
χ(Mn≤U)

]
= r

N∑
n=1

E(Wn)

∫ U

o
dGn(U)

= r
N∑
n=1

E(Wn)Gn(U)

=
N∑
n=1

rλ

pn
Gn(U) (5)

and

E
[
rUχ(Mn>U)

]
= rE

[
Uχ(Mn>U)

]
= rUE

[
χ(Mn>U)

]
= rUGN (U) (6)

On substituting (1), (3) ,(4), (5) and (6) in equation (2), we obtain the following.

Theorem 3.1 For the model described in section 2, the long run average cost per unit time under the
bivariate replacement policy (U,N) for a simple degenerative repairable is given by

C(U,N) =



[
cµ

[
G2(U) +

∞∑
n=2

Gn+1(U)

β2
n−1

0

]
[GN (U)]− rUGN (U)

]
+

cµ

[
1 +

N−1∑
n=2

1

β2
n−2

0

]
GN (U)−

N∑
n=1

rλ

pn
rGn(U) +R+ cpτ

+



UGN (U) + µ

[
G2(U) +

∞∑
n=2

Gn+1(U)

β2
n−1

0

]
[GN (U)] +

N∑
n=1

rλ

pn

∫ U

o
udGN (u) + µ

[
1 +

N−1∑
n=2

1

β2
n−2

0

]
+ τ


. (7)

Deductions. The long run average cost C(U,N) is a bivariate function in U andN. Obviously, whenN
is fixed, C(U,N) is a function of T.
For fixed N = m, it can be written as

C(U,N) = Cm(U), m = 1, 2, . . . .

Thus, for a fixedm,we can find U∗m by analytical or numerical methods such that Cm(U∗m) is minimized.
That is, when N = 1, 2, . . . ,m, . . . ,we can find U∗1 , U∗2 , U∗3 , . . . , U∗m, . . . respectively, such that C1(U

∗
1 ),

C2(U
∗
2 ), . . . , Cm(U

∗
m), . . . are minimized. Because the total life -time of a multistate degenerative system

is limited, the minimum of the long-run average cost per unit time exists. So we can determine the
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minimum of the long-run average cost per unit time based on C1(U
∗
1 ), C2(U

∗
2 ), . . . , Cm(U

∗
m), . . . . Then,

if the minimum is denoted by Cn(U∗n),we obtain the bivariate optimal replacement policy (U,N)∗ such
that

C((U,N)∗) = min
N

Cn(U
∗
n)

= min
N

[min
U
C(U,N)]

≤ C(∞, N)

≡ C(N∗)

the optimal policy (U,N)∗ is better than the optimal policyN∗. Moreover, under some mild conditions,
an optimal replacement policy N∗ is better than the optimal policy U∗. so under the same conditions,
an optimal policy (U,N)∗ is better than the optimal replacement policies N∗ and U∗.

4. Numerical Example

In this section, we give an example to illustrate theoretical results. Assume that {Xi, i = 1, 2, 3, . . .}

is a sequence of independent random variables and each Xi has an exponential distribution exp (λi)

with λi 6= λj for i 6= j. Then the probability density function of∑n
i=1Xi is given by

fn(t) =


(−1)n−1λ1λ2 · · ·λn

n∑
i=1

exp (−λit)
n∏
j=1
j 6=i

λi−1 − λj−1
, x ≥ 0

0, otherwise.

Let λi =
λ

α02i−1
for i = 1, 2, 3, . . . . Then the distribution function of∑n

i=1Xi is

Fn(T ) = (−1)n−1
(
λ

α0

)n(1

2

)n(n−1)
2

n∑
i=1

1− exp
(
− λ
α02i−1T

)
n∏
j=1
j 6=i

(
λ

α02i−1
− λ

α02j−1

) .

The distribution function of∑n
i=1 Yi is

Gn(T ) = (−1)n−1
(
µ

β0

)n(1

2

)n(n−1)
2

n∑
i=1

1− exp
(
− µ
β02i−1T

)
n∏
j=1
j 6=i

(
µ

β02i−1
− µ

β02j−1

) .
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Let the parameter values be

λ = 500 c = 10 R = 50000

µ = 35 r = 450 τ = 15

α0 = 1.05 β0 = 0.95 cp = 3

In this case, assuming equation (7) and over passing numerical calculations, we arrive at (U,N)∗ =

(210, 19), such that C(U,N) is minimum at (U,N)∗ and the long run average cost per unit per unit time
is C(U,N) = C(210, 19) = −23.6798monetary units. The value of C(U,N) for U ranging from 110 to
250 time units in steps of 10 and N ranging from 16 to 20 are evaluated and given in table 1. Further
these values are plotted in the figure 1.

Table 1. Values of C(U,N) against (U,N)

(U,N) C(U,N) (U,N) C(U,N) (U,N) C(U,N)

(110, 16) 42.2416 (210, 17) 31.8621 (160, 19) 12.6432

(120, 16) 38.1359 (220, 17) 33.7624 (170, 19) 5.7829

(130, 16) 36.9762 (230, 17) 34.5624 (180, 19) −2.1468

(140, 16) 35.7201 (240, 17) 35.7891 (190, 19) −11.5436

(150, 16) 35.0065 (250, 17) 36.1243 (200, 19) −18.7651

(160, 16) 34.8756 (110, 18) 46.9832 (210,19) (−23.6798)

(170, 16) 34.7543 (120, 18) 35.7413 (220, 19) −15.3214

(180, 16) 34.6254 (130, 18) 34.6549 (230, 19) −7.4926

(190, 16) 34.5544 (140, 18) 32.8461 (240, 19) 6.1374

(200, 16) 32.1368 (150, 18) 32.7528 (250, 19) 6.9387

(210, 16) 31.8465 (160, 18) 32.7109 (110, 20) 29.4235

(220, 16) 32.7892 (170, 18) 32.6655 (120, 20) 28.7952

(230, 16) 35.9184 (180, 18) 32.5041 (130, 20) 28.2134

(240, 16) 36.1325 (190, 18) 32.4438 (140, 20) 27.5436

(250, 16) 37.3587 (200, 18) 32.0987 (150, 20) 26.1243

(110, 17) 45.1789 (210,18) −31.9345 (160, 20) 25.8759

(120, 17) 44.2982 (220, 18) 34.5297 (170, 20) 24.3357

(130, 17) 43.8972 (230, 18) 35.8765 (180, 20) 22.9768

(140, 17) 42.7965 (240, 18) 36.1243 (190, 20) 22.8641

(150, 17) 41.5438 (250, 18) 38.8456 (200, 20) 22.5708

(160, 17) 40.3187 (110, 19) 32.9807 (210, 20) 21.9543

(170, 17) 38.1374 (120, 19) 30.7643 (220, 20) 24.8769

(180, 17) 35.9013 (130, 19) 25.8463 (230, 20) 29.1496

(190, 17) 32.8877 (140, 19) 21.9325 (240, 20) 32.5675

(200, 17) 32.7894 (150, 19) 18.0651 (250, 20) 34.8977
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Figure 1. Plot of C(U,N) against (U,N)

5. Conclusion

In this paper, we have considered an extreme shock maintenance model for a degenerative simple
repairable system. Explicit expression for the long run average cost under the bivariate replacement
policy (U,N) is derived. Comparison of this bivariate optimal replacement policy (U,N)∗ with the
univariate optimal replacement policies U∗ and N∗ is also carried out.
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