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Abstract. We introduce a generalization to the concept of metric where we define a metric function that
can assign a value to the (distance) among any finite number of points. In contrast to the other ways of
generalization where the number of points (n ≥ 2) is fixed, we allow n to vary under the same axiomatic
system. We highlight the superiority of the introduced metric and its properties. Then, we build the
related theory and define the corresponding notions, such as convergence and Cauchy-type conditions.
We prove some significant results concerning the convergence in the introduced metric space and establish
a particular form of completeness for some spaces of importance. In addition , we utilize the approach
presented here to directly extend the concept of the limit of a sequence from a single point to a set (compact
set). This limit generalization enables us to obtain a general form of convergence to some sequences that
are not convergent in the standard metric spaces.
2020 Mathematics Subject Classification. 11J83; 40A05.
Key words and phrases. generalized metric; convergence; Cauchy-type condition; complete spaces.

1. Introduction

There have been many attempts and approaches to generalize the notion of metric. These attempts
take mainly three different directions. One direction is through modifying or relaxing the axioms.
For instance, in [1], S. Czerwik introduced the b-metric via relaxing the triangle inequality: d(a, b) ≤
t[d(a, c) + d(c, b)] for some t ≥ 1. Another attempt in that direction appears in the notion of the
dislocated metric (see [2] and [3]). The idea of the dislocated metric is to allow the distance between a
point and itself to be positive (d(a, b) = 0⇒ a = b). On the other hand, allowing the distance between
two distinct points to be equal to zero gives the well-known pseudo-metric (a = b⇒ d(a, b) = 0 ) [4].
The second direction for generalizing metrics is via changing the range of the metric values. This
direction relies on replacing the ordered space (R,≤)with another general ordered space. W. S. Du
in [5] introduced the so-called tvs-cone metric d : X2 → P , where P is a specified set of cones in an
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ordered topological vector space. For more on cone metrics, see [5]. The third major approach to
generalizing the metric concept is achieved by enabling the metric function to assign a value for the
distance among more than two points. An early attempt in that direction was carried out by S. Gähler
in 1966 in the papers [6] and [7]. He introduced the concept of 2-metric d(a, b, c), where the domain
of a 2-metric on X is X3. He regarded the value of the 2-metric d(a, b, c) as the triangle’s area with
vertices a, b, and c. Later in 1992, B.C. Dhage tried to improve the work of S. Gähler, and he defined the
D-metric ( [8] and [9]). B.C. Dhage attempted to switch the geometric interpretation of the metric
d(a, b, c) from the area of the associated triangle to the perimeter of that triangle. However, early this
century, Z. Mustafa and B. Sims remarked on the D-metric [10], and they formulated a new system of
axioms to ensure the continuity of their introduced metric. In [11], Z. Mustafa and B. Sims defined the
so-called G-metric. Since the G-metric was introduced, it has attracted much attention and interest.
Many results related to the G-metric were obtained, especially in the area of the fixed point theory.
Also, there have been many attempts to take the notion of the G-metric to higher dimensions. For
example, K. A. Khan extended the idea in [11] for n ≥ 3, and he defined the generalized n-metric (
see [12] and [13]).

2. Construction

In this section, we introduce the definition of a multiple entries metric. We define a metric that is not
restricted to a certain number of points but rather can deal with any finite number of points. In the
coming, X will be a non-empty set, and P ∗(X) will denote the set of all non-empty finite subsets of X ,
while |U | is the number of the distinct elements of a set U ∈ P ∗(X).

Definition 2.1. Let X be a non-empty set, then we say that a non negative set function

d : P ∗(X) −→ [0,∞)

is a multiple points metric and denote it by MP-metric if it satisfies for all A,B ∈ P ∗(X) the following:

• (M1) d(A) = 0 if and only if |A| = 1.

• (M2) d(A) ≤ d(B) if A ⊆ B.

• (M3) d(A ∪B) ≤ d(A) + d(B) if A ∩B 6= φ .

• (M4) d(A ∪B) = d(A) if d(A ∪ {b}) = d(A) for all b ∈ B.

Then, the pair (X, d) is called MP-metric space.

Remark 2.2. In axiom M4, we can replace "if" with "iff," where the other direction of axiom M4 is already

satisfied by axiom M2, and it can be obtained as follows.

d(A) ≤ d(A ∪ {b}) ≤ d(A ∪B) = d(A) for all b ∈ B
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Remark 2.3. The axiomsM1,M2,M3, andM4 are independent from each other. In fact, to show the independence

of this axiomatic system, it is sufficient to construct set functions d1, d2, d3 and d4 such that di does not satisfy

that axiom Mi, but at the same time, di satisfies the rest of the axioms. Let X be a non-empty set and fix a ∈ X .

Define di : P ∗(X) −→ [0,∞); i = 1, 2, 3, 4 in the following way.

d1(A) = 1, for all A ∈ P ∗(X).

d2(A) =


0 if |A| = 1

1 if |A| > 1, and a ∈ A,

2 if |A| > 1, and a /∈ A.

d3(A) =


0 if |A| = 1,

1 if |A| = 2,

3 if |A| > 2.

d4(A) =Max{d(a, b) : a, b ∈ A}, where (X, d) = (R2, d) is the usual Euclidean metric.

Then, we can check that the axiomMj holds for di if and only if j 6= i . For example, to see that d4 does not

satisfy M4 we may consider the sets A = {(0, 0), (4, 0)} and B = {(3, 2), (1,−2)}.

Proposition 2.4. Let d : P ∗(X) −→ [0,∞) satisfy the axioms M2 and M3 on X and let A,B,C ∈ P ∗(X),

then

(i)- d(A) = d(B) if A = B. (Symmetry)

(ii)- d(A ∪B) ≤ d(A ∪ C) + d(C ∪B). (Triangle Inequality)

Proof. (i) follows fromM2 since A ⊆ B and B ⊆ A, while (ii) follows from a sequential use ofM2 and
M3 in the following way: d(A ∪B) ≤ d(A ∪B ∪ C) ≤ d(A ∪ C) + d(C ∪B). �

The following theorem reflects a side of the strength of the introduced MP-metric. It indicates that
once we have anMP-metric onX , we can restrict it to a specific subset of P ∗(X) to get a metric, D-metric,
G-metric, or a generalized n-metric. Therefore, we can import most of the theory of these metrics and
have it embedded into the MP-metric.

Theorem 2.5. Let d : P ∗(X) −→ [0,∞) be a set function satisfying the axioms M1, M2 and M3 onX , and let

d(k) denote the restriction of d to Xk, that is d(k)(a1, ..., ak) = d({a1, ..., ak}). Then

(i)- d(2) : X
2 −→ [0,∞) is a metric.

(ii)- d(3) : X
3 −→ [0,∞) is a symmetric D-metric.

(iii)- d(3) : X
3 −→ [0,∞) is a symmetric G-metric.

(iv)- d(n) : X
n −→ [0,∞) is a generalized n-metric.
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Proof. Direct calculations can lead to the desired results. However, for convenience, we will highlight
(iii), where we will state the axioms of the symmetric G-metric and indicate how they can be obtained.
The rest can be proven in the same way, where the reader may refer to the corresponding references for
more on the definitions and properties of these metrics.

(G1) d(3)(a, b, c) = 0 if a = b = c (byM1)
(G2) d(3)(a, a, b) > 0 if a 6= b (byM1)
(G3) d(3)(a, a, b) ≤ d(3)(a, b, c) (byM2)
(G4) d(3)(a, b, c) = d(3)(b, a, c) = d(3)(a, c, b) = ... (by Proposition 2.4)
(G5) d(3)(a, b, c) ≤ d({a, b, c, x}) (byM2)

≤ d(3)(a, x, x) + d(3)(x, b, c) (byM3 and Proposition 2.4)
(G6) d(3)(a, b, b) = d(3)(a, a, b) (by Proposition 2.4) �

Example 2.6. d : P ∗(R) −→ [0,∞) defined as d(A) = Max(A) − Min(A) is an MP-metric. It is a

natural MP-metric on R, as its restriction to two points is the standard metric on R. Indeed, we have that

d(2)(a, b) = d({a, b}) =Max({a, b})−Min({a, b}) = |a− b|.

Example 2.7. Let X be a non-empty set and d : P ∗(X) −→ [0,∞). Then, each of the following defines an

MP-metric on X .

(i) d(A) = |A| − 1.

(ii) d(A) = 0 if |A| = 1 and d(A) = 1 if |A| > 1.

3. Convergence on MP-metrics

We start this chapter by introducing a concept of dependency related to the MP-metric.

Definition 3.1. Let (X, d) be anMP-metric space, then we say that the elements ofA ∈ P ∗(X) are d-independent

(or simply, we say A is independent) if |A| = 1 or

d(A \ {a}) < d(A), ∀a ∈ A, for |A| > 1.

In the above definition, a finite non-empty set A is independent if every element a ∈ A contributes
to the value of d(A). On the other hand, we define the dependent set on A as follows.

Definition 3.2. Let (X, d) be an MP-metric space and A ∈ P ∗(X). The set of all dependent points on A is

denoted by D(A) and defined as

D(A) = {x ∈ X : d(A ∪ {x}) = d(A) }.

If needed, we may write Dd(A) to indicate the implemented MP-metric.

Example 3.3. Let (X, d) be an MP-metric then,
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(i)- D({a}) = {a} since D({a}) = {x ∈ X : d({a, x}) = d({a}) = 0} = {a} by M1.

(ii)-D({a, b}) = {x ∈ X : d({a, b, x}) = d({a, b})}. If (X, d) is the MP-metric spaces defined in Example

2.6 and a ≤ b then D({a, b}) is the closed interval [a, b].

Remark 3.4. Note that D(A) = D(B) does not imply that A = B; even A and B are both d-independent.

Consider the following example: let X = {x, y, z, u} where x, y, z, and u are four distinct points, and let d be

defined as in Example 2.7-(ii), then we have that {x, y} and {z, u} are d-independent, and

d({x, y}) = d({z, x, y}) = d({u, x, y}) = d({x, z, u}) = d({y, z, u}) = d({z, u}) = 1,

that is D({x, y}) = D({z, u}) = {x, y, z, u} but {x, y} 6= {z, u}.

Now, we are ready to introduce a major definition in this section. If no confusion can arise, we may
use d(a1, ..., an) to denote d({a1, ..., an}), and we will write lim

ni→∞
instead of lim

n1,...,nk→∞
.

Definition 3.5. Let (X, d) be anMP -metric space andD ⊆ X . Then, we say that a sequence xn is d-convergent

to D and write
d
lim
n→∞

xn = D if there is A ∈ P ∗(X) such that D = D(A) and:

(i)- lim
ni→∞

d({xn1 , xn2 ..., xnk} ∪A) = d(A) for all k ∈ N,

(ii)- lim inf
n−→∞

d(xn, a) = 0 for all a ∈ A.

For simplicity, we will say xn converges toD(A), and write limxn = D(A) to indicate that A satisfies
the convergence conditions in the above definition.

Remark 3.6. The second condition in Definition 3.5 is equivalent to that, for all a ∈ A, there exists a subsequence

xnm such that lim d(xnm , a) = 0. This result follows from the fact that for all m ∈ N there is xnm such that

nm ≥ m and

d(xnm , a) ≤ inf
n≥m

d(xn, a) +
1

m
≤ d(xnm , a) +

1

m
.

Proposition 3.7. (Continuity of the MP-metric ) Let (X, d) be an MP-metric space, and let (X, d(2)) be the

associated metric space (see Theorem 2.5).

(i)- If xn −→ a in (X, d(2)) then lim
n−→∞

d({xn, a1..., ak}) = d({a, a1..., ak}), ∀a1, ..., ak ∈ X.

(ii)- If xni −→ ai in (X, d(2)) ∀i = 1, ..., k, then lim
ni−→∞

d({xn1 , ..., xnk}) = d({a1..., ak}).

Proof. Generally, for any A ∈ P ∗(X) and x, y ∈ X , we can use the axioms M2 and M3 to obtain the
following inequalities d(A∪ {x}) ≤ d(A∪ {y}) + d(x, y), and d(A∪ {y}) ≤ d(A∪ {x}) + d(x, y),which
we combine to get

|d(A ∪ {x})− d(A ∪ {y})| ≤ d(x, y) (1)

(i)- A direct application of (1) yields |d({xn, a1..., ak})− d({a, a1..., ak})| ≤ d(xn, a).Hence, taking
the limit, we get

0 ≤ lim
n→∞

|d({xn, a1..., ak})− d({a, a1..., ak})| ≤ lim
n→∞

d(xn, a) = 0,
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which in turn gives the desired result.

(ii)-Repeating the use of (1) we get
|d({xn1 , ..., xnk})− d({a1..., ak})|

= |d({xn1 , ..., xnk})− d({a1..., ak}) + d({a1, xn2 ..., xnk})− d({a1.xn2 .., xnk})|

≤ |d({xn1 , ..., xnk})− d({a1, x2..., xnk})|+ |d({a1..., ak})− d({a1, xn2 ..., xnk})|

≤ d(xn1 , a1) + |d({a1, ..., ak})− d({a1, xn2 ..., xnk})|

= d(xn1 , a1) + |d({a1, ..., ak})− d({a1, xn2 ..., xnk}) + d({a1, a2, xn3 ..., xnk})− d({a1, a2, xn3 ..., xnk})|

≤ d(xn1 , a1) + |d({a1, xn2 ..., xnk})− d({a1, a2, xn3 ..., xnk})|+ |d({a1, ..., ak})− d({a1, a2, xn3 ..., xnk})|

≤ d(xn1 , a1) + d(xn2 , a2) + |d({a1, ..., ak})− d({a1, a2, xn3 ..., xnk})|

...

≤
k∑
i=1

d(xni , ai)

Therefore, lim
ni−→∞

|d({xn1 , ..., xnk})− d({a1..., ak})| ≤ lim
ni−→∞

k∑
i=1

d(xni , ai) = 0, �

Theorem 3.8. (Uniqueness of the limit) Let (X, d) be an MP-metric space. If xn is d-convergent in (X, d), then

the limit is unique.

Proof. Let A,B ∈ P ∗(X) and assume limxn = D(A) and limxn = D(B), we will show that D(A) =

D(B). First, note that the assumption limxn = D(A) implies that for all a ∈ A, there is a subsequence
(xnk) converging to a. Also, since limxn = D(B) we get

lim
nk−→∞

d({xnk} ∪B) = d(B)

⇒ d({a} ∪B) = d(B) ( by Proposition 3.7 )

⇒ a ∈ D(B) ( by Definition 3.2 )

⇒ A ⊆ D(B)

Combining this with the axiomM4, we get that d(A∪B) = d(B). Similarly, we can show thatB ⊆ D(A)

and d(A ∪B) = d(A). Hence, we obtain the equality

d(A) = d(B) (2)
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Now, let x ∈ D(A),

d(B) ≤ d({x} ∪B)

≤ d({x} ∪B ∪A)

= d(A) ( by M4 since [{x} ∪B] ⊆ D(A) )

= d(B) ( by equation (2) )

Thus, we have d({x} ∪ B) = d(B), which in turn implies x ∈ D(B). Therefore, we get D(A) ⊆ D(B)

and similarly we show D(B) ⊆ D(A) �

Proposition 3.9. Let (X, d) be an MP-metric space, and let (X, d(2)) be the associated metric space. (xn)

converges to a in (X, d(2)) if and only if it is d-convergent to D({a}) = {a} in (X, d).

Proof. For the first direction and since xn −→ a, it remains to check that

d({xn1 , ..., xnk , a}) −→ d({a}) for all k ∈ N,

which can be obtained from the given and the axiom M3 as follows

lim
ni−→∞

d({xn1 , ..., xnk , a}) ≤ lim
ni−→∞

k∑
i=1

d(xni , a) = 0 = d({a}).

The other direction follows from the axiom M1 by taking k = 1 in the definition of convergence in
the MP-metric spaces (Definition 3.5). lim

n→∞
d(xn, a) = d({a}) = 0. �

Corollary 3.10. Let (X, d) be an MP-metric space and let (X, d(2)) be the associated metric on X . If (xn)

converges to D(A) in (X, d) for some A ∈ P ∗(X) with |A| > 1 then xn does not converge in (X, d(2)).

Example 3.11. Consider the MP-metric space (R, d) as defined in Example 2.6. The sequence (xn) = (sinn) is

d-convergent to D({−1, 1}) = [−1, 1]. Note that

d(sinn1, ... sinnk,−1, 1) = max{sinn1, ... sinnk,−1, 1} −min{sinn1, ... sinnk,−1, 1}

= 2 = d(−1, 1)

Also, by the density of sinn in [−1, 1], there are two subsequences: sinnk −→ −1 and sinnl −→ 1. On the

other hand, the restriction of d to R2 is the usual distance metric d(a, b) = max{a, b} −min{a, b} = |a− b|,

and it is known that sinn is not convergent in (R, | · |).

4. Cauchy Type Condition on MP-metrics

Even though the convergence in MP-metric spaces does not necessarily imply the convergence in the
associated metric spaces, the convergence in MP-metric still reserves most of the useful results, such
as boundedness and a generalized form of the Cauchy condition (see Corollary 4.4 and Theorem 4.2
below). In this section, we will show some analogous results to those in the standard metric theory.
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Definition 4.1. Let (X, d) be an MP-metric space and r ≥ 0. Then we say that xn is r-Cauchy if there isN ∈ N

such that

lim
m−→∞

sup
ni>m

d(xn1 , xn2 , ..., xnk) = r for all k ≥ N

Theorem 4.2. Let (X, d) be anMP-metric space. If limxn = D(A) for someA ∈ P ∗(X), then (xn) is r-Cauchy,

and moreover r = d(A).

Proof. We will show that

lim
m−→∞

sup
ni≥m

d({xn1 , ..., xnk}) = d(A) for all k ≥ |A| = l.

First, note that since limxn = D(A), we have

lim
m−→∞

sup
ni>m

d({xn1 , ..., xnk} ∪A) = lim
ni−→∞

d({xn1 , ..., xnk} ∪A) = d(A) for all k ∈ N

Therefore,

d({xn1 , ..., xnl}) ≤ d({xn1 , ..., xnl} ∪A)

⇒ lim
m−→∞

sup
ni>m

d({xn1 , ..., xnl}) ≤ lim
m−→∞

sup
ni>m

d({xn1 , ..., xnl} ∪A)

⇒ lim
m−→∞

sup
ni>m

d({xn1 , ..., xnl}) ≤ d(A).

For the reverse inequality, we proceed as follows. The given limxn = D(A) implies that for each aj ∈ A,
there is a subsequence xnji such that xnji −→ aj . Thus, we get

sup
nji>m

d({xnj1 , ..., xnjk}) ≤ sup
ni>m

d({xn1 , ..., xnl}),

⇒ lim
m−→∞

sup
nji>m

d({xnj1 , ..., xnjl}) ≤ lim
m−→∞

sup
ni>m

d({xn1 , ..., xnl}),

⇒ lim
nji−→∞

d({xnj1 , ..., xnjl}) ≤ lim
m−→∞

sup
ni>m

d({xn1 , ..., xnl}),

⇒ d({a1, ..., al}) ≤ lim
m−→∞

sup
ni>m

d({xn1 , ..., xnl}),

⇒ d(A) ≤ lim
m−→∞

sup
ni>m

d({xn1 , ..., xnl}),

where we used Proposition 3.7- (ii). Therefore, we get lim
m−→∞

sup
ni≥m

d({xn1 , ..., xnl}) = d(A) for l = |A|.

For the case k ≥ |A|, note that

d({xn1 , ..., xnl}) ≤ d({xn1 , ..., xnl , ..., xnk}) ≤ d({xn1 , ..., xnl , ..., xnk} ∪A).

Thus, we get

d(A) = lim
m−→∞

sup
ni>m

d({xn1 , ..., xnl})

≤ lim
m−→∞

sup
ni>m

d({xn1 , ..., xnl , ..., xnk})
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≤ lim
m−→∞

sup
ni>m

d({xn1 , ..., xnl , ..., xnk} ∪A)

= lim
ni−→∞

d({xn1 , ..., xnl , ..., xnk} ∪A) = d(A)

Therefore, lim
m−→∞

sup
ni≥m

d({xn1 , ..., xnk}) = d(A) for all k ≥ l. �

Proposition 4.3. Let (X, d) be an MP-metric space. If xn is r-Cauchy for some r ≥ 0, then xn is bounded.

Proof. A sequence is bounded if there exists C > 0 such that d(xn, xm) < C for all n,m ∈ N. Let xn be
r-Cauchy, then there is N1 ∈ N such that

sup
ni>m

d({xn1 , ..., xnk}) < r + 1 for allm ≥ N1.

Therefore, d(xn1 , xn2) ≤ d({xn1 , ..., xnk}) < r + 1 for all ni > N1. Hence, choosing

C = r + 1 +max{d(xn, xm) : n,m ∈ {1, ..., N1}}

gives the wanted bound. �

Corollary 4.4. Let (X, d) be an MP-metric space. If limxn = D(A), then (xn) is bounded.

Proposition 4.5. Let (X, d) be an MP-metric space. A sequence xn is 0-Cauchy if and only if it is Cauchy with

respect to the associated metric (X, d(2)).

Proof. Let xn by 0-Cauchy, then there exists N ∈ N such that N > 2 and

lim
m−→∞

sup
ni>m

d(xn1 , xn2 , ..., xnk) = 0 for all k ≥ N

⇒ lim
ni−→∞

d(xn1 , xn2 , ..., xnk) = 0 for all k ≥ N

⇒ 0 ≤ lim
ni−→∞

d(xn1 , xn2) ≤ lim
ni−→∞

d(xn1 , xn2 , ..., xnN ) = 0

⇒ lim
ni−→∞

d(xn1 , xn2) = 0

Thus, xn is Cauchy sequence in (X, d(2)) . For the other direction, we have

lim
ni,nj−→∞

d(xni , xnj ) = 0,

which we combine with the properties of the MP-metric to get

0 ≤ d(xn1 , xn2 , ..., xnk) ≤
k∑
i=1

d(xn1 , xni) for all k ≥ 1

⇒ 0 ≤ lim
m−→∞

sup
ni>m

d(xn1 , xn2 , ..., xnk) ≤ lim
m−→∞

sup
ni>m

k∑
j=1

d(xn1 , xnj )

⇒ 0 ≤ lim
m−→∞

sup
ni>m

d(xn1 , xn2 , ..., xnk) ≤
k∑
j=1

lim
n1,nj−→∞

d(xn1 , xnj )
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⇒ 0 ≤ lim
m−→∞

sup
ni>m

d(xn1 , xn2 , ..., xnk) ≤ 0

⇒ lim
m−→∞

sup
ni>m

d(xn1 , xn2 , ..., xnk) = 0 for all k ≥ 1.

Therefore, (xn) is 0-Cauchy in the MP-Metric spaces (X, d).
�

Theorem 4.6. (Completeness) Let (R, d) be the MP-metric space introduced in Example 2.6. If xn is r-Cauchy

for some r > 0 in (R, d), then there are a, b ∈ R such that xn is d-convergent to D({a, b}).

Proof. The sequence xn is bounded (by Proposition 4.3); hence, there are a, b ∈ R satisfying a =

lim inf
n→∞

xn, and b = lim sup
n→∞

xn. For all ε > 0 there are N1
ε , N2

ε ∈ N such that | inf
n≥N1

ε

xn − a| < ε,

and | sup
n≥N2

ε

xn − b| < ε. In the obvious way, choosing Nε = max{N1
ε , N

2
ε }, gives a − ε < xn <

b+ ε for all n ≥ Nε . Thus, for any k ∈ N, we get

d(xn1 , xn2 , ..., xnk , a, b) = max{xn1 , xn2 , ..., xnk , a, b} −min{xn1 , xn2 , ..., xnk , a, b}

≤ b+ ε− (a− ε), for all ni ≥ Nε

= d(a, b) + 2ε, for all ni ≥ Nε.

Hence, we obtain
lim

ni−→∞
d(xn1 , xn2 , ..., xnk , a, b) = d(a, b), for all k ∈ N.

Now, using the properties of a and b, and the fact that N is a well-ordered set, we inductively define the
subsequences xnl and xml in the following way: n1 = m1 = 1. For nl,ml ≥ 2, we set

nl = min{n ∈ N : |xn − a| <
1

l
and n > nl−1},

ml = min{n ∈ N : |xn − b| <
1

l
and n > ml−1}.

Therefore, lim
nl−→∞

xnl = a and lim
ml−→∞

xml = b,which in view of Remark (3.6) gives

lim inf
n−→∞

d(xn, a) = lim inf
n−→∞

d(xn, b) = 0,

and that completes the proof. �

5. Products of MP-metric Spaces

Suppose (Xi, di) are MP-metric spaces for all i = 1, ..., n. Then, in the standard way, we can construct
an MP-metric on the product space

n∏
i=1

Xi. Let A = {a1, ..., am} ∈ P ∗(
n∏
i=1

Xi), where aj = (aj1, ..., ajn)

and aji ∈ Xi for all j = 1, ...,m and i = 1, ..., n.We define the MP-metrics: δ1, δ2 :
n∏
i=1

Xi −→ [0,∞) in
the following way.
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δ1(A) =
n∑
i=1

di(a1i, a2i..., ami), and

δ2(A) =

√√√√ n∑
i=1

[di(a1i, a2i..., ami)]2.

Theorem 5.1. Let (Xi, di) be MP-metric spaces for all i = 1, ..., n, then (
n∏
i=1

Xi, δ1) and (
n∏
i=1

Xi, δ2) are

MP-metrics spaces.

Proof. We will show that (
n∏
i=1

Xi, δ2) is an MP-metric space while the result for (
n∏
i=1

Xi, δ1) can be ob-

tained similarly. For any A,B ∈ P ∗(
n∏
i=1

Xi), we assume A = {a1, ..., am}, and B = {b1, ..., bk} where
A = {(a11, ..., a1n), ..., (am1, ..., amn)}, and B = {(b11, ..., b1n), ..., (bk1, ..., bkn).

(M1) Let A ∈ P ∗(
n∏
i=1

Xi).

δ2(A) =

√√√√ n∑
i=1

[di(a1i, a2i..., ami)]2 = 0.

⇔ di(a1i, a2i..., ami) = 0 for all i = 1, ..., n since di is an M-metric .

⇔ a1i = a2i =, ...,= ami for all i = 1, ..., n.

⇔ a1 = a2 =, ...,= am. ⇔ |A| = 1

(M2) Let A ⊂ B. Then

{a1i, a2i..., ami} ⊆ {b1i, b2i..., bki} ⇒ di(a1i, a2i..., ami) ≤ di(b1i, b2i..., bki)⇒ δ2(A) ≤ δ2(B).

(M3) Suppose A ∩B 6= φ

⇒ {a1i, a2i..., ami} ∩ {b1i, b2i..., bki} 6= φ for all i = 1, ..., n

⇒ di({a1i, ..., ami} ∪ {b1i, ..., bki}) ≤ di({a1i, ..., ami}) + di({b1i, ..., bki}) for all i = 1, ..., n.

Therefore, setting αi = di({a1i, ..., ami}) and βi = di({b1i, ..., bki}) and applying the Minkowski inequal-
ity (see for example [14])

(

n∑
i=1

|αi + βi|p)
1
p ≤ (

n∑
i=1

|αi|p)
1
p + (

n∑
i=1

|βi|p)
1
p

with p = 2, we get δ2(A ∪B) ≤ δ2(A) + δ2(B).
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(M4) Suppose dΠ(A ∪ {bl}) = dΠ(A) for all bl = (bl1, ..., bln) ∈ B.

⇒

√√√√ n∑
i=1

[di(a1i, a2i..., ami, bli)]2 =

√√√√ n∑
i=1

[di(a1i, a2i..., ami)]2 for all l = 1, ..., k

⇒ di(a1i, a2i..., ami, bli) = di(a1i, a2i..., ami) for all i = 1, ..., n and l = 1, ..., k

( where we used the facts di is nonnegative and di(a1i, a2i..., ami) ≤ di(a1i, a2i..., ami, bli))

⇒ di(a1i, a2i..., ami, b1i, ..., bki) = di(a1i, a2i..., ami) for all i = 1, ..., n

⇒
n∑
i=1

[di(a1i, a2i..., ami, b1i, ..., bki)]
2 =

n∑
i=1

[di(a1i, a2i..., ami)]
2

⇒ δ2(A ∪B) = δ2(A).

Therefore, (
n∏
i=1

Xi, δ2) is an MP-metric space. �

Proposition 5.2. For all i = 1, ..., n, let (Xi, di) be MP-metric spaces, and let Ai ∈ Xi . Then, each of the

following holds.

(i) δ1(
n∏
i=1

Ai) =
n∑
i=1

di(Ai),

(ii) δ2(
n∏
i=1

Ai) =

√
n∑
i=1

[di(Ai)]2,

(iii) Dδ1(
n∏
i=1

Ai) =
n∏
i=1

Ddi(Ai),

(iv) Dδ2(
n∏
i=1

Ai) =
n∏
i=1

Ddi(Ai),

(v) Dδ1(A) =
n∏
i=1

Ddi({a1i, ..., ami)}, ∀ A = {(a11, ..., a1n), ..., (am1, ..., amn)} ⊆
n∏
i=1

Xi,

(vi) Dδ2(A) =
n∏
i=1

Ddi({a1i, ..., ami}), ∀ A = {(a11, ..., a1n), ..., (am1, ..., amn)} ⊆
n∏
i=1

Xi.

Proof. (i) Let (
n∏
i=1

Ai) = {a1, ..., am} where aj = (aj1, ..., ajn) and aji ∈ Ai. Thus, using Proposition
2.4-iwith the fact {a1i, ..., ami} = Ai we get the wanted result in the following way

δ1(

n∏
i=1

Ai) = δ1({a1, ..., am}) =
n∑
i=1

di(a1i, a2i..., ami) =

n∑
i=1

di(Ai)

(iii) Suppose x = (x1, ..., xn) ∈
n∏
i=1

Xi, then

x ∈ Dδ1(
n∏
i=1

Ai)

⇔ δ1({x} ∪
n∏
i=1

Ai)) = δ1(
n∏
i=1

Ai))

⇔
n∑
i=1

di(xi, a1i, a2i..., ami) =
n∑
i=1

di(a1i, a2i..., ami)
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⇔ di(xi, a1i, a2i..., ami) = di(a1i, a2i..., ami) for all i = 1, ..., n

⇔ di({xi} ∪Ai) = di(Ai) for all i = 1, ..., n

⇔ xi ∈ D(Ai) for all i = 1, ..., n

⇔ x ∈
n∏
i=1

Ddi(Ai).

The remaining: (ii), (iv), (v) and (vi) can be shown in the same way. �

Theorem 5.3. Let (Xi, di) be complete MP-metric spaces for all i = 1, ..., n, then (
n∏
i=1

Xi, δ1) and (
n∏
i=1

Xi, δ2)

are complete MP-metrics spaces.

Proof. Let (xl) = (x1
l .x

2
l , ..., x

n
l ) be an r-Cauchy in (

n∏
i=1

Xi, δ1) for some r ≥ 0. Thus, there is N ∈ N such
that

lim
m−→∞

sup
li>m

n∑
i=1

di(x
i
l1 , x

i
l2 , ..., x

i
lk
) = r for all k ≥ N.

Using the nonnegativity and the monotonicity of the MP-metric (M2), we get

lim
m−→∞

sup
li>m

di(x
i
l1 , x

i
l2 , ..., x

i
lk
) = ri for some 0 ≤ ri ≤ r and for all k ≥ N.

Therefore, (xil) is ri-Cauchy in (Xi, di), and hence by completeness of (Xi, di), there is Ai ∈ P ∗(Xi)

such that limxil = D(Ai). Applying Prposition 5.2 we get

lim
n→∞

δ1({xl1 , xl2 , ..., xlk} ∪
n∏
i=1

Ai) = δ1(

n∏
i=1

Ai)

Also, for all a = (a1, a2, ..., an) ∈
n∏
i=1

Ai we have

lim inf
l−→∞

δ1(xl, a) = lim inf
l−→∞

n∑
i=1

di(x
i
l, a

i) = 0.

Thus, limxl = D(
n∏
i=1

Ai), which proves the cmpleteness of (
n∏
i=1

Xi, δ1). Similarlly, we can show that

(
n∏
i=1

Xi, δ2) is a complete MP-metric space. �

There are many ways to define an MP-metric on the Euclidean Spaces Rn. One possible way is
to consider the product space of the MP-metric space (R, d) where d(a1, ..., ak) = max1≤j≤k{aj} −

min1≤j≤k{aj} (see Example 2.6). That is for aj = (aj1, ..., ajn) ∈ Rn, we get

δ1(a1, ..., ak) =
n∑
i=1

[ max
1≤j≤k

{aji} − min
1≤j≤k

{aji}] (3)

or

δ2(a1, ..., ak) =

√√√√ n∑
i=1

[ max
1≤j≤k

{aji} − min
1≤j≤k

{aji}]2 (4)
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The MP-metric δ2 is natural on Rn in the sense that once we restrict it to two points, it coincides
with the usual metric on the Euclidean space. Geometrically, δ2(A) is the length of the diameter of
the minimal orthotope (hyperrectangle) containing A, while δ1(A) is the sum of the lengths of that
orthotope dimensions. However, these two MP-metrics have some equivalence since they satisfy
δ2(A) ≤ δ1(A) ≤

√
n · δ2(A).

Theorem 5.4. (Completeness) (Rn, δ1) and (Rn, δ2) are complete MP-metric spaces where δ2 and δ2 are defined

as in (3) and (4).

Proof. The result follows directly from Theorem 4.6 and Theorem 5.3. �

Remark 5.5. In the MP-metric spaces (Rn, δ2) and (Rn, δ1),D(A) is the solid minimal orthotope containing A

(see Example 3.3-ii and Proposition 5.2-v, vi). That is, in the convergence theory in MP-metric spaces, we have

directly extended the concept of the limit of a sequence from a single point to a compact set (a closed orthotope in

Rn).

6. Discussion

This paper has potential interests in different fields, such as related theories, graph theory, and
practical applications.

There are many open areas in the related theories. For example, there is the study of the emerging
topologies and their properties. Also, we can investigate different results concerning the fixed point
theory. One may study the functions and their behavior in the MP-metrics spaces.

On the other hand, the fact that the MP-metric can tackle any finite number of points motivates us to
consider exploring the graph theory from a metric perspective. The starting point here is to treat the
vertices of a graph as points in MP-metric spaces. Then, we can assign values to graphs, which means
we can compare them and go further in that direction.

Moreover, extending the concept of the limit from a single point to a set (an interval in R) is suitable
for dealing with different real-life problems. In many practical applications, it is not necessary to get
an exact value, but rather, it is sufficient to get a reasonable approximation. This way of thinking is
compatible with the introduced notion of convergence in MP-metrics.
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