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1. Introduction

The usual two-point Sierpinski topological space 2S plays a significant role for characterizing the
exponentiable object in the category Top of topological spaces (cf. [4, 5]). Escardó and Heckmann [4]
proved a result about function spaces in topology, which states that, given a topological space X ,
a topology τ on the set C(X, 2S) of all continuous maps from X to 2S , is exponential if and only if
for every topological space Y , the topology on the set C(X,Y ) of all continuous maps from X to Y ,
generated by the sets N(H,V ) = {f ∈ C(X,Y ) | χf−1(V ) ∈ H}, where H ∈ τ , V is open in Y and
χf−1(V ) is the characteristic map of f−1(V ), is exponential.

The counterpart of 2S forL-topological spaces has been introduced in [10] as SierpinskiL-topological
space. This paper provides a characterization of exponentiable object in the category L-Top of L-
topological spaces by using Sierpinski L-topological space on the lines of Escardó and Heckmann [4].

2. Preliminaries

The necessary category-theoretic notions used in this paper can be ascertain from [1] and [11].
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Definition 2.1. A complete lattice L is called a Frame if it satisfies the infinite distributive law: a ∧ (∨bi) =

∨(a ∧ bi), for all a ∈ L and {bi | i ∈ I} ⊆ L. Furthermore, a Frame map between two frames is a lattice

homomorphism which preserves finite meets and arbitrary joins.

Definition 2.2. A subset A ⊆ L of a frame L is called a subframe if A is a frame under the partial order of L.

Throughout this paper, L denotes a fixed frame with 0 and 1 being its least and largest elements
respectively.

For a given set X , LX is also a frame under the partial order induced by L. The least and largest
element of LX are the 0- and 1-valued constant maps from X to L denoted as 0̄ and 1̄ respectively.
Members of LX are known as L-sets in X [6].

Each map f : X → Y induces functions f← : LY → LX given by f←(ν) = ν ◦ f , for every ν ∈ LY .

Definition 2.3. [7]

(1) A family τ of L-sets in a set X is called an L-topology on X , and the pair (X, τ) an L-topological
space, if τ is a subframe of LX . Members of τ are known as open L-sets in X .

(2) A map f : (X, τ)→ (Y, δ) between L-topological spaces is called continuous if f←(ν) ∈ τ , for every

ν ∈ δ.

Let L-Top denote the category of all L-topological spcaes and their continuous maps.

Definition 2.4. (1) A subcollection β of an L-topology τ on X is said to be a base for τ (or for (X, τ)) if

every member of τ is a join of some members of β.

(2) A subcollection β of an L-topology τ onX is said to be a subbase for τ (or for (X, τ)) if all finite meets

of members of β form a base for τ .

Remark 2.1. (1) Let ζ be a family of L-sets in a set X . Let ξ be the collection of all finite meet of members

of ζ. It can be verified that the collection of all join of members of ξ is an L-topology on X , to be denoted

〈ζ〉, for which ζ is a subbase.

(2) Given a map f : (X, τ)→ (Y, δ) between two L-topological spaces and a subbase β of (Y, δ), it can be

easily verified that f is continuous if and only if f←(ν) ∈ τ , for every ν ∈ β.

Consider the frame L. Then 〈{idL}〉, where idL is the identity map on L. Call the L-topological
space (L, 〈{idL}〉) as the Sierpinski L-topologicalspace and denote it as LS (cf. [10]).

Here we recall a result from [10] which will be used further.

Proposition 2.1. Let (X, τ) ∈ obL-Top. Then µ ∈ τ if and only if µ : (X, τ)→ LS is continuous.
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3. Exponentiable Topological Space

Given setsX,Y, Z and a map g : Z×X → Y , let ḡ : Z → Y X be the map defined as ḡ(z)(x) = g(z, x),
for every z ∈ Z and for every x ∈ X .

For topological spaces X and Y , let C(X,Y ) denote the set of all continuous maps from X to Y .

Definition 3.1. [4, 5] Given topological spaces X,Y , a topology on C(X,Y ) is called:

(1) splitting if for any topological space Z, the continuity of a map g : Z ×X → Y implies the continuity

of the map ḡ : Z → C(X,Y ).

(2) conjoining if for any topological space Z and a map g : Z × X → Y , the continuity of the map

ḡ : Z → C(X,Y ) implies the continuity of g : Z ×X → Y .

(3) exponential if it is both splitting and conjoining.

Definition 3.2. [4, 5] A topological space X is called exponentiable if the set C(X,Y ) admits an exponential

topology, for every topological space Y .

Let X,Y be topological spaces and T be a topology on C(X, 2S). Let T ∗Y denote the topology on
C(X,Y ), generated by the sets N(H,V ) = {f ∈ C(X,Y ) | χf−1(V ) ∈ H}, whereH ∈ T , V is open in Y
and χf−1(V ) is the characteristic map of f−1(V ).

Theorem 3.1. [4, 5] Let X be a topological space. Then a topology T on C(X, 2S) is:

(1) splitting iff T ∗Y is a splitting topology on C(X,Y ), for every topological space Y .

(2) conjoining iff T ∗Y is a conjoining topology on C(X,Y ), for every topological space Y .

(3) exponential iff T ∗Y is an exponential topology on C(X,Y ), for every topological space Y .

Remark 3.1. In view of Theorem 3.1, we can say that a topological spaceX is exponentiable if and only if the set

C(X, 2S) admits an exponential topology.

4. Exponentiable L-Topological Space

Function spaces in fuzzy topology have been studied by several authors, e.g., Alderton [2], Dang and
Behera [3], Jäger [8], and Kohli and Prasannan [9]. In this section, the analogous result of Theorem 3.1
has been proved for L-topological spaces.

For L-topological spaces X and Y , let CL(X,Y ) denote the set of all continuous maps from X to Y .

Definition 4.1. Given L-topological spaces X,Y , an L-topology on CL(X,Y ) is called:

(1) splitting if for any L-topological space Z, the continuity of a map g : Z×X → Y implies the continuity

of the map ḡ : Z → CL(X,Y ).
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(2) conjoining if for any L-topological space Z and a map g : Z × X → Y , the continuity of the map

ḡ : Z → CL(X,Y ) implies the continuity of g : Z ×X → Y .

(3) exponential if it is both splitting and conjoining.

Definition 4.2. An L-topological space X is called exponentiable if the set CL(X,Y ) admits an exponential

L-topology, for every L-topological space Y .

Let τ be an L-topology on CL(X,LS). Let O ∈ τ and v be an open L-set in Y . So, v : Y → LS is
continuous. Define [O, v] : CL(X,Y ) → L as [O, v](f) = O(v ◦ f), for every f ∈ CL(X,Y ). Let τ∗Y
denote the L-topology on CL(X,Y ), whose subbase is {[O, v] | O ∈ τ, v is an open L-set in Y }.

Proposition 4.1. Let X be an L-topological space. Then an L-topology τ on CL(X,LS) is splitting iff τ∗Y is a

splitting L-topology on CL(X,Y ), for every L-topological space Y .

Proof: Let τ be a splitting L-topology on CL(X,LS). Let Z be an L-topological space and let
g : Z×X → Y be a continuousmap. We have to show that themap ḡ : Z → CL(X,Y ) is continuous. Let
O ∈ τ and v be an open L-set in Y . Then for every z ∈ Z, ḡ←([O, v])(z) = ([O, v]◦ ḡ)(z) = [O, v](ḡ(z)) =

O(v ◦ ḡ(z)). As v is an open L-set in Y , g←(v) is an open L-set in Z ×X . So, v ◦ g : Z ×X → LS is
continuous, whereby, v ◦ g : Z → CL(X,LS) is continuous. Hence (v ◦ g)←(O) is an openL-set inZ. For
every z ∈ Z and for every x ∈ X , (v ◦ g)(z)(x) = (v ◦ g)(z, x) = v(g(z, x)) = v(ḡ(z)(x)) = (v ◦ ḡ(z))(x),
implying that (v ◦ g)(z) = v ◦ ḡ(z), for every z ∈ Z. Now, for every z ∈ Z, (v ◦ g)←(O)(z) = (O ◦

(v ◦ g))(z) = O((v ◦ g)(z)) = O(v ◦ ḡ(z)) = ḡ←([O, v])(z). So, (v ◦ g)←(O) = ḡ←([O, v]), implying that
ḡ←([O, v]) is an open L-set in Z. Hence ḡ is continuous.

Conversely, let τ∗Y be a splitting L-topology on CL(X,Y ), for every L-topological space Y . So, τ∗LS
is

a splitting L-topology on CL(X,LS). To show τ is a splitting L-topology on CL(X,LS). It is easy to see
that τ∗LS

= τ on CL(X,LS) and so τ is a splitting L-topology on CL(X,LS). �

Proposition 4.2. Let X be an L-topological space. Then an L-topology τ on CL(X,LS) is conjoining iff τ∗Y is a

conjoining L-topology on CL(X,Y ), for every L-topological space Y .

Proof: Let τ be a conjoining L-topology on CL(X,LS). We show that τ∗Y is a conjoining L-topology
on CL(X,Y ). Let Z be an L-topological space and g : Z×X → Y be a map such that ḡ : Z → CL(X,Y )

is continuous. We have to show that the map g : Z × X → Y is continuous. Let v be an open L-
set in Y . Define a map v̂ : CL(X,Y ) → CL(X,LS) as v̂(f) = v ◦ f , for every f ∈ CL(X,Y ). Let
O ∈ τ . Then for every f ∈ CL(X,Y ), (v̂←(O))(f) = O(v̂(f)) = O(v ◦ f) = [O, v](f), implying that
v̂←(O) = [O, v]. Hence v̂←(O) is open in CL(X,Y ), whereby v̂ is continuous. Consider the continuous
map v̂ ◦ ḡ : Z → CL(X,LS). Then for every z ∈ Z, (v̂ ◦ ḡ)(z) = v̂(ḡ(z)) = v ◦ ḡ(z) = (v ◦ g)(z), showing
that v̂◦ ḡ = v ◦ g. Hence v ◦ g : Z → CL(X,LS) is continuous, whereby v◦g : Z×X → LS is continuous.
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Thus g←(v) is an open L-set in Z ×X , showing that g is continuous.
Conversely, let τ∗Y be a conjoining L-topology on CL(X,Y ), for every L-topological space Y . So, τ∗LS

is
a conjoining L-topology on CL(X,LS). To show τ is a conjoining L-topology on CL(X,LS). It is easy
to see that τ∗LS

= τ on CL(X,LS) and so τ is a conjoining L-topology on CL(X,LS). �

By Proposition 4.1 and Proposition 4.2, we have the following Theorem.

Theorem 4.1. Let X be an L-topological space. Then an L-topology τ on CL(X,LS) is exponential iff τ∗Y is an

exponential L-topology on CL(X,Y ), for every L-topological space Y .

The following result will characterize the exponentiable object in the category L-Top.

Theorem 4.2. AnL-topological spaceX is exponentiable iff the setCL(X,LS) admits an exponentialL-topology.
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