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AsstracT. In this paper, we investigate the existence of entropy solutions for the unilateral problem

associated to the Neumann degenerate anisotropic elliptic equation

- i D'ai(z,u, Vu) + [u|" " %u = f(z,u) in Q
=l
Zai(:c,u,Vu)m = g(z) on 012,
=1
where the right-hand side term f (=, s) satisfies only some growth condition, while g(x) belongs to L' (9).
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1. INTRODUCTION

Let 2 be a bounded open subset of RY (N > 2).
A multitude of obstacle problem models have been studied : In [28], Porretta have studied the existence
of solution for the unilateral problem associated to the elliptic equation
Au+ g(uw)|VulP =p in Q 1)
u=0 on 01,

where the right-hand side is a bounded Radon measure on 2. For more results regarding unilateral

problems, we refer the reader to [2], [3], [7] and [20].
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Akdim et al. have established in [4] the existence of solution for the unilateral problem associated to

the degenerate quasilinear elliptic equation

Au+ g(z,u, Vu) = f in Q,
u=20 on 01,

(2)

where A is a Leray-Lions operator acted from I/VO1 P(Q, w) into its dual W=7 (Q, w), and the nonlinear
term g(z, s, {) satisfies some growth and sign conditions.

In the recent years, there has been a growing interest in the study of elliptic and parabolic problems in
the anisotropic variable exponents Sobolev spaces. The advancement of a theory, primarily attributed to
Ruzicka [29], aimed at describing the behavior of electrorheological fluids, which belong to a significant
category of non-Newtonian fluids, that greatly energized the ongoing effort to explore and make
sense of nonlinear PDE’s involving variable exponents. There are other application areas like image
processing [21], elasticity [ 1], the flow in porous media [ 10], and mathematical problems in the field
of calculus of variations involving variational integrals with nonstandard growth [33].

Recently, Ayadi, has studied in [11] the quasilinear anisotropic elliptic equation

N
¢ ai(x,Vu) )
— Z:DZ —————~)=[ inQ
pat ((1 + |ul)7i ))
u=20 on 0f),

(3)

he has proved the existence of entropy solutions to the obstacle problem associated to the nonlinear
degenerate anisotropic elliptic equations with variable exponents and L' — data, we refer the reader
to [13,16,17] and [34] for more results.

The aim of this paper is to study the existence of entropy solutions for the unilateral problem associated

to the degenerated quasilinear Neumann elliptic equation :

Au+ |u"™® 2y = f(z,u) in 9,

N
> ai(z,u, Vu).n; = g(x) on 99, (4)

i=1
N

where Au = Z D'a;(z,u, Vu)) is a Leray-Lions operator acted from W'?()(Q) into it’s dual, such
that a;(x, u, Vzuz)lare Carathéodory functions that satisfying some nonstandard conditions, and f(z, s)
verifying only some growth condition.

This paper is organized as follows: the second section is devoted to recalling some definitions and
properties concerning the anisotropic Sobolev spaces with variable exponent. In the section 3, we
present the assumptions on the Carathéodory functions a;(z, u, Vu) under which our problem has

at least one solution. We study in the section 4 the existence of weak solutions for the unilateral

problem associated to our equation with right-hand side F'(z, s) € L*°(f2) and G(x) € L>*(0). In the
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last section, we show the existence of entropy solutions for the unilateral problem associated to the

noncoercive elliptic equation (4) with the right-hand side f(z,s) € L}(Q2) and g(z) € L'(09).
2. PRELIMINARY
Let 2 be a bounded open subset of IRY (N > 2), we denote
C+(Q) = {measurable function p(-):Q+— IR suchthat 1 <p~ <p" < N},

where
p~ =essinf{p(z) /x € Q} and  p' =esssup{p(z) /z € Q}.

We define the Lebesgue space with variable exponent LP()((2) as the set of all measurable functions

u :  — IR for which the convex modular
o) [ i
Q
is finite. If the exponent is bounded, i.e. if pt < 400, then the expression
[ullpey = nf{A > 0 pyey(u/A) <1}

defines a norm in L?)(Q), called the Luxemburg norm. The space (L**)(Q), | - lp()) is a separable
Banach space. Moreover, if 1 < p~ < p* < 400, then LP(')(Q) is uniformly convex, hence reflexive,

and its dual space is isomorphic to L” () (Q), where 1 + L 1. Finally, we have the Holder type

p@) " (@)
[ v

for any u € LP0)(Q) and v € LP' ) (Q).

inequality:

1 1
< (F + W)HUHPC)HUHP’(') (5)

An important role in manipulating the generalized Lebesgue spaces is played by the modular p,,.) of

the space LP1) (). We have the following result :

Proposition 2.1. (see [24], [32])
If up,u € LPC) (), then the following properties hold true:
(1): ullpey <1 (resp,=1,>1) <= pp(u) <1 (resp, =1,>1),
Q) fullyy >1 = Nl < ppoy() <l and Jullyo <1 = [ul%)) < pyy () <
full” .

(iii): [lunllp) =0 <= ppy(un) =0, and |unlly) = 00 <= ppy(un) — oo,

which implies that the norm convergence and the modular convergence are equivalent.

Now, we present the anisotropic variable exponent Sobolev space, used in the study of our quasilinear
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elliptic problem (4).
Let pi(-),p2(:),...,pn(-) be N variable exponents in C1 (€2). We denote

- 0
()= @(),....pn("), Du=u and D'u= 8; for i=1,...,N,
and we define
py = max{p], ... ,pj([} and p=min{p;,...,py} then p>1. (6)

The anisotropic variable exponent Sobolev space W1?()(0) is defined as follow
WHO(Q) = {fue WH(Q) and Diue LPO(Q) for i=1,2,...,N},

endowed with the norm

N
lullipey = lullig + Y 1Dl ). (7)
=1

The space (W70)(Q), |Jul|; 5.)) is a reflexive Banach space (cf. [27]).

Lemma 2.1. We have the following continuous and compact embedding

! N
© ifp < Nthen WHO(Q) 5y L9(Q) - for q € [p,p[, wherep' = =

e ifp= N then WPO)(Q) s LI(Q) Vq € [p, +o0f,

 ifp > N then W19 (©) e L2(2) NCO(@).

The proof of this lemma follows from the fact that the embedding W) (Q) < W'£(Q) is continu-

ous, and in view of the compact embedding theorems for Sobolev spaces.

Definition 2.1. Let k > 0, we consider the truncation function Tj(-) : IR — IR, given by

s i |sl<k,
Tk(s) = S i
k— if |s| > F,

5]
and we define
TYPO(Q) := {u : Q — IR measurable, such that Tj,(u) € W PO(Q) for any k > 0}.
Proposition 2.2. For any u € T'P0)(Q), there exists a unique measurable function v; : Q + IR for any
i€{l,...,N} such that
vk >0 DZTk(u) = Vi-X{|u|<k} 4.6 T E Q,

where x i denotes the characteristic function of a measurable set E. The functions v; are called the weak partial
derivatives of u and are still denoted D'u. Moreover, if u belongs to W1(S2), then v; coincides with the standard

distributional derivative of u, that is, v; = Diu.
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The proof of the Proposition 2.2 follows the usual techniques developed in [20] for the case of Sobolev

spaces. For more details concerning the anisotropic Sobolev spaces, we refer the reader to [9,18,22,23].

Definition 2.2. We introduce the set Ttlvfﬁ ¢ (Q) as a subset of T*P1)(Q) for which a generalized notion of trace
may be defined (see also [ 5] for the case of constant exponent). More precisely, Ttlr’ﬁ ©) () is the set of function
w in TYPC)(Q), such that : there exists a sequence (uy,),, in W'P0)(Q) and a measurable function v on 0Q
verifying

(a): up, — uae. in

(b): DTy (un) — DTy (u) in LY(Q) for every k > 0.

(¢): up, —> va.e. on 0N

The function v is the trace of u in the generalized sense introduced in [8].

Proposition 2.3. Let u € W1P0)(Q), the trace of u on O will be denoted by 7(u).
Foranyu € Tt1 20 (Q2), the trace of u on OS2 will be denoted by tr(u) or u, the operator tr(-) satisfied the following

properties
(i): ifu e Iﬁ’ﬁ(')(Q), then T(Tj(u)) = Ty (tr(w)) for any k > 0.
(ii): if ¢ € WHPLN(Q), then, for any u € I“tl,,’ﬁ(')(Q), we have u — ¢ € 7}1;’3(')(9) and tr(u — @) =
tr(u) — 7(p).

In the case where v € W'P0)(Q), tr(u) coincides with T(u). Obviously, we have

wiPO(Q) ¢ TLY Q) ¢ TH0(Q).

Lemma 2.2. (see [25], Theorem 13.47) Let (uy,)y, be a sequence in L*(Q) and u € L* () such that
(i): up »> wae. inQ,
(ii): up > 0and u > 0 a.e. in €,
(iii): / Uy dT — / udz,
Q Q

then w,, — u strongly in L*(€2).

3. EsseNTIAL ASSUMPTIONS

Let 2 be a bounded open subset of IRY (N > 2), with smooth boundary 912. and we consider
r(-) € C1(Q)and p;(-) € C () fori=1,...,N.

We consider the Neumann degenerate anisotropic elliptic equation

Au+ |u" @24 = f(z,u) inQ,

N
Zai(.’L’,u,Vu) ‘n; = glz) ondQ, (8)

i=1
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where A is a Leray-Lions operator acted from W'#()(Q) into its dual (W'#()(Q))’, defined by

N
Au = — Z Dia;(z,u, Vu),
i=1
such that a; : Q x IR x RN —— IR are Carathéodory functions for i = 1,..., N (measurable with

respect to  in () for every (s, ¢) in IR x IRY, and continuous with respect to (s, ¢) in IR x IRY for almost

every z in 2), which satisfy the following conditions :

jai(w, s, €)| < BUKi(@) + [s[ O~ 4 &7 for i=1,...,N, 9)

bo

ai(x, s,€)& > b(|s])] &P @ with  b(|s]) > for i=1,...,N, (10)

(1+[s)H)
where § and bj are two positive constants. The nonnegative functions Kj;(-) are assumed to be in
/ 1
LPiO(Q < in (1,pi(z) —1,————) fori=1,...,N.
( )andO_)\(:U)<m1n(,p(x) ’p,-(a:)—1> ori=1,...,
N
Z(ai(ma 3,5) - ai(xv 556/))(575 - 57{) >0 for 62 3& 57{7 (11)
i=1

for almost every x €  and any (s, ) in IR x RY.

—

We consider the obstacle function ¢(-) : Q — IR such that ¢+ € WP0)(Q) N L>(Q), and we define
the following convex set
Ky={ve WPl (Q) such that v > a.e.in}.

We are going now to recall the following technical Lemma, useful to prove our main results.

Lemma 3.1. (see [1/]) Let k > 0, assuming that (9) — (11) hold true, and let (uy,)nen be a sequence in

—

WP0)(Q) such that u, — u weakly in WP1)(Q) and

/(un|p_2un — |u|9_2u)(un —u) dz
Q

N - (12)
+ Z/(ai(x, Ti(un), Vuy) — ai(z, Tk (uy), Vu))(D'uy — D'u) dz — 0 as n — oo,
=174
then w,, — u strongly in WP1) (Q) for a subsequence.
4. ExisteNce oF WEAK SOLUTIONS FOR L°° — DATA
We consider the quasilinear elliptic problem
N .
- Z D (ai(z, Tp(u), V) + [u] @2y = F(z,u) inQ,
N (13)

Z ai(z, Ty (u), Vu) - n; = G(x) on Of)

i=1
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with
G(z) € L>(09Q) and |F(z,s)] <Cp forany (z,s) € Q xR, (14)

where Cj is a positive constant.

Definition 4.1. A measurable function w is called weak solution for the unilateral problem associated to the

quasilinear anisotropic elliptic equation (13), if u € Ky, and |u|"® € L*(2), such that u verifies the following
equality

(15)

g/QF(J:,u)(u—U)d;E—I— aQG(u—v)do',

forany v € Ky.

Theorem 4.1. Assuming that (9) — (11) and (14) hold true. Then there exists at least one weak solution for the

unilateral problem associate to the quasilinear elliptic equation (13).

Proof of Theorem 4.1.

Step 1 : Approximate problem. We consider the following approximate problem for our quasilinear

elliptic problem

N
. 1
= " Diai(x, Tn(um), Vitm) + T ()"0 2 T () + — |t |22ty = F(2, ) in Q,
m
=1

N
Z ai(x, Tn(um), Vumy).n; = G(x) on 0f).
i=1

(16)
We consider the two operators A, and H acted from W'#0)(Q) into its dual (W'#()(Q))/, defined by

N
(Amu,v) :Z/ ai(z, Ty, (u), Vu) D' daz+/ | Ty ()| 72T, (w)v dx+1/ lulf2uv dz,  (17)
i1 /9 Q m.Jjq

and

(Hu,v) = / F(z,u)vdx — G(z)vdo forany u,v € WPt (). (18)
Q 19)

Lemma 4.1. The operator B,, = A,, + H acted from WP1)(Q) into its dual (WP1)(Q))" is bounded and
pseudo-monotone. Moreover B,, is coercive in the following sense : There exists vo € K, such that

<Bm'U, vV — U0>

— 00 as  ||vll1 ) —> 00, for v € Ky. (19)
lvll1 50
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Proof of Lemma 4.1. We have

[(Amu, v)|

N
gZ/ \ai(x,Tn(u),Vu)HDimda:—i—/ (T ()" dm—i—l/ (P~ o| de
Q m Jjo

<g2/ 2) + P14 | Diy @1y | Diy| da
rt— p—1 20
[ ol o+l ol (20)
<2BZ IK (@) >(Q)+npi L Dl o ) el

_ Cy
+mr "olluge) + —

< o1+ lullf 1)||

HUH Hv||1,p

‘Lp

Thus, the operator A,, is bounded. Moreover, we have

[(Hu,v)| :’—/QF(IL‘,U)Udl'— G(a:)vdcr’
/|F<x u>rv|d:c+/; G(@)| o] do
< Co / o] dz + |G (o0 /8 ol do (21)

< CollvllLr) + IGC) Lo oy 1Vl 21 00
< Gslvlli g for any u,v € whPO(Q).

We conclude that the operator B,,, bounded. For coercivity, we have

(Bpnu, u)

—Z/asz ), Vu) Dludac—i-/]T ()| @)~ 1\u\da:+/]updac

/F:cuudac— G(z)udo
oN

bo| D'u |pz(1‘) 22
> Z/ T+ [T (u ( ) dxr + ™ /Q |ul? dz — COHUHLl(Q) - HG(')||L°<>(69)”UHLl(aQ) (22)

bo i pila Cyp 12
> T ;/Q | DiulPi®) da + EHUHLI(Q) — Collull L) = 1GC)[ Lo a0 1wl 1 (a0)

N
i i |Pil) P
- W;/§2|D w7 da + Csllully g, = Collullaz,

Furthermore, using (20) and (21) we conclude that

|[{(Bmu, uo)]

N
N, i (23)
SBZ/QW aP @1 D uo\dx—l—Cg(l—&-HuH%ﬁ(_))HuoHLﬁ(.)—i—C’g]]uo\\l,ﬁ(.)
=1
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N N
bo o -
<) DiyPi®) g > j/ Dy |Pi(®)
“2(1 40 /Q Dl e = Jo Do do

-1 )
+Ca 1+ llull ) ol ) + Clluolls

N
bo gy |Pi(@) p-1 pM
< W;/Q\D uP @ da -+ Cy (11 [l ) (1 uoll2)-

then we obtain

(Bmu, u — ug) (Bnu,u)  [(Bmu,ug)|

>
llull1 50y g llull1 5.y )
.
>wwgywmmm_%ﬁﬂwwﬁﬁww%0 (24)
- lull g0 [Jully g
— 00 as ||lullyp.) — oo

Now, we will prove that B,, is pseudo-monotone. Let (uy)xcv be a sequence in W'2()(Q) such that

up — u weakly in W70)(Q),
Bpug — Xm  weakly in (WP (Q)), (25)
lim sup(Bpug, ug) < (Xm, U)-
k—o0
We will show that

Xm = Bnu and (Bpnug,ur) — (Xm,u) as k — 4o0.

In view of the compact embedding W) (Q) << LE(Q), there exists a subsequence still denoted
(ug)kenv+ such that u; — u strongly in L2(€2).

As (uy)remv is a bounded sequence in W17() (), using the growth condition (9), it’s clear that the
sequence (a;(x, Ty (uy), Vug)) ke~ is bounded in LPi()(Q), then there exists a measurable function

@; € LPi0)(Q) such that
a;(x, Tn(uk), Vug) — ¢; weakly in LP%O(Q) as k — oo. (26)

We have (F(z,ug))ken+ is uniformly bounded in L*>(Q2) C LY (Q), and F(z,u;) — F(z,u) almost

everywhere in €2, in view of Lebesgue dominated convergence theorem we conclude that
F(z,u;) — F(z,u)  stronglyin LF(Q). (27)
Similarly, we obtain
| T () |T(”””’)_2Tm (ug) — |Ton(u) |T(x)_2Tm(u) strongly in )i (Q), (28)
Moreover, since u;, — u strongly in L2(£2), it follows that

1 1 ,
e |P2 Bl P t lv i LP () 29
m!uk! up — m|u! u  strongly in (Q), (29)
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Thus, for any v € WH70)(Q) we have

(Xn,v) = lim (Bpug,v)
k—oo N
= lim E /ai(ac,Tn(uk),Vuk)DiU dz+ lm | [Ty ()" ™ 2T, (ug)v da
k—o00 pRiAY) k—oo J
1
+ lim — [ |ugpP2upv do — lim /F(ac,uk)v dx — Guvdo (30)
k—oom Jo k—oo Jq 50

N
; 1
= Z i D'v dx + / | T ()" @27, (w) da + — / luP™2uv dx
— Ja Q m Jq
—/ F(z,u)vdr — Gv do.
Q a9
In view of (25) and (30), we conclude that

lim sup( By, (uy), u) =1im8up(/ai(SU,Tn(Uk),VUk)Diuk d$+/ [T (i) ") |
0 0

k—o00 k—o00

1
-I-/ |uk|pdx—/F(a:,uk)uk dx — G uyg, da)
m Jjq Q

o9 (31)

N
. 1
< iDZUdZE—F/ T ()|~ Ly d:n—{—/ ulP dz
; e Q| (u)] |ul - Q! |
—/F(m,u)udx— G udo.
Q o9
Thanks to (27) — (29) we have

1 1
/\Tm(uk)]r(:”)_lluk]dx—k/ |uk|pdx—>/ \Tm(u)|r(z)_1|u|da:+/ luP dz as k — oo, (32)
Q m Ja Q m.Jjq

and

/ F(z,ug)ug de — / F(z,w)udx as k — oo, (33)
Q Q

Having in mind that WP0)(Q) < L1(99) then uj, — u weakly in L'(9f2), and since G € L>®(99)
then

/ G up do — Gu do as k — oo. (34)
0N 0N
It follows that
N . N .
lim supZ/ ai(z, Ty (ug), Vug) D'uy, de < Z/ w; D'u dx. (35)
k—o0 i—1 Q i=1 Q

On the other hand, in view of (11) we have

N
> /Q (ai(z, Ty (ug), Vug) — ai(x, T (ug), V) ) (Diuy, — Diu) dz > 0, (36)
i=1

then

N
Z/ ai(z, T (uy), Vug)Diuy de > Z/ ai(x, T (ug), Vug) Dy dx
Q — Ja

=1

N
+> | i@, Tu(ug), Vu) (D'uy, — D'u) da.
=1 Q
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In view of Lebesgue’s dominated convergence theorem we have T}, (uz) — T;,(u) strongly in LP()(Q),

thus a;(z, T (ug), V) — a;(x, Ty, (u), Vu) strongly in LPi(*)(Q), and using (26) we get

hmmfZ/ a;(x, T (ug), Vug)D g dx > Z/ ©; D'u dx. (37)

Having in mind (35), we conclude that

lim Z/ ai(x, Tn(ug), Vug)Diuy, dz = Z ©; D' dz. (38)

k—
* ZlQ

Therefore, having in mind (32), (33) and (34) we obtain
(Bmug, ug) — (Xm,u) as k — oo. (39)

On the other hand, thanks to (38) we can show that

lim Z/ ai(x, Tn(ug), Vug) — ai(z, T (ug), Vu))(D'uyp, — D'u) dz = 0.

k—o0

We have uj, — u strongly in L2(), it follows that

[ (2 a2 20) )
N . | (40)
+ Z /Q ai(z, Tp(ug), Vug) — a;(x, Tn(ug), Vu) (D'uy — D'u) do — 0,

in view of Lemma 3.1, we conclude that
up —u in WHPO(Q) and Diuy, — D'u ae.in ,

then

a;(x, Tn(uk), Vug) = ai(z, Tn(u), Vu) weakly in »OQ) for i=1,...,N.

Having in mind (27) — (29) we obtain yx,, = Bpu. Thus, the proof of the Lemma 4.1 is concluded. In
view of Lemma 4.1 (cf. [26], Theorem 8.2) there exists at least one weak solution u,, € K, for the

problem (16), i.e.

ai(z, Ty (um), Vi, Dum—DZ dz T (U, "@=27 () (U — v) dax
2/ (ttm), Vi) +/| ) (ttm) (tm — ) "

/‘Um|p ? m = v dﬂf:/FfU,um (um —v)dx+ [ G(x)(un —v) do,
T v B

for any v € K.
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Step 2 : Weak convergence of the sequence ().

By taking v = ¢t € K, as a test function for the approximate problem (16), we have

a;(x, Tp(um), Vi, Uy — DT ) dx + T (U, r@=27 () (U — ) da
Z/ (D) (D't = D) o+ [ )T G = %) b

/ 221t (1 — F) dz = / P, i)t — 7Y do+ | G (up — ) do
Q

a9
Since u,, — ¢ have the same sign as u,,. Thus, in view of (10) and (14) we obtain

N
Z/QbﬂTn(ummrDiuer) dz + /Q T ()" iy — | d
=1
m Jo
< / P&, )| fum — | da + / 1G(@)| [t — 7| do
QN o)
30 [ e ). Vi) D' 3)
=1
<Gy / i + 197+] d + 1|l o= / t] + 4| do
Q o0
+Z/ |ai (@, Ty (tm), V)| | DT da
i=1 Y

< Cr(llumllrn + 1l (@, T (um), V)| D' da

with C is a constant that doesn’t depend on m and n.

Concerning the second term on the left-hand side of (43), using Young’s inequality we have
/ | T () "7 g, — | d
/|T D@ [y, |d1:—/ T (1) ML 5+
/ Ty 1) ] dt — / Ton um>|r<w> 10y [ i

2/|T (1) "L ] d — Ci.

(44)

For the last term on the right-hand side of (43), in view of (9) we have
N .
Z/ |ai (2, Ty (), V)| | D] do
<5Z / 2) + nP@ 1 4 | D P01) | Dt | d
N .
< BZ LR pi) ) da + 283 [ Dt e (45)
Dy i) 1
+4Z/6‘TUm - dr + - Z/ (1T ()| Dt [P
< - U |P1®) diz.
<Gy ;/gb(]Tn(um)mD U P d
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By combining (43) and (44) — (45), it follows that

N
1 » 1
1 T () )| Dty [P4(®) / T ()"
2;_1/91)0 () DI D i[5 d 4 5| T ()| |t | dz

!
—I—/ ]um\£_1|um—w+|dzx
m Jq

< Chl|umll1,1 + Cs (46)
N
=C /um dx + /Dium dz) + C
i Jeoml 2 [, 1D ) +Co
1 1 Y :
< 4/ | T () |71 \um|da:+42/ b(| T () )| Dt |P'®) daz 4 Cr.
Q i=1 /0

We conclude that

N
bo ; . 1 _
—2 N | | Diuy ) d / T ()" 7" | d

1 (47)
o [ P Y — 6 do < Cr
m Jqo
Furthermore, we deduce that
N .
||Um||1,13‘(~) = ||um||1,1 + Z HDZUmHLm(-)(Q)
i=1
(48)

N

< lmlusioy +2 3 [ D) do+ 2
=179

< Cs.

with C7 and Cjg are two constants that doesn’t depend on m. Thus, the sequence (wy, ), is uniformly

bounded in WHP() (€2), and there exists a subsequence still denoted by (u,,),, such that

U — U weakly in W170)(Q),
Upy — U stronglyin LP2(Q2) and ae. in Q, (49)
Upm —u  weaklyin L'(09).

It follows that
i\um\ﬂﬁum —0 strongly in L2 (Q). (50)
m

Moreover, in view of (47) we conclude that (T}, (tm,))m is bounded in L") (Q), and since T}, (t,,) — u

almost everywhere in (2, we get
Ton(um) —u  weaklyin L"0)(0Q). (51)

Having in mind (14) and the fact that u,, — u a.e. in €2, thanks to Lebesgue dominated convergence

theorem we conclude that

F(z,up) — F(z,u) stronglyin LP (). (52)
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Step 3 : The convergence almost everywhere of the gradient.

By taking v = u as a test function for the approximated problem (16) we obtain

N
a;(z U u Uy — D) d e U |22 U (U — ) dix
Z/ (@ Talttn), Vi) (D't = D) o+ [ P2 =)
/ T (1) " =2 () (1t — 1) it (53)
F(z,um) (U — u) do + G (upm — u) do,

Q o0
it follows that

N
Z/ (ai(z, Ty (um), V) — ai(z, Ty (), V) (D", — D) da
— /0
—|—/ (]T ()" 2T () — | Ty (w)["®) 2T, (u)) (U — u) dx
N (54)
< Z/ |ai (2, Ty, (tn), Vo) | | D'y, — D' dx—i—/ Ty ()" |y — ] da
/ U [P [ty — dw+/ |F'(z, um)| [tm — ul dm+/ |G| |t — u| do.
For the first term on the right-hand side of (54), we have T}, (u,,) — T},(u) strongly in L?()(Q) then
|ai(@, T (um), V)| — |ai(z, Tn(u), Vu)|  stronglyin  LP0)(Q),

and since D'u,, — D'u weakly in LP«()(Q), it follows that
Z/ |ai (2, T (t), V)| | D'ty — D'u| dz — 0 as m — oo. (55)

Concerning the second and third terms on the right-hand side of (54), in view of (50) and (51) we

conclude that
/ | T ()"t — u| dzz — 0 as m — oo, (56)
Q
and

1
/ [ |2 [ty — | dz — 0 as m — oo. (57)
mJo
Moreover, we have |F(x, uy,)| — |F(z,u)| strongly in L¥ (), then
/ |F (2, um)| [t — u| dz — 0 as m — oo. (58)
Q

For the last term on the right-hand side of (54), we have G(x) € L>(9Q) and u,, — u weakly in L (92),
then

/ |G| |ty — u| do — 0 as m — oo. (59)
Gle!

By combining (54) and (55) — (59) we conclude that

N
Tr}i_r)noo Z/Q (ai(z, Tn(tm), Vi) — a; (2, Ty (um), V) (Dt — D'u) dz = 0, (60)
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and since u,, — u strongly in L2(2). Thus, in view of Lemma 3.1, we conclude that

{ Uy, — U strongly in ~ W70)(Q), (61)

Diu,, = D'u ae.in Q for i=1,...,N.
It follows that a;(x, T5,(uy), Vu,) — ai(x, T, (u), Vu) almost everywhere in 2, then

ai(x, T (tm), V) = ai(z, Ty (u), Vu) weaklyin LPO(Q) for i=1,...,N. (62)

Step 4 : Passage to the limit.

By taking v € K as a test function for the approximate problem (16) we have

Z:/aZ z, Ty (), V) (D', — D) dm+/ | T ()" 2T () (4, — 0) diz

(63)
/\um\p 2 m— U de/Fa:,um)(um—v)dx—i— G (U —v) do,
Q !
Thanks to Fatou’s lemma we have
liminf [ [T (m)|"® 2T () (i, — v) dat
m—ro0 Q
= lim inf / (1T ()" 2 T () — [T (0) " 2T, () (i — v) da
/ )" @2y (u — v) da
/ u|"® 2 (u — v) d
In view of (50), (51) and (62), by letting m tends to infinity we conclude that
N . .
Z/ a;(x, Ty (u), Vu)(D'u — D'v) dx + / u|"® 2y (u — v) da
= Ja Q (65)

S/QF(x,u)(u—v)dac—i— BQG(u—v)da.

Thus, the proof of the theorem 4.1 is concluded.

5. MaiN Resurr

Now, we consider the nonlinear Carathéodory function f(z, s) that verifying the growth condition

|f(x,8)] < fola) + c(x)|s]"@, (66)

r(z)—1

where fo(-) € L}(Q), with ¢(x) € LT@-1=7@) (Q) and 0 < y(x) < r(z) — 1.

Definition 5.1. A measurable function w is an entropy solution of the unilateral problem associated to the
quasilinear elliptic equation (8) if Ty,(u) € WHPC)/(Q) for any k > 0, with u > ) a.e. in Q such that u verifying
the inequality

Z/alxuVu)DTk(u—v dx+/\u|”"’ 2uTy(u — v) dz

(67)
/ [z, u) T (u —v) de + /Ban(:L‘)Tk(u —v)do
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forany v € Ky N L>(8).

Theorem 5.1. Assume that (9) — (11) and (66) hold true, then there exists at least one entropy solution u for

the unilateral problem associated to the quasilinear anisotropic elliptic Neumann equation (8).

Proof of Theorem 5.1.

Step 1: Approximate problem. Let fn(x,s) = T,(f(x,T(s))) and gn(z) = T,,(g(z)). We consider the

sequence of approximate problem :

N
= Di(ai(w, Tu(un), Vun)) + [l 2wy = fo(,un)  in Q,
Ni:l (68)
Zai(x, T (u), Vu) - n; = gn(x) on 09,

In view of theorem 4.1, there exists at least one weak solution u,, € K for the unilateral problem

associated to the quasilinear elliptic Neumann equation (68), i.e.

N
Z/ ai(z, Tn(un), V) D' (uy, — v) dz + / |t " 20y, (1, — ) dzz
— Jo Q

- (69)
< /an(x,un)(un —v)dx + /89 gn(z)(up —v) do.

for any v € K.
Step 2: Weak convergence of truncations
Let k > max(1, |/ |ls0), and v = u, — Tk (un, — ¢), since v € WHP)(Q), and for 7 > 0 small enough

we have v > 1. Thus v is an admissible test function for the approximate problem (69), and we have

Z/ (2, Ty (tn), Vi) DT (uy, — ) da +/ i |"®) =200, Ty (1, — b7 ) daz
{lun— 1/;+\<k} Q

< / Ful@s n)Th (0 — %) dz + / () Tt — ) dor
Q

oN

(70)

Since Ty (u, — 1 ™) have the same sign as u,,. Thus, using (10) and the growth condition (66) we obtain

Z/ ([T 1) )| D 1 P2 da:+/ i T (a — )] da
{lun—o¢t|<k}
_/Qlfofc T (n — %) \dx+/ |cx eal @ T (utm — 6] da

+ / 190 ()| Ti (1 — %) |do+Z / 0i(@, T (tn), V)| | D] e
o0 {|un— w+\<k} (71)
k([ fo(@)ll L1y + l9(x) 1 o0) + / IunI” Nk (un — ¥ 1) da
r(z)—1
+ / le(2)| T | Ty (un — 00| d:c+z / (2, Ty (un), Vuy,)| | Dt de
o0 {lun— ¢+I<k}
< Clk+1/ |t |" @) Ty (g — p7) \dx+z/ |ai(z, T (un), V)| | D] da.
2 Ja {Jun -+ |<k}
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It follows that

N
> / BT DID P 4 [ " Tyl — )
{‘u" 7JJ+|<'I{:} (72)

< clk;+z/ a5z, T (1), V)| | Diep| da.
{lun—yt+|<k}

For the second term on the left-hand side of (72), in view of Young’s inequality we obtain

1 _
5 [l T, 0] o

1 k
T2 / [t ", — | e+ S / |71 da
2 Jjun—ut|<k} 2 J{un—pt >k}

1
/ fun| ") dar — 5 / ")t
{lun—y+[<k} {lun—y+|<k}

k
4= ’ n|7‘(m)—1 dx 73
2 Jllun—vt1>k) 7)

=3 un ) o~ 5 ual
2 J{un—y+|<k} 4 J{jup—pt|<k}

k
) / 7@ dg + = || @1
{Jun—+|<k} . 2 J{jun—vt|>k}
|t |"®) da 4 = |t | da — .
{Jun—yrt| <k} 2 J{jun—wt|>k}

—_

>

e~ =

Concerning the last term on the right hand side of (72). We have A(z)(p;(xz) — 1) < 1, and using (9) we
get

Z/ [ai(@. Tn(uwn), Vun)| [ D' da
\un P+ |<k}
{lun— w+\<k}
2)|Pi@) de + 8 / )P da
Z/Iun w+\<k} Z |“n w+\<k}
25 /
Z {lun—1pt|<k}
Dlwﬂpz
" / dx
Z {lun—y+|<k} b(|T, (un)’)pz(x) 1
< Cs—l—l/ T (un)|" () dr + = Z/ T (u n)‘)‘Diun]pi(x) du
et G2y
N
+C4Z/ ‘Diw-&-’pi(x)(l_'_ ‘Tn(un)D)‘(x)(pi(x)_l) d

{lun—v+|<k}

1 .
< Csk + 8/ T ()| d + = Z/ b(| Ty (un)|)| Dt [P di
{lun—u+|<k} {lun—y+|<k}

DAy P ds + 3 Z [ MDD ) ds

By combining (72) and (73) — (74), we conclude that
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N
1 7 i(x
> BT () ) D) i
=3 Hlun—ut <k} . (75)
+1 |up|"®) dz + / |up|"@) 1 dz < Cgke.
8 J{jun—vt|<k} 2 J{un—pt >k}
Since {|up| <k} C{|up — 7| <k + [|[¥" ||}, we conclude that
b N b N
0 i . 0 i .
— DTy (u,) [P dz = ———— / Dl |Pi®) do
DS /Q DTy () T 2 e P
N
A 76
<Z/ b(| T (un) )| D [P d (76)
= S =<kt [0t oo}
< Ck.
It follows that
N .
> / | DT (un) P da < Cgk* . (77)
i=1 V%
Furthermore, we have
N .
1T (un)ll 5y = 1Tk (un)llia + Z D" T, (un) ] i )
lZIN N
< | |Tu(uy)|dz + / DTy (uy,)|dx + / DTy (u,) [P dox + N
/Qm a3 [ 10T+ 3 [ 1DTiw) 5

N

< kmeas(Q) +2) / | DTy (u) [P dz + N (1 + meas(Q))
i=1 7%

< Cgk)\++1.

where Cy is a positive constant that does not depend on k and n. Thus the sequence (7% (un))x

is uniformly bounded in W7)(Q) and there exists a subsequence still denoted (T} (uy)), and a

measurable function v, € W1#0)(Q) such that

Ti(un) — v, weaklyin W70 (Q), (79)
Ty (un) — vg  stronglyin L'(Q) and aein (.
Moreover, in view of (75), we have
k" “'meas{|u,| > k} = / Ty ()"~ e
|un | >k}
< |t |"® 2 (80)
{lun—9F|[>k=[lv oo}
< Cho.
It follows that
. Co
llrIiSolip meas({|u,| > k}) < 1 —0 as k — oo. (81)
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Now, we are going to show that (u,,), is a Cauchy sequence in measure.
For all A > 0, we have
meas{|u, — uy,| > A} < meas{|u,| > k} + meas{|u,,| > k}
+meas{| Ty (un) — Tk(um)| > A}
Let € > 0, using (81) we may choose k = k(¢) large enough such that
meas{|u,| > k} < % and meas{|u,| > k} < g (82)

In addition, thanks to (79) we have Tj(u,) — v strongly in L'(Q) and a.e. in Q. So, we may

assume that (T (uy))n is a Cauchy sequence in measure, and for all £ > 0 and ¢, A\ > 0, there exists
no = no(k,e, \) such that

meas{|Tk(un) — Ti(um)| > A} < for all m,n > ngy(k,e, A). (83)

Wl m

By combining (82) — (83), we conclude that : for all ¢, A > 0 there exists ng = no(e, A) such that :

meas{|u, — um| > A} <e forany n,m > ng(e, \).

It follows that (uy)y is a Cauchy sequence in measure, then converges almost everywhere, for a

subsequence, to some measurable function u. Consequently, we have

Ti(un) — Ti(u) weaklyin WHPL)(Q),
Ti(un) = Ti(u) stronglyin L'(Q) and aein 9,

(84)
Ti(un) = Ti(u) weaklyin LY(0Q) and aein Q.
In view of Lebesgue’s dominated convergence theorem, we conclude that
Tr(un) = Tx(u) in LPO(Q) and ae.in Q for i=1,...,N. (85)
Moreover, in view of Young’s inequality we have
e sy <[5
k LY8Q) — k 1,1
i) DT ) "
< Cn / dx + C1s Z/ kpl dw (86)
— 0 as k — ooc.
it follows that
1;
’“<k“”) 0 weak—* L®(9Q). (87)

Step 3: Some regularity results

We will note by ¢;(n) ¢ =1,2,... some various functions of real numbers which converges to 0 as n
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tends to infinity. Similarly, we define ¢;(h) and ¢;(n; h).
In this step, we are going to show this
N

1 .
lim limsup — Z/ ai(x, Tn(un), Vup)D'u, de = 0. (88)
{lun|<h}

h—00 n—oo h

Indeed, let h > k > max(1, |||/« ), we considering the function
e W),

we have v > 9 for ) small enough. Therefore, we have v € K is an admissible test function for the

approximate problem (69), and we obtain

N i +
"72/ ai(x>Tn(un),VUn)D Th(ug dx‘”?/ |un|r @) 2 M dz
=179 - . I N (89)
< 77/ fn(x’un)w d:v+17/ gn(x)M
Q h 0 h
Since T}, (u, — ™) have the same sign as u,, thus, in view of (10), (66) and Young's inequality, we
obtain
n(un), Vuy, Diu,, dz
2hz/|un w+\<h} Tnlten) )
un|)| Dy, [P do + — / | @ T (uy, — )| de
hZ/m ooy MDD s | T — )
1 1
<& [ V@ITn = w1 o+ 5 [ 6@l Th(wn) P T = 99)lda
1 (90)
_ -‘r i+
3 [ @I~ 0] do Z ey T, VD
<3 / folelThun = vl do+ 5 [ a9 T )

/ ) T T~ ) dz [ lgala)|[Talan — )] dor
19)
(z, Ty (un), V)| | D'y da.
hz/u ¢+|<h}

Using the same argument as in (74) we conclude that

Z/ |ai(z, To(un), Vun)| D% | do

{lun—p+|<h}
6 p (z) d p pi(z)—1 + +1d
< Z i Ly K@ Z PO iy — 9 + ] da

|un Pt|<h}
+252/

Z/ DA P 4 T, )P
|un_¢+|<h}

(91)
DiytP@dy + = Z/ b (1)) | Dt [P i

|un ¢+\<h} |u7l '¢'+‘<h}
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o 1
<24
he ™ Ah J{ju,—p+i<ny
N

1 / ; .
+— b(|T,, () )| Dy |Pi ) da
2 oy TP

N

b pa(a) (L [ o) MO~

+C § / Digt|pi@ dz.
2 S h

[ T (g, = 47)| d

It follows that

n n ,V n nd 1 b n Dl pl
QhZ/lun sy S T0) T D i+ Z/uﬂ sy MDD
/|u T,y — )] da
/ Fo(@)|[Th(un — o+)| da + 20 / o) [T [Ty (un — 7)) da
+h/ 90(0)|I Ty — %)) o

. oy (L B+ |9 oo) @ @i@)=1)
+C / |D? +pito) ( dz.
! Z {Jun—v+|<h} vl h

(92)

For the second term on the right-hand side of (92), we have meas({|u,| > k}) — 0 as h tends to infinity

|Th(un — 7))

and " € L*>®(Q), then ;

— 0 weak—x in L>°(Q), it follows that

/|f0 W Th (un — )| dz — 0 as h — oo.

r(z)—1

Similarly, we have c(z) € L @-1-7) (Q) then
/\ )| FEIAE [T (up — &F)|dz —5 0 as k- oo

[T (un — ¢7))

Moreover, in view of (87) we have .

— 0 weak—x* in L>°(01), then

1
/ \gn ()| T (tr, — ) do — 0 as h — .
h Joq

Concerning the last term on the right-hand side of (92), we have A(x)(pi(z)—1) < 1foranyi =1,...

it follows that

, 1+ h + z)(pi(x)—1)
Z/ Dyt i) L A 9 o) dr — 0as h — oo.
{Jun—w+|<h} h

By combining (92) and (93) — (96), we conclude that
|
lim limsup — / a;(z, T, (uy), Vuy, Diun dz =0,
] . > onln) (@, T (un), Vun )

and

N
1 ,
lim limsup 7 Z /{| . b(|tn )| Dt [P da = 0.

(93)

(94)

(95)

(96)

(97)

(98)
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Moreover, we have

lim lim sup/ |t |"@) 1 dz = 0. (99)
{lun|>n}

h—00 np—oo

Thus, for any € > 0 there exists 5 > 0 such that : for any measurable subset E € (2 with meas(E) <

we have
/ un|" @ da < / T (1) "~ das +/ " @ dr < S 4 S =2 (100)
E E {lun|>h} 2 2
We conclude that, the sequence (|u,|"®)~1),, is uniformly equi-integrable, and since |u,|"®)~! —
lu|"@)~1 almost everywhere in . In view of Vitali’s theorem we conclude that
|7 — o7 @)1 strongly in  L'(Q). (101)

Moreover, we have f,(z, T, (u,)), converge to f(z,u) almost everywhere in €, by using (66) and Young's

inequality, we obtain
r(z)—1
| fu(,un) | < | fo(@)] + c(@) un ") < [ fo(z)| + [e(@) O + fu,[ @71 aein Q, (102)

Thus, the sequence (fy,(x, u,))y, is uniformly equi-integrable in €, and in view of Vitali’s theorem we
conclude that

fo(z,uy) — f(z,u) strongly in  L'(Q). (103)
Step 5: Almost everywhere convergence of the gradients
Let h > k > max(1, | "]|), and we set

[ Ton(s) = Th(s)]
h

We have v = u,, — n(Tx(un) — Tp(u))Sh(un) € WHPH)(Q) and v > ¢ for  small enough, then v is an

Sp(s) =1—

admissible test function to the approximate problem (69), we obtain

N .

> [ s Tufun). Vi) D' (Te() = Tu(u)) S () da

i=1 7%

+ / | @200, (T () — T (w)) S () da (104)
< [l ) (Belan) = Tu()Sh(a) o+ [ a() (Telun) = Th(w) S () o

Q o0
Then, we have
N . .
3 / 01 (2, T (1), V) (DT () — DT () Sh(un)
—1 /0
+ / [t |"®) =2 (Th () — Tho (1)) S (un) da
(105)
< 7 | fo (@5 un)| (T (wn) — Ti(u))[Sh(un) dfc+/m lgn ()] [Tk (un) — Ti(u)|Sh(un) do

hz/h<| <any (2, T (1n), Vtn) D't (Tian) = Ti(w))]
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We have Sj,(uy,) = 1 on the set {|u,| < k}, and Tj(uy,) — T (u) has the same sign u,, on the set {|u,| > k}.

It follows that
N . .
3 / a5(, T (un), VT () (D' Ty (1) — DTy () da
—1 /0
+ / | T ()" 72T () (Tho () — T () da
Jun|<k}
+ /{ || " T (wg) — T (w) | Sh (un) da

[un|>k}

/ [ )] [T (1) — ()] iz + /8 1@ [Tiloe) = T(w)] o

Z/ (z, Tr(tn), Vun) D'y da
h<|un\<2h}

+Z/ (2, Ton (tn), VTan (un))| | DT ()| d.
{k<un|<2h}

Thus, we conclude that
N
Z /Q(ai(m, Ti(un), VT (un)) — ai(z, Tr(un), VTk(u)))(DiTk(un) — DiTk(u)) dx

+/ (T3 () "2 T () = [T () "2 T3 (w)) (T (un) = Ti(w)) dee
{lun|<k}

< / s )] [T () — T(u)] iz + / T (1)~ () (T (1) — Ti ()
Q Iun|<k}

+ [ o) T = Tiw) do + 5 Z / T (1), Vi) D'y di

h<|un\<2h}

N
ns /Q las(@, T (1), VT ()| DT (1) — DT ()| d
]_V .
+ / lai(z, Ton(un), VTop(un))| | DT (u)| dz,
{k<|un|<2h}

(106)

(107)

For the first term on the right-hand side of (107), in view of (103) we have f,(z, u,) tends to f(x,u)

strongly in L(€2), and since T}, (uy,) — Ty (u) — 0 weak—x in L>(12) it follows that
[t (Tutan) = T e 0 as o
Also, we have | T}, (u)["®) 2T}, (u) € L'(Q) then
/{ PO ) (Ti) i) e 0 @ o0
Similarly, we have g(x) € L'(99) and since (Tj(uy,) — Tk (u)) — 0 weak—x* in L>(9S2), then

/ lg(x)| | Tk (un) — Ti(u)| do — 0 as n — oo.
oN

Concerning the fourth term of the right-hand side of (107), using (97) we have

Z/ (), Vun)Diun de — 0 as h — oo.
h<\un|<2h}

(108)

(109)

(110)

(111)
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For the two last terms on the right-hand side of (107), we have T},(u,) — Tj(u) strongly in LP<()(Q),
then a;(z, Ty (un), VT (1)) — ai(z, Tr(u), VTi(u)) strongly in LPi()(Q), and since DTy (u,) tends to
DTy, (u) weakly in LP()(Q), we conclude that

N
Z/Q s (@, T (un), VT (1))|| DT () — D' T(w)] dz — 0 as 1 — 0o, (112)

Moreover, we have (a;(z, Ton (tn ), Vo5 (tn)))n is bounded in LPi() (), then there exists a measurable

function &y, € LPi()(Q) such that a;(z, Top (un), VTan(un)) — Eo, weakly in LPi()(9), it follows that

lim Z / (a5 (z, Ton (), VT (un)) | | DT (w)] da
{k<|un|<2h}

n—oo

(113)
= / 6 | DT () d = .
i—1 Y {k<|u|<2h}

By combining (107) and (108) — (113), we conclude that

N
Z /Q(ai(:z:, Ti(n), VTi(un)) — ai(z, Te(tn), VTi(w)) (D Tk (ty) — DTy (u)) dz — 0 (114)

as n tends to infinity, and since T} (u,) — Tk (u) strongly in L2(2), it follows that

N
Z /Q(ai(:n,Tk(un), VTi(un)) — ai(z, Tp(un), V(1)) (D Ty (un) — DTy (u)) da

(115)
+ / (\Tk(un)lﬂ_QTk(un) — ]Tk(u)\ﬂ_QTk(u))(Tk(un) —Tk(u))dx —0 as n— 0.
Q
In view of Lemma 3.1, we conclude that
Ti(un) — Ti(u) stronglyin  WhPL)(Q), (116)
Diu, — D'u ae.in Q for i=1,...,N.

Step 6: Passage to the limit.
Let p € Ky N L*(Q2) and M = k + ||¢||«. By taking v = u, — nTj(u, — @) as a test function for the

approximate problem (69), we have

Z/ ai(z, Ty (up), Vuy,)D* Tk( — ) dx+/ |Un\r(x)_2UnTk(Un —¢)dx
Q

(117)
/ fn(x,up) T (un — @) doe + /ag gn () Tk (uy, — ) do,

we have {|u, — ¢| <k} C {|uy| < M}, then
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M-

.
I
—

/ ai(z, Tp(wn), V) DT (uy, — @) da
Q

N
=3~ [ aile Tartun), VI3 (0)) (D Tis () = Dp)xp, ity do
i=1 79
~ (118)
=) /Q(ai(SUaTM(un% VT (un)) = ai(@, Tar (un), Vo)) (D' Tas (un) — D'0)X{ju—pl<ky dz
Zﬁl . .
37 [ ai(o. Tar(n), D Tar (1) = D', i
i=1
In view of Fatou’s Lemma, we obtain
N .
linr_1)inf Z/ a;(z, Ty (un), Vun) D" Ti(u, — @) da
N ' 4
>3 /Q(ai(w, Tor(u), VT (u)) = ai(w, Tar(w), Vo)) (D' Tar (w) — D)X fjun—pl<k} AT
=1 N | |
#Jim S [ oo T (0). T D Tas(u) = Do),y da (119)
i=1

I
M=

/Q a; (2, Tos (), YTy () )(D' Tt () — D) xjupicr
=1
N

/ ai(z,u, Vu) DTy, (u — @) dz.
i=1 7%

Moreover, we have T} (u, — ¢) = Ti(u — ¢) weak—* in L>°(Q2). Having in mind (101) and (103), we

conclude that

/ [t | ") 20, T (ury, — ) dzz — / lu"@) 24Ty (u — o) da. (120)
and ) "
[ )Tt = ) o — [ flau)Tuta - ) da. (121)
Also, since Ty (un, — @) AQTk(u — ¢) weak—x in LOO((?Q)?Ne get
| sttt = 0)de — | g@Titu—)ao (122)

Finally, by combining (117) and (119) — (123), we conclude that

N
Z/ ai(z,u, Vu)D' Ty, (u — @) dz + / u|"®) 20Ty, (u — @) da
=179 @

< / flz,u)Ti(u — @) do + / 9(z)Ti(u —¢)do forall ¢ e K, NL*(Q),
Q o9

(123)

which complete the proof of the theorem 5.1.
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