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Abstract. Based on transformations with restricted range on a finite set {1, . . . , n}, in this paper, the set
W

GT (n̄,Y )
τn (X) of full terms generated by transformations with restricted range on a finite set consisting

elements greater than n are defined. Applying the generalized superposition operations of full terms,
the algebra cloneGT (n̄,Y )(τn) of such terms which satisfies the superassociativity is constructed and it
generating systems is proposed. We then show that there is a mapping that takes any element of the
generating system to our generalized full terms, called generalized clone substitutions. Properties of
the freeness of cloneGT (n̄,Y )(τn) in a variety of Menger algebras are examined. To find a method for
classifying arbitrary algebras into subclasses via strong hyperidentites, a generalized full hypersubstitution
sending each n-ary operation symbol to each element of the set WGT (n̄,Y )

τn (X) is given and its binary
associative operation is defined. Finally, we determine a necessary conditions for which every identity in
cloneGT (n̄,Y )(τn) to be generalized full hyperidentity in a variety of algebras.
2020 Mathematics Subject Classification. 08A62; 08B15; 20M10.
Key words and phrases. generalized terms; Menger algebra; generalized hypersubstitution; hyperidentity;
transformations with restricted range.

1. Introduction

Let X = {x1, x2, x3, . . .} be a countably infinite set of symbols called variables. We often refer to these
variables as letters, to X as an alphabet, and also refer to the set Xn = {x1, . . . , xn} as an n-element

alphabet. Let (fi)i∈I be an indexed set which is disjoint from X . Each fi is called ni-ary operation symbol,
where ni ≥ 1 is a natural number. Let τ be a function which assigns to every fi the number ni as its
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arity. The function τ , on the values of τ written as (ni)i∈I is called a type. Recall that an n-ary term of
type τ is defined inductively as follows :

(i) The variables x1, . . . , xn are n-ary terms.
(ii) If t1, . . . , tni are n-ary terms then fi(t1, . . . , tni) is an n-ary term.

By Wτ (Xn) we mean the smallest set which contains x1, . . . , xn and it is closed under finite
application of (ii). It is clear that every n-ary term is also m-ary term for all m ≥ n. The set
Wτ (X) :=

∞⋃
n=1

Wτ (Xn) is set of all terms of type τ over the alphabet X . This set can be used as

the universe of an algebra of type τ . For every i ∈ I , an ni-ary operation fi onWτ (X) is defined by
fi : Wτ (X)ni −→ Wτ (X) with (t1, . . . , tni) 7−→ fi(t1, . . . , tni). The algebra Fτ (X) := (Wτ (X); (fi)i∈I)

is called the absolutely free algebra of type τ over the set X . There are a number of detailed researches on
terms (see, [8]).

In [15], the complexity of terms was studied. Actually, the depth of a term is defined. Let t ∈Wτ (X),
the depth of a term t, denoted by depth(t), is defined as follows:

(i) if t = x ∈ X , then depth(t) := 0,
(ii) if t = fi(t1, . . . , tni) where t1, . . . , tni ∈Wτ (X), then

depth(t) := max{depth(tj) | 1 ≤ j ≤ ni}+ 1.

A generalized hypersubstitution of type τ is a mapping σ : {fi | i ∈ I} −→ Wτ (X) which does
not necessarily preserve the arity. We denoted the set of all generalized hypersubstitutions of type τ
by HypG(τ). To define a binary operation on HypG(τ), we need to define the concept of generalized
superposition of terms Sm : Wτ (X)m+1 −→Wτ (X) by the following steps. For any term t ∈Wτ (X),

(i) if t = xj , 1 ≤ j ≤ m, then Sm(xj , t1, . . . , tn) := tj ,
(ii) if t = xj ,m < j ∈ N, then Sm(xj , t1, . . . , tn) := xj ,
(iii) if t = fi(s1, . . . , sni), then

Sm(t, t1, . . . , tn) := fi(S
n
m(s1, t1, . . . , tm), . . . , Snm(sni , t1, . . . , tn)).

As a consequence, the algebra (Wτ (X), Sm) is a Menger algebra of rankm+ 1. More information
about Menger algebras, see [6, 7]. A relationship between Menger algebras and power set of terms was
given in [20].

Applying the operation Sm, the generalized hypersubstitution σ can be extended to a mapping

σ̂ : Wτ (X) −→Wτ (X)

by the following steps:

(i) σ̂[x] := x ∈ X ; and
(ii) σ̂[fi(t1, . . . , tni)] := Sni (σ(fi), σ̂[t1], . . . , σ̂[tni ]) for any ni-ary operation symbol fi where

σ̂[tj ], 1 ≤ j ≤ ni are already defined.
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We defined a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2 where ◦ denotes the usual
composition of mappings and σ1, σ2 ∈ HypG(τ). Let σid be the hypersubstitution which maps each
ni-ary operation symbol fi to the term fi(x1, . . . , xni). In [11], it is proved that for arbitrary terms
t, t1, . . . , tn ∈Wτ (X) and for arbitrary generalized hypersubstitutions σ, σ1, σ2 we have

(i) Sn (σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)],
(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

It turns out that (HypG(τ); ◦G, σid) is a monoid where σid is its identity element. The
monoid (Hyp(τ); ◦h, σid) of all arity preserving hypersubstitutions of type τ forms a submonoid of
(HypG(τ); ◦G, σid).

Let τn = (n, n, . . . , n) be a type consisting of the same values equal to n, i.e. τn = (ni) with ni = n for
all i ∈ I . The concept of full terms is used in [4] to study the depth of terms and full hypersubstitutions,
and solid varieties. The composed full terms are derived by operation symbols and terms in which all
input variables occur. Thus the resulting subterms in each step of composition, content whole set of
the input variables, which can be only permuted.

In 2013, Phuapong and Leeratanavalee [13] inductively defined generalized full terms of type τn,
based on the permutations, as follows:

(i) if s : {1, . . . , n} → {1, . . . , n} is a permutation, then fi(xs(1), . . . , xs(n)) is a generalized full
term,

(ii) if j1, j2, . . . , jn are natural numbers and greater than ni, then
fi(xs′(j1), . . . , xs′(jn)) is a generalized full term where s′ is a permutation on {j1, j2, . . . , jn},

(iii) if t1, . . . , tn are generalized full terms of type τ , then fi(t1, . . . , tn) is a generalized full term of
type τ .

Let WGF
(n) (X) be the set of all generalized full terms and let Pn be the set of all permutations on

{1, . . . , n}.

2. Generalized T (n̄, Y )-full terms

The first aim of our main results is to propose the new concept of a specific term, based on full
transformation mappings and the original notions of terms. For this, we recall the concept of the full
transformations.

Let X be a nonempty set and let T (X) denote the semigroup of the full transformations from X

into itself under composition of mappings and let Y be a nonempty subset of X . Then T (X,Y ) was
introduced by Symons [17] to be the set of all transformations fromX to Y called the full transformation

semigroup with restricted range, that means

T (X,Y ) := {α ∈ T (X) | Xα ⊆ Y } .
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Clearly, T (X,Y ) is a subsemigroup of T (X) and if X = Y then T (X,Y ) = T (X). For more informa-
tion about T (X,Y ), we refer to [16].

Let τn be a type and let (fi)i∈I be an indexed set of operation symbols of type τ . The full transformation

semigroup Tn consists of the set of all maps α : {1, 2, . . . , n} −→ {1, 2, . . . , n} and the usual composition
of mappings. Indeed, Tn is a monoid and identity map 1n acts as its identity. Let n̄ := {1, 2, . . . , n}. For
a fixed nonempty subset Y of n̄, it is well-known that the set

T (n̄, Y ) := {α ∈ Tn | Imα ⊆ Y } ∪ {1n}

is a submonoid of Tn. Let {j1, . . . , jn} ⊆ N where j1, . . . , jn are all distinct with {j1, . . . , jn} ∩
{1, . . . , n} = ∅. By T{j1,...,jn} we denote the set of all full transformations on {j1, . . . , jn} and by 1{j1,...,jn}

we mean an identity mapping on {j1, . . . , jn}. For, a fixed nonempty subset Y ′ of {j1, . . . , jn}, we set

T ({j1, . . . , jn}, Y ′) := {α′ ∈ T{j1,...,jn} | Imα′ ⊆ Y ′} ∪ {1{j1,...,jn}}.

is a submonoid of T{j1,...,jn}. Now we introduce the definition of generalized T (n̄, Y )-full term of type
τn.

Definition 2.1. Let fi be an n-ary operation symbol and α ∈ T (n̄, Y ). A generalized T (n̄, Y )-full term
of type τn is defined in the following way:

(i) if α ∈ T (n̄, Y ), then fi(xα(1), . . . , xα(n)) is a generalized T (n̄, Y )-full term of type τn;
(ii) if α′ ∈ T ({j1, . . . , jn}, Y ′), then fi(xα′(j1), . . . , xα′(jn)) is a generalized T (n̄, Y )-full term of type

τn;
(iii) if t1, . . . , tn are generalized T (n̄, Y )-terms of type τn, then fi (t1, . . . , tn) is a generalized T (n̄, Y )-

full term of type τn.

LetWGT (n̄,Y )
τn (X) be the set of all generalized T (n̄, Y )-full terms of type τn.

The set of all generalized T (n̄, Y )-full terms of type τn is closed under the superposition Sn can be
proved in the following theorem.

Theorem 2.2. Let t, s1, s2, . . . , sn ∈WGT (n̄,Y )
τn (X). Then Sn(t, s1, . . . , sn) is also a generalized T (n̄, Y )-full

terms of type τn.

Proof. We give a proof by induction on the depth of a generalized T (n̄, Y )-full term t. If t =

fi(xα(1), . . . , xα(n)) where α ∈ T (n̄, Y ), and Depth(t) = 1, then

Sn(t, s1, . . . , sn) = Sn(fi(xα(1), . . . , xα(n)), s1, . . . , sn)

= fi(sα(1), . . . , sα(n)),
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which is a generalized T (n̄, Y )-full term.
If t = fi(xα′(j1), . . . , xα′(jn)) where α′ ∈ T{j1,...,jn}, and Depth(t) = 1, then

Sn(t, s1, . . . , sn) = Sn(fi(xα′(j1), . . . , xα′(jn)), s1, . . . , sn)

= fi(xα′(j1), . . . , xα′(jn)),

which is a generalized T (n̄, Y )-full term.
If t = fi(r1, . . . , rn) where r1, . . . , rn ∈WGT (n̄,Y )

τn (X) and assume that
Sn(rk, s1, . . . , sn) is a generalized T (n̄, Y )-full terms for all 1 ≤ k ≤ n and
max1≤k≤nDepth(rk) = m, then Depth(t) = m+ 1 and we have

Sn(t, s1, . . . , sn) = Sn(fi(r1, . . . , rn), s1, . . . , sn)

= fi(S
n(r1, s1, . . . , sn), . . . , Sn(rn, s1, . . . , sn)).

By Definition 2.1, Sn(t, s1, . . . , sn) is a generalized T (n̄, Y )-full term.
�

Now we consider the algebra

cloneGT (n̄,Y )(τn) :=
(
WGT (n̄,Y )
τn (X), Sn

)
which is called the clone of all generalized T (n̄, Y )-full terms of type τn. The Theorem 2.3, presented below,
shows that the algebra

(
W

GT (n̄,Y )
τn (X), Sn

)
satisfies the superassociative law (SASS):

Sn(X0, S
n(Y1, Z1, . . . , Zn), . . . , Sn(Yn, Z1, . . . , Zn)) ≈ Sn(Sn(X0, Y1, . . . , Yn), Z1, . . . , Zn) (1)

where Sn is an (n+ 1)-ary operation symbol and X0, Yj , Zj are variables for all 1 ≤ j ≤ n.
Next, we shall show that the superassociative law is satisfied in the clone of all generalized T (n̄, Y )-

full terms.

Theorem 2.3. The algebra cloneGT (n̄,Y )(τn) satisfies the superassociative law (SASS).

Proof. Wegive a proof by induction on the depth of a generalized T (n̄, Y )-full term twhich is substituted
X0 from (1). If we substitute X0 from (1) by a generalized T (n̄, Y )-full term t = fi(xα(1), . . . , xα(n))

where α ∈ T (n̄, Y ) and Depth(t) = 1, then we have

Sn(fi(xα(1), . . . , xα(n)), S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

= fi(S
n(xα(1), S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)), . . . ,

Sn(xα(n), S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)))

= fi(S
n(tα(1), s1, . . . , sn), . . . , Sn(tα(n), s1, . . . , sn))

= Sn(fi(tα(1), . . . , tα(n)), s1, . . . , sn)
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= Sn(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn), s1, . . . , sn).

If we substitute X0 from (1) by a generalized T (n̄, Y )-full term
t = fi(xα′(j1), . . . , xα′(jn)) where α′ ∈ T{j1,...,jn} and Depth(t) = 1, then we have

Sn(fi(xα′(j1), . . . , xα′(jn)), S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

= fi(xα′(j1), . . . , xα′(jn))

= Sn(fi(xα′(j1), . . . , xα′(jn)), s1, . . . , sn)

= Sn(Sn(fi(xα′(j1), . . . , xα′(jn)), t1, . . . , tn), s1, . . . , sn).

If we substitute X0 from (1) by a generalized T (n̄, Y )-full term t = fi(r1, . . . , rn) where r1, . . . , rn ∈

W
T (n̄,Y )
τn (Xn) and assume that

Sn(rk, S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)) = Sn (Sn(rk, t1, . . . , tn), s1, . . . , sn)

for all 1 ≤ k ≤ n, andmax1≤k≤nDepth(rk) = m, then Depth(t) = m+ 1 and we have

Sn(fi(r1, . . . , rn), Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

= fi(S
n(r1, S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)), . . . ,

Sn(rn, S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)))

= fi (Sn (Sn(r1, t1, . . . , tn), s1, . . . , sn) , . . . , (Sn(rn, t1, . . . , tn), s1, . . . , sn))

= Sn(fi(S
n(r1, t1, . . . , tn), . . . , Sni(rn, t1, . . . , tn)), s1, . . . , sn)

= Sn(Sn(fi(r1, . . . , rn), t1, . . . , tn), s1, . . . , sn).

�

An algebraM := (M,Sn) of type τ = (n + 1) is called a Menger algebra of rank n ifM satisfies
the condition (SASS) [1]. It follows immediately from Theorem 2.3 that cloneGT (n̄,Y )(τn) is a Menger
algebra of rank n. For basics and some advanced developments of Menger algebras can be found in the
works of W.A. Dudek and V.S. Trokhimenko, for example, see [5].

It is clear that cloneGT (n̄,Y )(τn) is generated by

F
W
GT (n̄,Y )
τn (X)

:=
{
fi
(
xα(1), . . . , xα(n)

)
| i ∈ I, α ∈ T (n̄, Y )

}
∪

{fi(xα′(j1), . . . , xα′(jn)) | j1, . . . , jn > n,α′ ∈ T{j1,...,jn}}.

Let V GT (n̄,Y ) be the variety of type τ = (n+ 1) generated by the superassociative law (SASS). Let
FV GT (n̄,Y )({Yl | l ∈ J}) be the free algebra with respect to V GT (n̄,Y ), freely generated by an alphabet
{Yl | l ∈ J}where J = {(i, α) | i ∈ I , α ∈ T (n̄, Y )}. The operation of FV GT (n̄,Y )({Yl | l ∈ J}) is denoted
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by S̃n. Next, we are going to prove that the clone of all generalized T (n̄, Y )-full terms is a free algebra
with respect to the variety V GT (n̄,Y ).

Theorem 2.4. The algebra cloneGT (n̄,Y )(τn) is isomorphic to FV GT (n̄,Y )({Yl | l ∈ J}) and therefore it is free

with respect to the variety V GT (n̄,Y ), and freely generated by the set

{fi(xα(1), . . . , xα(n)) | i ∈ I, α ∈ T (n̄, Y )} ∪ {fi(xα′(j1), . . . , xα′(jn)) | j1, . . . , jn > n,α′ ∈ T{j1,...,jn}}.

Proof. We define the mapping ϕ : W
T (n̄,Y )
τn (Xn) −→ FV T (n̄,Y )({Yl | l ∈ J}) inductively as follows:

(i) ϕ(fi(xα(1), . . . , xα(n)) = y(i,α);
(ii) ϕ(fi(xα′(j1), . . . , xα′(jn)) = y(i,α′);
(iii) ϕ(fi(tα(1), . . . , tα(n))) = S̃n(y(i,α), ϕ(t1), . . . , ϕ(tn)).

Since ϕmaps the generating system of cloneGT (n̄,Y )(τn) onto the generating system ofFV GT (n̄,Y )({Yl |

l ∈ J}), it is surjective. We will prove the homomorphism property

ϕ(Sn(t0, t1, . . . , tn)) = S̃n(ϕ(t0), ϕ(t1), . . . , ϕ(tn))

by induction on the depth of a generalized T (n̄, Y )-full term t0.
If t0 = fi(xα(1), . . . , xα(n)) where α ∈ T (n̄, Y ) and Depth(t) = 1, then we have
ϕ(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn))

= ϕ(fi(tα(1), . . . , tα(n)))

= S̃n(y(i,α), ϕ(t1), . . . , ϕ(tn))

= S̃n(ϕ(fi(xα(1), . . . , xα(n))), ϕ(t1), . . . , ϕ(tn)).
If t0 = fi(xα′(j1), . . . , xα′(jn)) where α′ ∈ T{j1,...,jn} and Depth(t) = 1, then we have
ϕ(Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn))

= ϕ(fi(xα′(j1), . . . , xα′(jn)))

= y(i,α′)

= S̃n(y(i,α′), ϕ(t1), . . . , ϕ(tn))

= S̃n(ϕ(fi(xα′(j1), . . . , xα′(jn))), ϕ(t1), . . . , ϕ(tn)).
If t0 = fi(r1, . . . , rn) and assume that

ϕ(Sn(rk, t1, . . . , tn)) = S̃n(ϕ(rk), ϕ(t1), . . . , ϕ(tn))

for all 1 ≤ k ≤ n andmax1≤k≤nDepth(rk) = m, then Depth(t) = m+ 1 and we have
ϕ(Sn(fi(r1, . . . , rn), t1, . . . , tn))

= ϕ(fi(S
n(r1, t1, . . . , tn), . . . , Sn(rn, t1, . . . , tn)))

= S̃n(y(i,1n), ϕ(Sn(r1, t1, . . . , tn)), . . . , ϕ(Sn(rn, t1, . . . , tn)))

= S̃n(y(i,1n), S̃
n(ϕ(r1), ϕ(t1), . . . , ϕ(tn)), . . . ,

S̃n(ϕ(rn), ϕ(t1), . . . , ϕ(tn)))
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= S̃n(S̃(y(i,1n), ϕ(r1), . . . , ϕ(rn)), ϕ(t1), . . . , ϕ(tn))

= S̃n(ϕ(fi(r1, . . . , rn)), ϕ(t1), . . . , ϕ(tn)).
Thus ϕ is a homomorphism. The mapping ϕ is clearly bijective since the set

{y(i,α) | i ∈ I, α ∈ T (n̄, Y )} is free independent. Therefore we have
y(i,α) = y(j,β) =⇒ (i, α) = (j, β)

=⇒ i = j, α = β

and y(i,α′) = y(j,β′) =⇒ (i, α′) = (j, β′)

=⇒ i = j, α′ = β′.

So fi(xα(1), . . . , xα(n)) = fj(xβ(1), . . . , xβ(n)) and fi(xα′(1), . . . , xα′(n)) =

fj(xβ′(1), . . . , xβ′(n)). Thus ϕ is a bijection between the generating sets of
cloneGT (n̄,Y )(τn) and FV GT (n̄,Y )({Yl | l ∈ J}) and therefore ϕ is an isomorphism. �

3. Generalized T (n̄, Y )-full hypersubstitutions

In this section, we will generalize the concept of T (n̄, Y )- full hypersubstitution. For any generalized
T (n̄, Y )-full term t we need the generalized T (n̄, Y )-full term tβ derived from t by replacement a
variable xα(j) in t by a variable xβ(α(j)) for a mapping β ∈ T (n̄, Y ). This can be defined as follows.

Let t, t1, . . . , tn ∈ WGT (n̄,Y )
τn (Xn) and α, β ∈ T (n̄, Y ). Then we define the generalized T (n̄, Y )-full

term tβ in the following steps:

(i) If t = fi(xα(1), . . . , xα(n)), then tβ := fi(xβ(α(1)), . . . , xβ(α(n))).
(ii) If t = fi(xα′(j1), . . . , xα′(jn)) where α′ ∈ T{j1,...,jn},

then tβ := fi(xα′(j1), . . . , xα′(jn)).
(iii) If t = fi(t1, . . . , tn), then tβ := fi((t1)β, . . . , (tn)β).

It is clear that tβ is a generalized T (n̄, Y )-full term for any generalized T (n̄, Y )-full term t and for
any α ∈ T (n̄, Y ).

Now, we call a mapping

σ : {fi | i ∈ I} −→WGT (n̄,Y )
τn (X)

a generalized T (n̄, Y )-full hypersubstitution of type τn. By HypT (n̄,Y )
G (τn) we denote the set of all general-

ized T (n̄, Y )-hypersubstitutions of type τn.
Then any generalized T (n̄, Y )-full hypersubstitution

σ : {fi | i ∈ I} −→WGT (n̄,Y )
τn (X)

of type τn can be extended to a mapping

σ̂ : WGT (n̄,Y )
τn (X) −→WGT (n̄,Y )

τn (X)
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as follows :

(i) σ̂[fi(xα(1), . . . , xα(n))] := (σ(fi))α,
(ii) σ̂[fi(xα′(j1), . . . , xα′(jn))] := Sn

(
σ(fi), xα′(j1), . . . , xα′(jn)

),
(iii) σ̂[fi(t1, . . . , tn)] := Sn (σ(fi), σ̂[t1], . . . , σ̂[tni ]).

We define a binary operation ◦T (n̄,Y )
G on Hyp

T (n̄,Y )
G (τn) by σ1 ◦T (n̄,Y )

G σ2 := σ̂1 ◦ σ2 where ◦ de-
notes the usual composition of mappings. Together with the hypersubstitution σid defined by
σid(f) := fi(x1, . . . , xn), one has a monoid

(
Hyp

T (n̄,Y )
G (τn); ◦T (n̄,Y )

G , σid

)
. The following lemma shows

the property of a term tα and the extension σ̂.

Lemma 3.1. Let t, t1, . . . , tn ∈WGT (n̄,Y )
τn (X). Then

Sn(t, σ̂[tβ(1)], . . . , σ̂[tβ(n)]) = Sn(tβ, σ̂[t1], . . . , σ̂[tn])

for all β ∈ T (n̄, Y ).

Proof. We give a proof by induction on the depth of a generalized T (n̄, Y )-full term t.
If t = fi(xα(1), . . . , xα(n)) where α ∈ T (n̄, Y ) and Depth(t) = 1, then
Sn(t, σ̂[tβ(1)], . . . , σ̂[tβ(n)])

= Sn(fi(xα(1), . . . , xα(n)), σ̂[tβ(1)], . . . , σ̂[tβ(n)])

= fi(σ̂[tβ(α(1))], . . . , σ̂[tβ(α(n))]),

Sn(tβ, σ̂[t1], . . . , σ̂[tn])

= Sn(fi(xα(1), . . . , xα(n))β, σ̂[t1], . . . , σ̂[tn]

= Sn(fi(xβ(α(1)), . . . , xβ(α(n))), σ̂[t1], . . . , σ̂[tn]

= fi(σ̂[tβ(α(1))], . . . , σ̂[tβ(α(n))]).

If t = fi(xα′(j1), . . . , xα′(jn)) where α′ ∈ T{j1,...,jn}, and Depth(t) = 1,
then Sn(t, σ̂[tβ(1)], . . . , σ̂[tβ(n)])

= Sn(fi(xα′(j1), . . . , xα′(jn)), σ̂[tβ(1)], . . . , σ̂[tβ(n)])

= fi(xα′(j1), . . . , xα′(jn)),

Sn(tβ, σ̂[t1], . . . , σ̂[tn])

= Sn(fi(xα′(j1), . . . , xα′(jn))β, σ̂[t1], . . . , σ̂[tn]

= Sn(fi(xα′(j1), . . . , xα′(jn)), σ̂[t1], . . . , σ̂[tn]

= fi(xα′(j1), . . . , xα′(jn)).
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If t = fi(s1, . . . , sn) where s1, . . . , sn ∈WGT (n̄,Y )
τn (X) and assume that

Sn(sk, σ̂[tβ(1)], . . . , σ̂[tβ(n)]) = Sn((sk)β, σ̂[t1], . . . , σ̂[tn])

for all 1 ≤ k ≤ n andmax1≤k≤nDepth(sk) = m, then Depth(t) = m+ 1 and we have
Sn(t, σ̂[tβ(1)], . . . , σ̂[tβ(n)])

= Sn(fi(s1, . . . , sn), σ̂[tβ(1)], . . . , σ̂[tβ(n)])

= fi(S
n(s1, σ̂[tβ(1)], . . . , σ̂[tβ(n)]), . . . , S

n(sn, σ̂[tβ(1)], . . . , σ̂[tβ(n)]))

= fi(S
n((s1)β, σ̂[t1], . . . , σ̂[tn]), . . . , Sn((sn)β, σ̂[t1], . . . , σ̂[tn]))

= Sn(fi((s1)β, . . . , (sn)β), σ̂[t1], . . . , σ̂[tn])

= Sn(fi(s1, . . . , sn)β, σ̂[t1], . . . , σ̂[tn])

= Sn(tβ, σ̂[t1], . . . , σ̂[tn]).

�

Using Lemma 3.1 we show that the extension σ̂ of each generalized T (n̄, Y )-full hypersubstitution σ
preserves the operation Sn on the setWGT (n̄,Y )

τn (X).

Theorem 3.2. For σ ∈ HypT (n̄,Y )
G (τn), the extension

σ̂ : WGT (n̄,Y )
τn (X) −→WGT (n̄,Y )

τn (X)

is an endomorphism on the algebra cloneGT (n̄,Y )(τn).

Proof. It is clear that σ̂ : W
GT (n̄,Y )
τn (X) −→ W

GT (n̄,Y )
τn (X). Let t0, t1, . . . , tn ∈ WGT (n̄,Y )

τn (X). We will
show by induction on the depth of t0 that

σ̂[Sn(t0, t1, . . . , tn)] = Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

If t0 = fi(xα(1), . . . , xα(n)) where α ∈ T (n̄, Y ) and Depth(t0) = 1, then
σ̂[Sn(t0, t1, . . . , tn)]

= σ̂[Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn)]

= σ̂[fi(tα(1), . . . , tα(n))]

= Sn(σ(fi), σ̂[tα(1)], . . . , σ̂[tα(n)])

= Sn(σ(fi)α, σ̂[t1], . . . , σ̂[tn])

= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).
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If t0 = fi(xα′(j1), . . . , xα′(jn)) where α′ ∈ T{j1,...,jn} and Depth(t0) = 1, then
σ̂[Sn(t0, t1, . . . , tn)]

= σ̂[Sn(fi(xα′(j1), . . . , xα′(jn)), t1, . . . , tn)]

= σ̂[fi(xα′(j1), . . . , xα′(jn))]

= Sn
(
σ(fi), xα′(j1), . . . , xα′(jn)

)
= Sn(σ(fi), σ̂[Sn(xα′(j1), t1, . . . , tn)], . . . , σ̂[Sn(xα′(jn), t1, . . . , tn)])

= Sn(Sn(σ(f), xα′(j1), . . . , xα′(jn)), σ̂[t1], . . . , σ̂[tn])

= Sn(σ̂[fi(xα′(j1), . . . , xα′(jn))], σ̂[t1], . . . , σ̂[tn])

= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

If t0 = fi(r1, . . . , rn) where r1, . . . , rn ∈WGT (n̄,Y )
τn (X) and we assume that

σ̂[Sn(rk, t1, . . . , tn)] = Sn(σ̂[rk], σ̂[t1], . . . , σ̂[tn])

for all 1 ≤ k ≤ n andmax1≤k≤nDepth(rk) = m, thenDepth(t) = m+1 andwe have σ̂[Sn(t0, t1, . . . , tn)]

= σ̂[Sn(fi(r1, . . . , rn), t1, . . . , tn)]

= σ̂[fi(S
n(r1, t1, . . . , tn), . . . , Sn(rn, t1, . . . , tn))]

= Sn(σ(fi), σ̂[Sn(r1, t1, . . . , tn)], . . . , σ̂[Sn(rn, t1, . . . , tn)])

= Sn(σ(fi), S
n(σ̂[r1], σ̂[t1], . . . , σ̂[tn]), . . . , Sn(σ̂[rn], σ̂[t1], . . . , σ̂[tn]))

= Sn(Sn(σ(fi), σ̂[r1], . . . , σ̂[rn]), σ̂[t1], . . . , σ̂[tn])

= Sn(σ̂[t0], σ̂[t1], . . . , σ̂[tn]).

�

We complete this section by studying the connection between generalized T (n̄, Y )-full terms and
the extension of a mapping which maps fundamental term to any generalized T (n̄, Y )-full terms.

As mentioned, the algebra cloneGT (n̄,Y )(τn) is generated by the set

F
W
GT (n̄,Y )
τn (X)

:=
{
fi
(
xα(1), . . . , xα(n)

)
| i ∈ I, α ∈ T (n̄, Y )

}
∪

{fi(xα′(j1), . . . , xα′(jn)) | j1, . . . , jn > n,α′ ∈ T{j1,...,jn}}.

Thus, any mapping
η : F

W
GT (n̄,Y )
τn (X)

−→WGT (n̄,Y )
τn (X)

called generalized T (n̄, Y )-full clone substitution, can be uniquely extended to endomorphism

η̄ : WGT (n̄,Y )
τn (X) −→WGT (n̄,Y )

τn (X).
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Let SubstGT (n̄,Y )(τn) be the set of all generalized T (n̄, Y )-full clone substitutions. On the set
SubstGT (n̄,Y )(τn), a binary operation � can be defined by

η1 � η2 := η̄1 ◦ η2

where ◦ denotes the usual composition of mappings. Furthermore, the identity mapping with respect
to � is denoted by idF

W
GT (n̄,Y )
τn (X)

.

Then clearly,
(
SubstGT (n̄,Y )(τ);�, idF

W
GT (n̄,Y )
τn (X)

)
forms a monoid.

Consider σ ∈ HypT (n̄,Y )
G (τn) and by Theorem 3.2, σ̂ : W

GT (n̄,Y )
τn (X) −→W

GT (n̄,Y )
τn (X) is an endomor-

phism. Since F
W
GT (n̄,Y )
τn (X)

generates
cloneGT (n̄,Y )(τn), we have σ̂

∣∣
F
W
GT (n̄,Y )
τn (X)

is an generalized T (n̄, Y )-full clone substitution with

σ̂
∣∣
F
W
GT (n̄,Y )
τn (X)

= σ̂.

Define a mapping ψ : Hyp
T (n̄,Y )
G (τn) −→ SubstGT (n̄,Y )(τn) by

ψ(σ) = σ̂
∣∣
F
W
GT (n̄,Y )
τn (X)

.

We have ψ is a homomorphism. In fact: Let σ1, σ2 ∈ HypT (n̄,Y )
G (τn). Then

ψ(σ1 ◦T (n̄,Y )
G σ2) =

(
σ1 ◦T (n̄,Y )

G σ2

) ∣̂∣
F
W
GT (n̄,Y )
τn (X)

= (σ̂1 ◦ σ̂2)
∣∣
F
W
GT (n̄,Y )
τn (X)

= σ̂1

∣∣
F
W
GT (n̄,Y )
τn (X)

◦ σ̂2

∣∣
F
W
GT (n̄,Y )
τn (X)

= ψ(σ1) ◦ ψ(σ2)

= ψ(σ1)� ψ(σ2).

Clearly, ψ is an injection. Hence we have the following corollary.

Corollary 3.3. The monoid
(
Hyp

T (n̄,Y )
G (τn); ◦T (n̄,Y )

G , σid

)
can be embedded into

(SubstGT (n̄,Y )(τn);�, idF
W
GT (n̄,Y )
τn (X)

).

4. Generalized T (n̄, Y )-full hyperidentities

In this section we examine the relationship between a variety V of type τn and the identity in the
cloneGT (n̄,Y )(τn).

Let V be a variety of type τn and let IdV be the set of all identities of V . Let IdGT (n̄,Y )V be the set of
all s ≈ t of V such that s and t are both generalized T (n̄, Y )-full term of type τn; that is

IdGT (n̄,Y )V :=
(
WGT (n̄,Y )
τn (X)

)2
∩ IdV.

It is well-known that IdV is a congruence on the free algebraFτ (X). However, in general this is not true
for IdGT (n̄,Y )V . The following theorem shows that IdGT (n̄,Y )V is a congruence on cloneGT (n̄,Y )(τn).
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Theorem 4.1. Let V be a variety of type τn. Then IdGT (n̄,Y )V is a congruence on the algebra cloneGT (n̄,Y )(τn).

Proof. We will prove that if t ≈ r, tk ≈ rk ∈ IdGT (n̄,Y )V, k = 1, 2, . . . , n, then Sn(t, t1, . . . , tn) ≈

Sn(r, r1, . . . , rn) ∈ IdGT (n̄,Y )V . Firstly, we give a proof by induction on the depth of a term t ∈

W
GT (n̄,Y )
τn (X) that for every i ∈ I if tk ≈ rk ∈ IdGT (n̄,Y )V, k = 1, 2, . . . , n, then Sn(t, t1, . . . , tn) ≈

Sn(t, r1, . . . , rn) ∈ IdGT (n̄,Y )V .
If t = fi(xα(1), . . . , xα(n)) where α ∈ T (n̄, Y ) and Depth(t) = 1, then

Sn(fi(xα(1), . . . , xα(n)), t1, . . . , tn) = fi(tα(1), . . . , tα(n))

≈ fi(rα(1), . . . , rα(n))

= Sn(fi(xα(1), . . . , xα(n)), r1, . . . , rn)

∈ IdGT (n̄,Y )V,

where IdV is compatible with the operation fi of the absolutely free algebraFτ (X) and by the definition
of generalized T (n̄, Y )-full terms.
If t = fi(xα′(j1), . . . , xα′(jn)) where α′ ∈ T{j1,...,jn} and Depth(t) = 1, then

Sn(fi(xα′(j1), . . . , xα′(jn)), t1, . . . , tn) = fi(xα′(j1), . . . , xα′(jn))

= Sn(fi(xα′(j1), . . . , xα′(jn)), r1, . . . , rn)

∈ IdGT (n̄,Y )V.

If t = fi(l1, . . . , ln) ∈W T (n̄,Y )
τn (X) and assume that

Sn(lk, t1, ..., tn) ≈ Sn(lk, r1, ..., rn) ∈ IdGT (n̄,Y )V.

for all 1 ≤ k ≤ n andmax1≤k≤nDepth(rk) = m, then Depth(t) = m+ 1 and we obtain

Sn(fi(l1, . . . , ln), t1, . . . , tn) = fi(S
n(l1, t1, . . . , tn), . . . , Sn(ln, t1, . . . , tn))

≈ fi(S
n(l1, r1, . . . , rn), . . . , Sni(ln, r1, . . . , rn))

= Sn(fi(l1, . . . , ln), r1, . . . , rn) ∈ IdGT (n̄,Y )V.

This means
Sn(t, t1, . . . , tn) ≈ Sn(t, r1, . . . , rn) ∈ IdGT (n̄,Y )V.

This is a consequence of the fact that IdV is a fully invariant congruence on the absolutely free algebra
Fτ (X). Assume now that t ≈ r, tk ≈ rk ∈ IdGT (n̄,Y )V . Then

Sn(t, t1, . . . , tn) ≈ Sn(r, t1, . . . , tn) ≈ Sn(r, r1, . . . , rn) ∈ IdGT (n̄,Y )V.

�
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By using the concepts of generalized T (n̄, Y )-full hypersubstitution as we presented in Section 3, we
shall define generalized T (n̄, Y )-full hyperidentities in a variety of type τn.

Let V be a variety of type τn. An identity s ≈ t ∈ IdGT (n̄,Y )V is called a generalized T (n̄, Y )-full

hyperidentity of V if σ̂[s] ≈ σ̂[t] ∈ IdV for all σ ∈ Hyp
T (n̄,Y )
G (τn). Moreover, the variety V is called

generalized T (n̄, Y )-full solid if the following holds:

∀s ≈ t ∈ IdGT (n̄,Y )V,∀σ ∈ HypT (n̄,Y )
G (τn), σ̂[s] ≈ σ̂[t] ∈ IdV.

Next, we characterizes the generalized T (n̄, Y )-full solid variety as the following theorem.

Theorem 4.2. Let V be a variety of type τn. If IdGT (n̄,Y )V is a fully invariant congruence on cloneGT (n̄,Y )(τn),

then V is a generalized T (n̄, Y )-full solid.

Proof. Assume that IdGT (n̄,Y )V is a fully invariant congruence on cloneGT (n̄,Y )(τn). Let s ≈ t ∈

IdGT (n̄,Y )V and σ ∈ HypT (n̄,Y )
G (τn). By Theorem 3.2, σ̂ is an endomorphism of cloneGT (n̄,Y )(τn). Hence

σ̂[s] ≈ σ̂[t] ∈ IdGT (n̄,Y )V which shows that V is generalized T (n̄, Y )-full solid. �

For a variety V of type τn, IdGT (n̄,Y )V is a congruence on cloneGT (n̄,Y )(τn) by using the Theorem 4.1.
We can form the quotient algebra

cloneGT (n̄,Y )(V ) := cloneGT (n̄,Y )(τn)/IdGT (n̄,Y )V.

This quotient algebra belongs to the class of a Menger algebra of rank n. Note that, we have a natural
homomorphism

natIdGT (n̄,Y )V : cloneGT (n̄,Y )(τn) −→ cloneGT (n̄,Y )(V )

such that
natIdGT (n̄,Y )V (t) = [t]IdGT (n̄,Y )V .

Finally, we prove the following connection between generalized T (n̄, Y )-full hyperidentities of a
variety V and clone identities.

Theorem 4.3. Let V be a variety of type τn. If s ≈ t ∈ IdGT (n̄,Y )V is an identity in cloneGT (n̄,Y )(V ), then

s ≈ t is a generalized T (n̄, Y )-full hyperidentity of V .

Proof. Assume that s ≈ t ∈ IdGT (n̄,Y )V is an identity in cloneGT (n̄,Y )(V ). Let σ ∈ HypT (n̄,Y )
G (τn). Then

σ̂ : cloneGT (n̄,Y )(τn) −→ cloneGT (n̄,Y )(τn) is an endomorphism by Theorem 3.2. Thus

natIdGT (n̄,Y )V ◦ σ̂ : cloneGT (n̄,Y )(τn) −→ cloneGT (n̄,Y )(V )

is a homomorphism. By assumption,

(natIdGT (n̄,Y )V ◦ σ̂) (s) = (natIdGT (n̄,Y )V ◦ σ̂) (t).
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That is
natIdGT (n̄,Y )V (σ̂[s]) = natIdGT (n̄,Y )V (σ̂[t]).

Thus
[σ̂[s]]IdGT (n̄,Y )V = [σ̂[t]]IdGT (n̄,Y )V ,

and hence
σ̂[s] ≈ σ̂[t] ∈ IdGT (n̄,Y )V.

Therefore, s ≈ t is a generalized T (n̄, Y )-full hyperidentity of V . �
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