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Abstract. This research paper has provided a glimpse into the algebraic properties of various classes of
matrices like infinitely divisible matrix, separable matrix and the set of hadamard powers of any given
matrix. The study begins with a comprehensive exploration of the fundamental concepts and properties,
including the binary operations, identity element, inverses and closure properties. A python program
is included for finding the rth hadamard power where r ∈ R, of a given matrix of any order along with
its eigenvalues and eigenvectors. Isomorphisms are also established for the newly obtained algebraic
structures with the pre-existing groups like (R,+), (Z,+), (Zn,+n).
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1. Introduction

The hadamard product, often called the element-wise or entry-wise product is a fundamental
operation in linear algebra and matrix theory [3], [6]. This simple yet powerful operation finds
application in various fields such as statistics, signal processing, optimization etc. Consider them× n
matrices A = [aij ] and B = [bij ]. Then the Hadamard product(or the entry wise product) of A and B
is the matrix A ◦B = [aijbij ].
Example: 4 −1

0 2

 ◦
1 8

5 3

 =

4 −8

0 6


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The hadamard power, a concept rooted in linear algebra and matrix theory, represents an operation
that elevates each element of a matrix to a specified power [4], [2]. For each non-negative integerm,
themth Hadamard power of A is defined as A◦m = [amij ]. For example:4 −1

0 2

◦3 =
64 −1

0 8


For aij ≥ 0 and for any non-negative real number r, the fractional Hadamard power is defined as
A◦r = [arij ].
A matrix A = [aij ] ∈Mn where aij ≥ 0 is said to be infinitely divisible, if every fractional Hadamard
power of A, defined as Aor = [arij ] ∀ r ≥ 0, is positive semidefinite [1], [5].
The tensor product(Kronecker product) of matrices is a mathematical operation which combines two or
more matrices to produce a new higher-dimensional matrix. The tensor product of A = [aij ] ∈Mn(F )

and B = [bij ] ∈Mm(F ) is denoted by X = A⊗B ∈Mn(Mm(F )) and defined to be the block matrix

X = A⊗B = [aijB] =


a11B a12B · · · a1nB

a21B a22B · · · a2nB

. . . . . . . . . . . . . . . . . . . . . . . .

an1B an2B · · · annB


A separable matrix is one that can be decomposed into simpler independent submatrices. This
decomposition can simplify complex matrix operations and aid in solving various mathematical
problems, making separable matrices a subject of interest in linear algebra and its applications [7]. A
matrix X ∈Mn(Mm) is said to be separable, if there exists positive semidefinite matrices Ai ∈Mn and

Bi ∈Mm such that X =

k∑
i=1

Ai ⊗Bi.

2. Algebraic Properties of Various Classes of Matrix

In this section, we will be seeing the algebraic structure of different classes of matrix under different
binary operations.
The following theorem gives a basic property of tensor product which will be used in the proof of
Theorem 2.2.

Theorem 2.1. Let A and B be two matrices of orderm× n and r × s and let k be a scalar. Then k(A⊗B) =

(kA)⊗B = A⊗ (kB).

Proof:

k(A⊗B) = k(aijB) = kaijB

(kA)⊗B = (kaij)⊗B = kaijB
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A⊗ (kB) = aijkB = kaijB

Therefore, k(A⊗B) = (kA)⊗B = A⊗ (kB). �

In the following theorem, we will be considering the set of all infinitely divisible matrices under the
operation tensor product.

Theorem 2.2. Let I be the set of all infinitely divisible matrix under the operation ⊗. Then (I,⊗) forms a

monoid.

Proof:

Closure property

If A, B ∈ I , then A⊗B ∈ I : Since (A⊗B)or = [aijB]or = [arijB
or] = Aor ⊗Bor ∀ r ≥ 0; due to the fact

thatA andB are infinitely divisible,Aor andBor are positive semidefinite ∀ r ≥ 0. Therefore,Aor⊗Bor

is positive semidefinite ∀ r ≥ 0. Therefore, by above relation (A⊗B)or is positive semidefinite ∀ r ≥ 0.
Thus A⊗B is infinitely divisible. Therefore I is closed under ⊗.
Associative property

Consider the infinitely divisible matrices A,B and C of order n×n,m×m and r× r respectively. Then
order of both the matrices (A⊗B)⊗ C and A⊗ (B ⊗ C) will be nmr × nmr.
(A⊗B)⊗ C = [aijB]⊗ C

=


a11B a12B · · · a1nB

a21B a22B · · · a2nB

. . . . . . . . . . . . . . . . . . . . . . . .

an1B an2B · · · annB

⊗ C

=


(a11B)⊗ C (a12B)⊗ C · · · (a1nB)⊗ C

(a21B)⊗ C (a22B)⊗ C · · · (a2nB)⊗ C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(an1B)⊗ C (an2B)⊗ C · · · (annB)⊗ C


By Theorem 2.1,

=


a11(B ⊗ C) a12(B ⊗ C) · · · a1n(B ⊗ C)

a21(B ⊗ C) a22(B ⊗ C) · · · a2n(B ⊗ C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1(B ⊗ C) an2(B ⊗ C) · · · ann(B ⊗ C)


= A⊗ (B ⊗ C)

Existence of identity element

Consider the 1× 1matrix [1]. Clearly [1] ∈ I . Then A⊗ [1] = [1]⊗A = A, for any infinitely divisible
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matrix A.
Thus, I forms a monoid under ⊗. �

Since (I,⊗) is a monoid, it is also a semigroup. But (I,⊗) does not form a group, since inverse does
not exist.
For the next theorem, we will be considering the set of all n× n infinitely divisible matrices under the
operation addition.

Theorem 2.3. Let ρ be the set of all n× n infinitely divisible matrix under the operation +. Then (ρ,+) forms a

monoid.

Proof:

Closure property

Let ρ be the set of all n×n infinitely divisible matrix. Let A, B ∈ ρ, then A+B ∈ ρ : Suppose A,B ∈ ρ.
(A+B)or, for any r ≥ 0, can be decomposed asAor+Bor+S1+S2+ · · · , where Si = αiA

or1 ◦Bor2 and
αi, r1, r2 ≥ 0. Now, sinceA andB are infinitely divisible matrices,Aor andBor are positive semidefinite
for any r ≥ 0. And also by Schur’s theorem, Hadamard product of positive semidefinite matrices is
again positive semidefinite. Therefore, Si = αiA

or1 ◦Bor2 , αi, r1, r2 ≥ 0 is positive semidefinite. i.e.,
Every term in the decomposition of (A+B)or is positive semidefinite for any r ≥ 0. Since the sum of
positive semidefinite matrix is again positive semidefinite, (A+B)or is positive semidefinite ∀ r ≥ 0.
Thus A+B is infinitely divisible.
Associative property

Consider the infinitely divisible matrices A,B and C of order n× n.
A+ (B + C) = (A+B) + C is true, since matrix addition is associative.
Existence of identity element

Consider the zero matrix of order n × n denoted by [0], which is clearly infinitely divisible. Then
A+ [0] = [0] +A = A, for any infinitely divisible matrix A.
Thus, ρ forms a monoid under +. �

Since (ρ,+) is a monoid, it is also a semigroup. But (ρ,+) does not form a group, since inverse does
not exist, as the inverse matrices will be negative semidefinite.
For the following theorem, we will be examining the set of all n × n separable matrices under the
operation addition.

Theorem 2.4. Let S be the set of all n× n separable matrix under the operation +. Then (S,+) forms a monoid.

Proof:

Closure property

LetA, B ∈ S, thenA =

k∑
i=1

Pi⊗Qi andB =

r∑
j=1

Uj⊗Vj , wherePi, Qi, Uj , Vj are all positive semidefinite
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∀ i = 1, 2 . . . k & j = 1, 2, . . . r. Thus, A+B =
k∑

i=1

Pi⊗Qi+
r∑

j=1

Uj⊗Vj is separable, since Pi, Qi, Uj , Vj

are all positive semidefinite ∀ i = 1, 2 . . . k & j = 1, 2, . . . r. Therefore, S is closed under + .
Associative property

Let A,B,C ∈ S. Then, A+ (B + C) = (A+B) + C is true, since matrix addition is associative.
Existence of identity element

Consider the zero matrix of order n × n. Clearly [0]n×n ∈ S. Then A + [0] = [0] + A = A, for any
separable matrix A.
Thus, S forms a monoid under +. �

Since (S,+) is a monoid, it is also a semigroup. But (S,+) does not form a group, since inverse does
not exist, as the inverse matrices will be negative semidefinite.
Finding the hadamard powers of a given matrix and checking the positive definiteness of that matrix is
not an easy task, especially when the order of the matrix is a higher value. The following is a python
program for finding the rth Hadamard power where r ∈ R, of a given matrix of any order and finding
their eigenvalues and eigenvectors.

import numpy as np

import math

try:

n = int(input("\nEnter the dimension of matrix:"))

except:

print("\nInvalid Input , exiting the program")

exit()

# Initialize matrix

matrix = []

print("\nEnter the entries row wise:")

# For user input

for i in range(n): # A for loop for row entries

a =[]

for j in range(n): # A for loop for column entries

try:

e = int(input ())

except:

print("\nInvalid Input , exiting the program")

exit()
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a.append(e)

matrix.append(a)

m = np.array(matrix)

print("\nPrinting the input matrix :\n",m)

w, v = np.linalg.eig(m)

# printing eigen values

print("\nEigen values of the given matrix :\n",w)

# printing eigen vectors

print("\nEigenvectors of the given matrix :\n",v)

print("---------------------------------------------------------")

while 1==1:

s = input("\nEnter the value of r:")

if s==’.’:

break

try:

s=((s.lower ()).replace(’sqrt’,’math.sqrt’)).replace\

(’pi’,’math.pi’)

r = float(eval(s))

except:

print("\nInvalid Input , exiting the program")

exit()

hadamard = []

for i in range(n):

b =[]

for j in range(n):

b.append(matrix[i][j]** r)

hadamard.append(b)

h = np.array(hadamard)
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print("\nPrinting the hadamard matrix :\n",h)

wh , vh = np.linalg.eig(h)

# printing eigen values

print("\nEigen values of the hadamard matrix :\n",wh)

# printing eigen vectors

print("\nEigenvectors of the hadamard matrix :\n",vh)

print("---------------------------------------------------------")

Note that a period(.) can be entered as a value for r to exit the loop.
For the forthcoming theorem, we will be looking into the algebraic properties of the set H = {A◦r, r ∈

R}, where A is anm× nmatrix with strictly positive entries under the operation hadamard product.

Theorem 2.5. Consider any m × n matrix A with aij > 0. Then H = {A◦r, r ∈ R} under the operation ◦

forms a group.

Proof:

Closure property

A◦r1 ◦A◦r1 = [ar1ij .a
r2
ij ] = [ar1+r2

ij ] = A◦(r1+r2) ∈ H

Therefore, H is closed under ◦.
Associative property

(A◦r1 ◦A◦r2) ◦A◦r3 = (ar1ij .a
r2
ij ).a

r3
ij = ar1ij .(a

r2
ij .a

r3
ij ) = A◦r1 ◦ (A◦r2 ◦A◦r3). Hence H satisfies associative

property under ◦.
Existence of identity element

Let Im×n =


1 1 · · · 1

1 1 · · · 1

. . . . . . . . . . . .

1 1 · · · 1

 = A◦(0) ∈ H . Then A◦r ◦ I = [arij .1] = [1.arij ] = I ◦A◦r = A◦r. Therefore, I

forms the identity element for (H, ◦).
Existence of inverse

Let A◦k ∈ H .
Then A◦k ◦A◦(−k) = [akij .a

−k
ij ] = [a0ij ] = [1] = I .

i.e., Inverse exist for each element.
Thus (H, ◦) forms a group. �

For example, consider the n × n Hilbert matrix, H = [hij ] = [ 1
(i+j−1) ]. Here hij > 0 for all i, j. Take

G = {H◦r, r ∈ R} under the operation ◦. Then (G, ◦) forms a group.
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Likewise, considering any matrix with positive entries, say
10 3

4 12

, then G′ = {
10 3

4 12

◦r , r ∈ R}
under the operation ◦ forms a group.
Also, note that a matrix of orderm× n with non-zero entries is always invertible under the operation
Hadamard product if the identity matrix is taken as flat matrix(m× nmatrix with all entries equal to
1). Such a matrix can be termed as Hadamard invertible. Hadamard inverse of a Hadamard invertible
matrix A = [aij ] is A◦(−1) = 1

aij
.

Theorem 2.6. Let H = {A◦r; r ∈ R}, where A is anym× n matrix with aij > 0 and R be the set of all real

numbers. Then (H, ◦) is isomorphic to (R,+).

Proof:

Define φ : H → R by φ(A◦r) = r, where r ∈ R
φ is one-one: Since φ(A◦r1) = φ(A◦r2) =⇒ r1 = r2.
φ is onto: Since for each r ∈ R, there exist A◦r such that φ(A◦r) = r.
φ is homomorphic: Since φ(A◦r1 ◦A◦r2) = φ(A◦(r1+r2)) = r1 + r2 = φ(A◦r1) + φ(A◦r2).
φmaps identity of (H, ◦) to identity of (R,+):
When r = 0; A◦r = A◦(0) = [a0ij ] = [1] = IH , identity of (H, ◦).
Now, φ(A◦0) = 0 = IR, identity of (R,+).
Therefore, φ(IH) = IR.
Let k ∈ R.
φ
[
(A◦k)−1

]
= φ[(A◦(−k))] = −k[

φ(A◦k)
]−1

= [k]−1 = −k.
Thus, φ [(A◦r)−1] = [φ(A◦r)]−1 Thus, (H, ◦) and (R,+) are isomorphic groups. �

Thus, we can say (H, ◦) is isomorphic to all groups to which (R,+) is isomorphic.
Next corollary gives a subgroup of H in Theorem 2.5 which is isomorphic to the infinite cyclic group.

Corollary 2.6.1. HZ = {A◦z; z ∈ Z} is a subgroup of H = {A◦r; r ∈ R}, where A is any m × n matrix

with aij > 0 and (HZ , ◦) is isomorphic to the infinite cyclic group (Z,+).

Proof:

Consider anym× nmatrix A and let z0 ∈ Z and r0 ∈ R
A◦z0 ∈ HZ ⇒ A◦z0 ∈ H , since Z ⊂ R
Let A◦z1 , A◦z2 ∈ HZ where z1, z2 ∈ Z
By one step subgroup test,
A◦z1 ◦ (A◦z2)−1 = A◦z1 ◦A◦(−z2) = A◦(z1−z2) ∈ HZ , since z1 − z2 ∈ Z
Therefore, HZ is a subgroup of H .
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Now, define φ : HZ → Z by φ(A◦z) = z where z ∈ Z.
Then it can be proved as in Theorem 2.6 that φ is bijective and homomorphic. Therefore, (HZ , ◦) is
isomorphic to (Z,+). �

Theorem 2.7. Consider any m × n matrix A with aij > 0. Then HZn = {A◦(z mod n), z ∈ Zn} under the

operation ◦ forms a group of order n and is isomorphic to the finite cyclic group (Zn,+n).

Proof:

Closure property

A◦(z1 mod n) ◦A◦(z2 mod n) = [a
(z1 mod n)
ij .a

(z2 mod n)
ij ]

= [a
(z1+z2) mod n
ij ] = A◦(z1+z2) mod n ∈ HZn ,

since (z1 + z2) mod n ∈ Zn

Therefore, HZn is closed under ◦.
Associative property

(A◦(z1 mod n) ◦A◦(z2 mod n)) ◦A◦(z3 mod n)

= (a
(z1 mod n)
ij .a

(z2 mod n)
ij ).a

(z3 mod n)
ij

= a
(z1 mod n)
ij .(a

(z2 mod n)
ij .a

(z3 mod n)
ij )

= A◦(z1 mod n) ◦ (A◦(z2 mod n) ◦A◦(z3 mod n))

Hence HZn satisfies associative property under ◦.
Existence of identity element

Let Im×n =


1 1 · · · 1

1 1 · · · 1

. . . . . . . . . . . .

1 1 · · · 1

 = A◦(0) ∈ HZn .

Then for z ∈ Zn,
A◦(z mod n) ◦ I = [a

(z mod n)
ij .1] = [1.a

(z mod n)
ij ]

= I ◦A◦(z mod n) = A◦(z mod n). Therefore, I forms the identity element for (HZn , ◦).
Existence of inverse

Let A◦(k mod n) ∈ HZn .
Then A◦(k mod n) ◦A◦(n−k) mod n

= [a
(k mod n)
ij .a

(n−k) mod n
ij ] = [a

(k+n−k) mod n
ij ]

= [a
(n mod n)
ij ] = [a0ij ] = [1] = I .

i.e., Inverse exist for each element.
Thus (HZn , ◦) forms a group.
Define φ : HZn → Zn by φ(A◦(z mod n)) = z mod nwhere z ∈ Zn.
Then it can be proved as in Theorem 2.6 that φ is bijective and homomorphic. Therefore (HZn , ◦) is
isomorphic to (Zn,+n). �
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3. Conclusion

This research paper has offered an overview of the algebraic properties associated with different
classes of matrix, including infinitely divisible matrices, separable matrices and the set of hadamard
power of any matrix Awith positive entries. The study commenced with an in-depth examination of
the fundamental principles and characteristics, encompassing its binary operation, identity element,
inverse elements and closure properties. Through rigorous examination, we have demonstrated that
the above mentioned classes of matrix satisfies the axioms of various algebraic structures, making it a
well-defined and coherent mathematical system.
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