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Abstract. In this paper a Banach spaceX is considered such that A(U) ⊂ X ⊂ Hol(U), where A(U) =

{f ∈ H(U) :
∞∑

n=0

|an| < ∞, if f(z) =
∞∑

n=0

anz
n in U}. We shall define a norm in the space AX(U) of

all primitive functions to f ∈ X such that AX(U) is a Banach algebra with respect to the pointwise
multiplication. The maximal ideals in AX(U) are studied, too.
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1. Introduction

Denote by Hol(Σ0) the set of all analytic functions on Σ0. Consider Hol(U) with the topology of
locally uniform convergence. Let X be a Banach space such that A(U) ⊂ X ⊂ Hol(U) and the both
embeddings A(U) ↪→ X ↪→ Hol(U) are continuous. The pointwise multiplication of functions is a
continuous operation both on A(U) and Hol(U). We shall suppose f · g ∈ X for f ∈ A(U), g ∈ X

and
‖f · g‖X ≤ ‖f‖A(U)‖g‖X .

It follows, by the way, the pointwise multiplication "·" : A(U) × X → X is continuous. We shall
construct a Banach algebra AX(U) taking X as an initial point of the process. Firstly,

AX(U) = {F ∈ Hol(U) : F ′ ∈ X}

is a linear space. Suppose further AX(U) ⊂ A(U). Then for F,G ∈ AX(U) we have (F · G)′ =

F ′G+ FG′ ∈ X as {F ′G;FG′} ⊂ X. So AX(U) is an algebra. Putting

‖F‖ = ‖F‖A(U) + ‖F ′‖X (1)
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for F ∈ AX(U) we invert AX(U) to a normed algebra:

‖F ·G‖ = ‖F ·G‖A(U) + ‖F ′G+ FG′‖X ≤ ‖F‖A(U)‖G‖A(U) + ‖G‖A(U)‖F
′‖X + ‖F‖A(U)‖G

′‖X

≤ (‖F‖A(U) + ‖F ′‖X)(‖G‖A(U) + ‖G′‖X) = ‖F‖ · ‖G‖

for any F,G ∈ AX(U). The algebra AX(U) is complete as it follows from completeness of X and
A(U).

Let α ∈ U. Then we can write AX(U) = C⊕ Iα, where

Iα = {f ∈ AX(U); f(α) = 0}

is an ideal in AX(U) for all α ∈ U. We are interested if no other maximal ideals in AX(U) exist (see
e.g. Proposition 2 ). We have Iα ∼= X, α ∈ U, where g 7→ g′ is the isometry. So AX(U) with the
norm

‖F‖α = |F (α)|+ ‖F ′‖X , α ∈ U,

is a Banach space. Using the open mapping theorem (cf. [1], 5.10, p.116) we obtain the norms ‖ · ‖
and ‖ · ‖α are equivalent on AX(U) for all α ∈ U. Note however, that the condition

‖F ·G‖α ≤ ‖F‖α‖G‖α, F,G ∈ AX(U),

need not be satisfied for α ∈ U. So AX(U) with the norm ‖ · ‖α, α ∈ U, may be a Banach space only!
An example will be mentioned later for a concrete X (see Remark 2).

We showed that the space AX(U) is a Banach algebra with the norm (1). In the next sections we
will investigate particular cases of X and consider maximal ideals on them. Some proofs had to be
omitted due to space constraints. The detailed proofs will be given in our forthcoming publications.

2. The Cases X = H(U) and X = Hρ(U), 1 ≤ ρ ≤ ∞

Let f ∈ Hol(U), 1 ≤ p <∞. Put

‖f‖p = sup
r∈(0,1)

 1

2π

π∫
−π

|f(reit)|pdt

 1
p

.

Then we obtain using Jensen’s inequality that

‖f‖p1 ≤ ‖f‖p2 ≤ ‖f‖∞ = sup
z∈U
|f(z)|

holds for all f ∈ Hol(U), 1 ≤ p1 < p2 <∞.We define

Hp(U) = {f ∈ Hol(U); ‖f‖p <∞}, 1 ≤ p ≤ ∞.

The linear spaces Hp(U), 1 ≤ p ≤ ∞, are Banach spaces (cf. [1], [2] e.g.).
It follows H(U) ⊂ H∞(U) ⊂ Hp2(U) ⊂ Hp1(U) ⊂ Hol(U), 1 ≤ p1 < p2 < ∞, every embedding

given by any of these inclusion is continuous and the topology on a smaller space is always finer



Asia Pac. J. Math. 2024 11:2 3 of 7

(with the only exception: H(U) is a subspace of H∞(U)). We can verify our assumptions e.g. for
X = H(U) or Hp(U), 1 ≤ p ≤ ∞. Using Hardy’s theorem (cf. [2], p. 71) and the first consequence
on p. 91, [2], we obtain F ∈ A(U) if F ′ ∈ H1(U). So AX(U) ⊂ A(U) ⊂ H(U) for all considered X.

As ‖f‖H(U) ≤ ‖f‖A(U), it remains to prove the inequality ‖f · g‖X ≤ ‖f‖H(U)‖g‖X for all f ∈ H(U)

and g ∈ X. It is clear for X = H(U) or X = H∞(U). Let p ∈ 〈1; +∞), f ∈ H(U), g ∈ Hp(U). Then
g is defined almost everywhere on ∂U by its angle trace. Then

‖f · g‖Hp(U) =

 1

2π

π∫
−π

|f(eit)g(eit)|pdt

 1
p

≤ sup
t∈〈−π;π〉

|f(eit)|

 1

2π

π∫
−π

|g(eit)|pdt

 1
p

= ‖f‖H(U)‖g‖Hp(U).

We have proved the next theorem.
Theorem 1. The algebra AX(U) = {F ∈ Hol(U); F ′ ∈ X} is a Banach algebra with respect to the

pointwise multiplication of functions and the norm

‖F‖ = ‖F‖A(U) + ‖F ′‖X ,

if X = H(U) or X = Hp(U), 1 ≤ p ≤ ∞.

For the sake of brevity we shall denote AH(U)(U) = A (∞)(U), AHp(U)(U) = A p(U), 1 ≤ p ≤ ∞.

Currently, the questions of holomorphic continuation of functions belonging to the classHp are very
relevant [5], [6], [7] , [8], [9], [10], [11].

Remark 1. The whole construction of AX(U) can be made using H(U) in the place of A (U). So AX(U)

is Banach algebra with respect to the norm ‖F‖∼ = = ‖F‖H(U) + ‖F ′‖X , F ∈ AX(U), for X = H(U) or

X = Hp(U), 1 ≤ p ≤ ∞. Since ‖F‖∼ ≤ ‖F‖, the norms ‖ · ‖∼ and ‖ · ‖ are equivalent on AX(U) due

to the open mapping theorem. Let F ∈ A(U), F (z) =
∞∑
n=0

anz
n. Then ‖F‖A(U) = ‖F‖H(U) if and only if

there are exist ϕ0, ϕ ∈ R such that ϕ0 + nϕ ∈ arg an for all n ∈ N ∪ {0}, where arg 0 = R. It follows a

polynomial F, deg F = 2, exists such that ‖F‖H(U) < ‖F‖A(U). So the norms ‖ · ‖∼ and ‖ · ‖ are not

equal on AX

(
U
).

We prefer the construction with A(U) which yields a sequence AX(U) different from this one
described in Theorem 2.

Remark 2. Let F (z) = z − α for α ∈ U. Then F, F 2 ∈ AH(U)(U), F (α) = F 2(α) = 0,

F ′(z) = 1, (F 2)′(z) = 2(z − α), ‖F ′‖H(U) = 1, ‖(F 2)′‖H(U) = 2(1 + |α|) > 1 = ‖F ′‖2H(U)
.
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Note ‖G‖H(U) = ‖G‖A(U), if G is polynomial, deg G ≤ 1. So, ‖F 2‖α > ‖F‖2α if the norm ‖ · ‖α is

used in AA(U)(U). The space AA(U)(U) with the norm ‖ · ‖α is a Banach space only (see the construction

AX(U) for X = lp(U), 1 ≤ p <∞), exactly like AH(U)(U).

Since f ∈ A 1(U) if and only if f(eit) ∈ AC(〈−π, π〉) and f ∈ A∞(U) if and only if f(eit) ∈

Lip(〈−π, π〉), we shall occasionally use the notation AC(U) = A 1(U), Lip(U) = A∞(U).

Using the inequality ‖f‖p1 ≤ ‖f‖p2 , 1 ≤ p1 < p2 ≤ ∞, f ∈ Hp2(U) we obtain every embedding
A (∞)(U) ↪→ A p2(U) ↪→ A p1(U), 1 ≤ p1 < p2 <∞ is continuous and the topology on a smaller space
is finer with the obvious exception: A (∞)(U) is a subspace of A∞(U). It is clear the embedding
A 1(U) = AC(U) ↪→ A(U) is continuous.

Let
f(z) =

∞∑
k=0

1

2k
z2

k
, |z| ≤ 1.

Then f ∈ A(U) \AC(U). Denote

sn(z) =

n−1∑
k=0

1

2k
z2

k
, n ∈ N.

Then sn → f in A(U), but {sn}∞n=1 is not fundamental in AC(U). It follows the topology of
AC(U) is a refinement of the topology of A(U). So we have obtained a "long" sequence of continuous
embeddings of Banach spaces

A (∞)(U) ↪→ A p2(U) ↪→ A p1(U) ↪→ A(U) ↪→

H(U) ↪→ Hp2(U) ↪→ Hp1(U), 1 ≤ p1 < p2 ≤ ∞,

where only the topologies on A (∞)(U), A∞(U) and H(U), H∞(U) are the same.
Proposition 1. Every maximal ideal in AC(U) (resp. in AC(∂U)) is of the form

Iα = {f ∈ AC(U) : f(α) = 0}, α ∈ U (resp. G(Iα) = {f |∂U : f ∈ Iα}).

Proof. It is enough to prove that for every homomorphism F : AC(U) → C some α ∈ U exists
such that F (x) = x(α) for all x ∈ AC(U). Since the set of all polynomials is dense in AC(U), we
can repeat the proof of this fact from [1], p.400.

Remark. The norms ‖ · ‖∼ and ‖ · ‖ equivalent on AC(U) and so complex homomorphisms and
maximal ideals are the same in the both cases. However, it is easy to prove straightforward that σn → f

in A(U) for every f ∈ A(U). It follows σn → f in A (∞)(U) for every f ∈ A (∞)(U) ⊂ A(U). So
the next proposition is true.

Proposition 2. Every maximal ideal in A (∞)(U) (resp. in A (∞)(∂U)), is of the form

Iα = {f ∈ A (∞)(U); f(α) = 0}, (resp. G(Iα) = {f |∂U ; f ∈ Iα}),

where α ∈ U.
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Similarly, using [1], p.388, Exercise 25, we can prove the following proposition.
Proposition 3. Let p ∈ 〈1; +∞). Every maximal ideal in A p(U) (resp. in A p(∂U)) is also form

Iα = {f ∈ A p(U); f(α) = 0}

(resp. G(Iα) = {f |∂U ; f ∈ Iα}), where α ∈ U.

Problem 1. Are the ideals
Iα = {f ∈ A∞(U); f(α) = 0}, α ∈ U

the only maximal ideals in A∞(U)?

It is clear that the mapping T : AC(U)→ AC(U) defined by
Tf = eiβf ◦ τ, where β ∈ R and τ is a conformal mapping U onto itself, is an isometric isomorphism
AC(U) with the norm ‖ · ‖∼ onto itself. Probably there are no other isometric isomorphisms AC(U)

with this norm onto itself. This assertion can be proved by method of [3], p.202-211 if

‖(Tf)′‖H1(U) = ‖f ′‖H1(U)

for all f ∈ AC(U), i.e. if T̃ : H1(U)→ H1(U) is isometric isomorphism where T̃ f = (TF )′, F ′ = f.

Maybe it can be proved taking F ∈ Iz0 ⊂ AC(U) for an appropriate z0 ∈ U. We don’t know whether
T : AX(U) → AX(U) as an isometrical isomorphism in all remaining cases: for X = H(U) or
X = Hp(U), 1 < p ≤ ∞ if ‖ · ‖∼ is taken as the norm in AX(U) and generally for all X of Theorem
2, if AX(U) is considered with the norm ‖ · ‖.

3. The Case X = lρ, 1 ≤ ρ <∞

Denote
lp = {{an}∞0 ; ‖{an}‖p =

(∑
|an|p

) 1
p
<∞}

for 1 ≤ p <∞,

l∞ = {{an}∞0 ; ‖{an}‖∞ = sup
n∈N0

|an| <∞}.

Then lp is a Banach space, 1 ≤ p ≤ ∞, lp1 $ lp2 , the embedding lp1 ↪→ lp2 is continuous and the
topology is finer for the smaller space if
1 ≤ p1 < p2 ≤ ∞. We shall consider these spaces as spaces of functions from Hol(U) :

lp(U) = {f ; f(z) =
∞∑
n=0

anz
n, ‖f‖p =

( ∞∑
n=0

|an|p
) 1

p

<∞} ⊂ Hol(U), 1 ≤ p ≤ ∞.

Put X = lp(U), 1 ≤ p <∞. Then AX(U) ⊂ A(U). It is true for p = 1. For 1 < p <∞ let

f(z) =

∞∑
n=0

anz
n, f ∈ lp(U).
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Then
F (z) =

∞∑
n=1

an−1
n

zn, z ∈ U,

and
∞∑
n=1

|an−1|
n
≤

( ∞∑
n=1

|an−1|p
) 1

p
( ∞∑
n=1

1

nq

) 1
q

= ‖f‖p‖{
1

nq
}‖q <∞,

1

p
+

1

q
= 1,

by Hölder’s inequality.
Remark 3. Note that for

F0(z) = − ln(1− z) =
∞∑
n=1

zn

n
, |z| < 1,

we have

F ′0(z) =
∞∑
n=0

zn =
1

1− z
= f0(z)

and so f0 ∈ l∞(U), but F0 is not defined in U. Moreover, we cannot define the norm in Al∞(U)(U) by

‖F‖ = sup
|z|<1
|F (z)|+ ‖F ′‖l∞(U)

as F0 is not bounded in U. It holds F0 ∈ H1(U), only.
Theorem 2. The algebraAX(U) = {F ∈ Hol(U); F ′ ∈ X} is a Banach algebra with respect to the pointwise

multiplication of functions and the norm

‖F‖ = ‖F‖A(U) + ‖F ′‖X ,

if X = lp(U), 1 ≤ p <∞.

For the sake of brevity we shall denote Alp(U)(U) = Ap(U), 1 ≤ p <∞.

Lemma 1. Let f ∈ lp(U), 1 ≤ p <∞,

f(z) =
∞∑
k=0

akz
k, z ∈ U.

Then sn → f in lp(U), where sn(z) =
n∑
k=0

akz
k. The proof is trivial.

Proposition Every maximal ideal in Ap(U) (resp. in Ap(∂U)),

1 ≤ p <∞, is of the form

Iα = {f ∈ Ap(U); f(α) = 0}, (resp. G(Iα) = {f |∂U ; f ∈ Iα}),

where α ∈ U.

Proof. Using Lemma 1 we can repeat the proof of Proposition 2.
Remark 4. a) We obtain a "long" sequence of continuous embedding also for lp(U) :

Ap1(U) ↪→ Ap2(U) ↪→ A(U) = l1(U) ↪→ lp1(U) ↪→ lp1(U), 1 ≤ p1 < p2 <∞.

The corresponding inclusions are strict, the topologies on (strictly) smaller spaces are finer.
b) Note that p 7→ lp(U) is increasing, p 7→ Hp(U) is decreasing, both for p ∈ 〈1; +∞), in the sense
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of inclusion. We have l2(U) = H2(U) (see [1], 17.10(a), p.371). So A2(U) = A 2(U) and we can
describe maximal ideals in A 2(U) by any of Propositions 2, 3.
c) We have lp(U) ⊂ Hp(U), p ∈ 〈1; 2), lp(U) ⊃ Hp(U), p ∈ 〈2; +∞). Inclusions are strict, topologies
on smaller spaces are finer. The same holds for the algebra Ap(U),A p(U) : Ap(U) ⊂ A p(U), p ∈ 〈1; 2),

Ap(U) ⊃ A p(U), p ∈ 〈2; +∞), with the same relation between topologies.
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