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1. INTRODUCTION

Pilz [7] pioneered near-ring theory. Nobusawa [6] proposed the concept of I'-rings, which are
generalisations of rings. Satyanarayana [9] defined I'-near rings (GNRs). Satyanarayana [9] and
Booth [1] investigated the ideal theory in GNRs. Several authors also investigated various algebraic
structures on GNRs, such as ideals, weak ideals, bi-ideals, quasi-ideals, and normal ideals. Zhang [14]
proposed the concept of bipolar-valued fuzzy sets (BFSs), which is an extension of Zadeh's [ 13] fuzzy
set (FS) theory to BFSs. Taking this into account, numerous authors utilised fuzzifications on crisp sets,
such as Satyanarayana explored and established the concept of fuzzy ideals and prime ideals of GNRs.
Jun [3] discusses several results and properties on fuzzy ideals of GNRs. Jun and Lee [4] developed
the application of BFSs, which is a generalisation of FSs, to analyse uncertainty. Several academicians,
including Ragamayi [8, 10-12], have researched the development of BFS theory on various algebraic
structures such as semigroups, groups, semirings, rings, I'-near rings, etc.

As a continuation of all these, we have introduced the concepts of bipolar fuzzy ideals and bi-ideals

of GNRs in 2023. Now, we are studying the anti-homomorphisms of bipolar fuzzy ideals and bi-ideals.
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2. PRELIMINARIES

Important definitions for the study in this paper are reviewed in this section.

Definition 2.1. [9] A I'-near ring (GNR) is a triple (Mg, +,T'), where
(i) (Mg, +) is a group,
(ii) I' is a nonempty set of binary operators on M such that for each o € T', (Mg, +, @) is a near ring,

(iii) Ya(wBk) = (Yaw) Bk, Y, w, k€ Mp,a,3 €T.

Definition 2.2. [10] ABFS Br = (ng, €p,,) of a GNR Mp, is called a bipolar fuzzy ideal (BFI) of Mp if
(1) &, (¢ — @) > min{ef (), €5, (@)}, Vi), & € Mp,

(if) &5, (@ + P — w) > & (), Vi, & € Mp,

(iii) & (@ + k) — bak) > & (), Vi, 0,k € Mg, a €T,

(iv) &, (Yad) > &f (), V4, & € Mp,a €T,

(V) €5, (¥ — &) < max{&5, (¥), &5, (@)}, V9, & € Mp,

(Vi) &5, (@ + ¥ — &) < &5, (1), Vb, & € M,

(vil) &g, (ot + k) — wak) < &g (1), Vi, &, i € Mp,a €T,

(viii) &5, (Yaw) < &5, (¥), Ve, € Mg, €T,

Definition 2.3. [12] A BFS Br = (fER, {p,,) of a GNR M, is called a bipolar fuzzy bi-ideal (BFBI) of Mp
if

(i) &5, (¥ — @) = min{¢h (), &4, (@)}, Vi, & € Mg,

(if) &5, (& + 9 — w) > & (), Vi, & € Mp,

(iif) &5, ((PawBi) A (Pa(@ + i) — Pab)) > min{¢f (),65 ()}, Vi, o,k € Mg, o, B €T,

(iv) €5, (& — &) < max{&p, (). &p, (@)}, V4, & € Mp,

(v) &5, (@ + 1 — &) < €, (1), Vb, & € Mp,

(vi) &5, (PawBi) A (a(@ + k) — Pob)) < max{&p (¥), &g, (k)} Vi, &, i € Mp,a, B €T

Definition 2.4. A function ¢ : Mpr1 — Mp2 of GNRs is called an anti-homomorphism if
(i) o( + @) = ¢(&) + $(4), Vi), & € My,
(if) p(ba) = p()ad(¥), Ve, & € Mpr,a €T,

3. Anti-HomomorpHIsMs IN BFIs AND BFBIs or GNRs

In this session, we will explore the anti-homomorphic image and pre-image of BFIs and BFBIs of

GNRs.

Theorem 3.1. A GNR anti-homomorphic image of a BFI possessing both supremum and infimum

properties is a BFIL.
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Proof. Let ¢ : Mpry — Mpo be a GNR anti-homomorphism and let Ap = (Mg, Q‘LR, fAfR) be a BFI of
Mp. Let §ZR of Mp1 possess supremum property. Let Br = (Mpa, ng, §§R) be the image of Ar =
(Mp1,&%,,,€4,) in Mpa with € is the image of £, and £ is theimage of £ . Let (1)), p(w), ¢(k) €
Mpo and «, 8 € I'. Then

&G (1) — ¢(w)) = sup & (ay)
ar€P1(p(h)—o(w))

= sup hp(ay)
0, €61 (D) +6(~))

- s ¢
ay€¢~ 1 (p(—w+))

= sup &4, (ay)
AR )

= &4, (o — (¥0))

>min{ sup £F (ay), sup & (ay)}
) ay€671(9(0))

=min{¢f (#(1)), &5, (6(@))},

&5 (8(1) + ¢(w) — ¢(¢)) = sup &ip(ay)
ay€d7H(P(W)+d(w)—p(¢))

= sp € (as)
ay €~ H(w+)+o(—v))

= sup - €4,(ar)
0, €6 L(§(— o))

=&l (=t + @o + o)

> sup . g,XR (ay)
ay€¢H(B(W)+d(w)—o(¥))
= &5 (0(@)),
&5, (0(1)a(d(@)Bo(k)) — d(P)a(w)) = sup €4, (ay)

ar €S H(p(P)a(p(w)Be(K))—p(P) ()

= _ sup . gjqu(a'y)
ay€PH(P(Y)u(B(ABw)—d(war)))

= sup . ij (a)
ay €9~ L(¢((kBw)ah)—p(wa)))

> sup §XR(CW)
ay€9 1 (¢(¥))

= & (0(1),
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&5, (B()ap(@)) = sup & (ay)
ay €O~ (p(Y)ad(w))

= sup &f(ay)
a, €671 ($(ar)))

> sup §XR (ay)
ay€¢~ 1 ((w))

= &5, (0(0).
Similarly, we can prove it in the case of §§R. Hence, By is a BFI of Mgs. O

Theorem 3.2. A GNR anti-homomorphic pre-image of a BFI is a BFI.

Proof. Let ¢ : Mg, — Mps be a GNR anti-homomorphism. Let B = (Mg, &, .5, ) be a BEL of M.
Let Ap = (Mp1, €}, €4,,) be the pre-image of Br = (M2, &5, €5,,) in Mp1. Let &,/ € Mpy and
a, B €T. Then
Enp (0 — &) = &5, (64 — )

= &5, (0 + ()

= 5, (6(—=0) + 6(¢)))

= &5, (=6(@) + 6(¢))

> min{¢h (6(w), &5, (6(4))}

= min{¢} (@), &4, (¥)},

LW +o—9) =& (60 + @ — 1))
= &5 (e((d + @) + (=)
= &5, (D(=0) + (3 + X))
= &5 (D(=0) + ¢(&) + 6(1)))
> &1, (0(@)),

&1L Wa(wpr) — daw) = &5 (S(Pa(wpk) — Pab))
= &f (D(WBR)ag(d) — d(daw))
= &4, (9(7)Bo(@))ad(th) — B(@)ag(1)))
> &h (6(4))
= &4, (1)),
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&1, (aw) = & (d(daw))
= &f . (D(@)ag(d))
> &5 (9(@))
= &1, (6(0)).

Similarly, we can prove it in the case of Eape Hence, Ag is a BFI of Mp;. O

Theorem 3.3. A GNR anti-homomorphic image of a BFBI possessing both supremum and infimum

properties is BFBI.

Proof. Let ¢ : My — Mpg2 be a GNR anti-homomorphism and let Ap = (Mp, QFR, 523) be a BFBI of
Mp;. Let ij of Mp1 possess supremum property. Let Bp = (Mpa, §§R, §§R) be the image of Ar =
(Mp1,&5,,,€4,,) in Mo with £ is theimage of €, and £ is the image of £ . Let (1)), p(@), P(k) €
Mpgo and «, 8 € I'. Then

§h,(0(4) — d(0)) = sup €1, (ar)
ay€¢ 1 (d(¥)—p(w))

= sup €4, (ay)
ay €671 (B()+9(~))

= sup &4 (ay)
ay€PpH(p(—w+v))

= sup ) fXR(aV)
ay€P~Hp(—w—(—v)))

= &4, (—o — (%))

> min{ sup 5;{1{(@7), sup fXR(a,y)}
ay€¢~H(p(¥)) ay€¢~H(B(w))

= min{&5, (6(1), &4, (6(@))},

5 (0(¥) + 9(0) — (1)) = sup EIMC
ay€¢H(B(h)+(w)—p(¥))

= sup . fXR (ay)
ay €~ (p(w+1))+o (=)

= sup. . fo (ay)
ay €~ (p(—U+w+i)))

= QR(—% + G + o)

v

sup ' fXR (ay)
ay €~ (p(w)+(w)— (1))

= 5, (0(@)),
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5, (3(1)ag(@)Bo(k)) A (G(¥)a(d(w) + ¢(i)) — (1)) ag(w)))

= . sup . fXR (ay)
ay €S~ ((B(¥)ad(@) BS(R)A(B()a(d(@)+¢(#)) —(P)ad(w)))

= _sup ' ' fXR(av)
ay€QH(((ABwah) N (p(A+w)a) —p(wa))))

> min{ sup SXR(CLW), sup ij(av)}
ave(ﬁil((ﬁ(’%)) aw€¢>’l(¢(¢))

= min{&5, (6(k)), &5, (6(4)}.

Similarly, we can prove it in the case of ng. Hence, Br = (Mp2, §§R, ng) is a BFBI of Mps. O
Theorem 3.4. A GNR anti-homomorphic pre-image of a BFBI is a BFBI.

Proof. Let ¢ : Mg — Mgy be a GNR anti-homomorphism. Let By = (Mgs, &, , €5, ) be a BFBI of
Mpo. Let Ap = (Mg, €4, €4.,) be the pre-image of Br = (Mps, €, €5,,) in M. Let .6, i € My
and «a, 5 € I'. Then
Exp( —w) = &f (o4 — w))

= &5, (B0 + (—0))

= &5, (0(—0) + 6(¢)))

= &5, (=0(@) + 6(¢))

> min{€z, (6(@), &5, (6(9))}

= min{¢} (@),&5 ()},

W+ o =) =& (0 +0—1))
= &5 (@((d + @) + (=)
= &5, (B(=) + ¢ + W)
= &5, (D(=0) + ¢(&) + 6(1))
> &4 (0(w)),

&1 (awpr) A (Yol + k) — Paw))

= &5, (B((hadBi) A (Yol + i) — Pad))

= &4, (9(R)Bo(@)ad(1)) A (($(5) + (@) ad(t)) — P (@)ad(sh)))
> min{é5 (0(k), &4, (6(4))}

= min{¢} (%), &5 ()}
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Similarly, we can prove it in the case of §ATR. Hence, Ay is a BFBI of Mp;. O

4. CONCLUSION

This article explored the anti-homomorphic image and pre-image of BFIs and BFBIs of GNRs. Soon
we will extend these properties to weak BFBIs, prime BFIs, and bipolar fuzzy filters of GNRs.
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