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Abstract. This article deals with the concept of (τ1, τ2)-continuous functions. Moreover, some characteri-
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1. Introduction

The field of the mathematical science which goes under the name of topology is concerned with
all questions directly or indirectly related to continuity. Semi-open sets, preopen sets, α-open sets
and β-open sets play an important role in the researches of generalizations of continuity. Levine [11]
introduced and investigated the concept of semi-continuous functions. Mashhour et al. [14] introduced
and investigated the notion of precontinuous functions. Mashhour et al. [13] introduced and studied
the concept of α-continuous functions. Noiri [16] investigated several characterizations of α-continuous
functions. Moreover, Noiri [15] introduced and studied the concept of almost α-continuous functions
as a generalization of α-continuity. Abd El-Monsef et al. [1] introduced the notion of β-continuous func-
tions as a generalization of semi-continuity and precontinuity. Marcus [12] introduced and investigated
the concept of quasi-continuous functions. Borsík and Doboš [8] introduced the notion of almost quasi-
continuity which is weaker than that of quasi-continuity and obtained a decomposition theorem of
quasi-continuity. Popa and Noiri [17] investigated some characterizations of β-continuity and showed
that almost quasi-continuity is equivalent to β-continuity. Viriyapong and Boonpok [18] introduced
and studied the concept of (Λ, sp)-continuous functions. Furthermore, several characterizations of
almost (Λ, s)-continuous functions were investigated in [2]. In [3], the present authors introduced and
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studied the concept of weakly (Λ, p)-continuous functions. Laprom et al. [10] studied the notion of
β(τ1, τ2)-continuous multifunctions. Viriyapong and Boonpok [19] introduced and investigated the
concept of (τ1, τ2)α-continuous multifunctions. Moreover, some characterizations of almost weakly
(τ1, τ2)-continuous multifunctions and (τ1, τ2)δ-semicontinuous multifunctions were established in [4]
and [5], respectively. In [7], the author investigated several characterizations of (i, j)-M -continuous
functions in biminimal structure spaces. Dungthaisong et al. [9] introduced and studied the notion
of g(m,n)-continuous functions in bigeneralized topological spaces. In this article, we introduce the
concept of (τ1, τ2)-continuous functions. In particular, several characterizations of (τ1, τ2)-continuous
functions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y ) always mean
bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be
a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect to τi
are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological space
(X, τ1, τ2) is called τ1τ2-closed [6] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called
τ1τ2-open. Let A be a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets
of X containing A is called the τ1τ2-closure [6] of A and is denoted by τ1τ2-Cl(A). The union of all
τ1τ2-open sets of X contained in A is called the τ1τ2-interior [6] of A and is denoted by τ1τ2-Int(A).

Lemma 1. [6] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-closure, the following

properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

3. On (τ1, τ2)-continuous functions

In this section, we introduce the concept of (τ1, τ2)-continuous functions. Furthermore, several
characterizations of (τ1, τ2)-continuous functions are discussed.

Definition 1. A function f : (X, τ1, τ2)→ (Y, σ1, σ2) is called (τ1, τ2)-continuous at a point x ∈ X if for each

σ1σ2-open set V of Y containing f(x), there exists a τ1τ2-open set U ofX containing x such that f(U) ⊆ V . A

function f : (X, τ1, τ2)→ (Y, σ1, σ2) is called (τ1, τ2)-continuous if f has this property at each point of X .

Theorem 1. For a function (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:
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(1) f is (τ1, τ2)-continuous at x ∈ X ;

(2) x ∈ τ1τ2-Int(f−1(V )) for every σ1σ2-open set V of Y containing f(x);

(3) x ∈ f−1(σ1σ2-Cl(f(A))) for every subset A of X with

x ∈ τ1τ2-Cl(A);

(4) x ∈ f−1(σ1σ2-Cl(B)) for every subset B of Y with

x ∈ τ1τ2-Cl(f−1(B));

(5) x ∈ τ1τ2-Int(f−1(B)) for every subset B of Y with

x ∈ f−1(σ1σ2-Int(B));

(6) x ∈ f−1(K) for every σ1σ2-closed setK of Y with

x ∈ τ1τ2-Cl(f−1(K)).

Proof. (1)⇒ (2): Let V be any σ1σ2-open set of Y containing f(x). By (1), there exists a τ1τ2-open set
U of X containing x such that f(U) ⊆ V . Thus, U ⊆ f−1(V ) and hence x ∈ τ1τ2-Int(f−1(V )).

(2) ⇒ (3): Let A be any subset of X , x ∈ τ1τ2-Cl(A) and V be any σ1σ2-open set of Y containing
f(x). By (2), we have

x ∈ τ1τ2-Int(f−1(V ))

and there exists a τ1τ2-open set U of X such that x ∈ U ⊆ f−1(V ). Since x ∈ τ1τ2-Cl(A), we have

∅ 6= f(U ∩A) ⊆ f(U) ∩ f(A) ⊆ V ∩ f(A).

Thus, f(x) ∈ σ1σ2-Cl(f(A)) and hence x ∈ f−1(σ1σ2-Cl(f(A))).
(3)⇒ (4): LetB be any subset ofY andx ∈ τ1τ2-Cl(f−1(B)). By (3), we havex ∈ f−1(σ1σ2-Cl(f(f−1(B)))) ⊆

f−1(σ1σ2-Cl(B)) and hence x ∈ f−1(σ1σ2-Cl(B)).
(4)⇒ (5): Let B be any subset of Y such that x 6∈ τ1τ2-Int(f−1(B)). Then,

x ∈ X − τ1τ2-Int(f−1(B)) = τ1τ2-Cl(X − f−1(B))

= τ1τ2-Cl(f−1(Y −B)).

By (4),

x ∈ f−1(σ1σ2-Cl(Y −B)) = f−1(Y − σ1σ2-Int(B))

= X − f−1(σ1σ2-Int(B)).

Thus, x 6∈ f−1(σ1σ2-Int(B)).
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(5)⇒ (6): LetK be any σ1σ2-closed set of Y and x 6∈ f−1(K). Then,

x ∈ X − f−1(K) = f−1(Y −K)

= f−1(σ1σ2-Int(Y −K)).

By (5), we have

x ∈ τ1τ2-Int(f−1(Y −K)) = τ1τ2-Int(X − f−1(K))

= X − τ1τ2-Cl(f−1(K))

and hence x 6∈ τ1τ2-Cl(f−1(K)).
(6) ⇒ (2): Let V be any σ1σ2-open set of Y containing f(x). Suppose that x 6∈ τ1τ2-Int(f−1(V )).

Then,

x ∈ X − τ1τ2-Int(f−1(V )) = τ1τ2-Cl(X − f−1(V ))

= τ1τ2-Cl(f−1(Y − V )).

By (6), x ∈ f−1(Y − V ) = X − f−1(V ) and hence x 6∈ f−1(V ). This contraries to the hypothesis.
(2) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y containing f(x). By (2), we have x ∈

τ1τ2-Int(f−1(V )) and there exists a τ1τ2-open set U of X containing x such that U ⊆ f−1(V ). Thus,
f(U) ⊆ V and hence f is (τ1, τ2)-continuous at x. �

Theorem 2. For a function (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is (τ1, τ2)-continuous;

(2) f−1(V ) is τ1τ2-open in X for every σ1σ2-open set V of Y ;

(3) f(τ1τ2-Cl(A)) ⊆ σ1σ2-Cl(f(A)) for every subset A of X ;

(4) τ1τ2-Cl(f−1(B)) ⊆ f−1(σ1σ2-Cl(B)) for every subset B of Y ;

(5) f−1(σ1σ2-Int(B)) ⊆ τ1τ2-Int(f−1(B)) for every subset B of Y ;

(6) f−1(K) is τ1τ2-closed in X for every σ1σ2-closed setK of Y .

Proof. (1)⇒ (2): Let V be any σ1σ2-open set of Y and x ∈ f−1(V ). Then, f(x) ∈ V and there exists a
τ1τ2-open set U of X containing x such that f(U) ⊆ V . Thus, U ⊆ f−1(V ) and hence

x ∈ τ1τ2-Int(f−1(V )).

Therefore, f−1(V ) ⊆ τ1τ2-Int(f−1(V )). This shows that f−1(V ) is τ1τ2-open in X .
(2) ⇒ (3): Let A be any subset of X , x ∈ τ1τ2-Cl(A) and V be any σ1σ2-open set of Y containing

f(x). Then, x ∈ τ1τ2-Int(f−1(V )) and there exists a τ1τ2-open set U of X such that x ∈ U ⊆ f−1(V ).
Since x ∈ τ1τ2-Cl(A), we have U ∩A 6= ∅ and

∅ 6= f(U ∩A) ⊆ f(U) ∩ f(A) ⊆ V ∩ f(A).
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Thus, f(x) ∈ σ1σ2-Cl(f(A)).
(3)⇒ (4): Let B be any subset of Y . Then by (3),

f(τ1τ2-Cl(f−1(B))) ⊆ σ1σ2-Cl(f(f−1(B))).

Thus, τ1τ2-Cl(f−1(B)) ⊆ f−1(σ1σ2-Cl(B)).
(4)⇒ (5): Let B be any subset of Y . By (4), we have

X − τ1τ2-Int(f−1(B)) = τ1τ2-Cl(X − f−1(B))

= τ1τ2-Cl(f−1(Y −B))

⊆ f−1(σ1σ2-Cl(Y −B))

= f−1(Y − σ1σ2-Int(B))

= X − f−1(σ1σ2-Int(B))

and hence f−1(σ1σ2-Int(B)) ⊆ τ1τ2-Int(f−1(B)).
(5) ⇒ (6): Let K be any σ1σ2-closed set of Y . Then, Y − K is σ1σ2-open in Y and Y − K =

σ1σ2-Int(Y −K). By (5),

X − f−1(K) = f−1(Y −K)

= f−1(σ1σ1-Int(Y −K))

⊆ τ1τ2-Int(f−1(Y −K))

= τ1τ2-Int(X − f−1(K))

= X − τ1τ2-Cl(f−1(K)).

Thus,τ1τ2-Cl(f−1(K)) ⊆ f−1(K). This shows that f−1(K) is τ1τ2-closed in X .
(6)⇒ (2): The proof is obvious.
(2) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y containing f(x). By (2), we have x ∈

τ1τ2-Int(f−1(V )) and there exists a τ1τ2-open set U of X containing x such that U ⊆ f−1(V ), Thus,
f(U) ⊆ V and hence f is (τ1, τ2)-continuous at x. This shows that f is (τ1, τ2)-continuous. �

Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-compact [6] if every cover of X by
τ1τ2-open sets of X has a finite subcover.

Theorem 3. If f : (X, τ1, τ2)→ (Y, σ1, σ2) is a (τ1, τ2)-continuous surjection and (X, τ1, τ2) is τ1τ2-compact,

then (Y, σ1, σ2) is σ1σ2-compact.

Proof. Let {Vγ | γ ∈ Γ} be any cover of Y by σ1σ2-open sets of Y . Since f is (τ1, τ2)-continuous, by
Theorem 2, {f−1(Vγ) | γ ∈ Γ} is a cover of X by τ1τ2-open sets of X . Thus, there exists a finite subset
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Γ0 of Γ such that X = ∪γ∈Γ0f
−1(Vγ). Since f is surjective, Y = f(X) = ∪γ∈Γ0Vγ . This shows that

(Y, σ1, σ2) is σ1σ2-compact. �

Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-connected [6] if X cannot be written as
the union of two nonempty disjoint τ1τ2-open sets.

Theorem 4. If f : (X, τ1, τ2)→ (Y, σ1, σ2) is a (τ1, τ2)-continuous surjection and (X, τ1, τ2) is τ1τ2-connected,

then (Y, σ1, σ2) is σ1σ2-connected.

Proof. Suppose that (Y, σ1, σ2) is not σ1σ2-connected. There exist nonempty σ1σ2-open sets U and V of
Y such that U ∩ V = ∅ and U ∪ V = Y . Then, f−1(U) ∩ f−1(V ) = ∅ and

f−1(U) ∪ f−1(V ) = X.

Moreover, f−1(U) and f−1(V ) are nonempty τ1τ2-open sets of X . Thus, (X, τ1, τ2) is not (τ1, τ2)-
connected. Therefore, (Y, σ1, σ2) is σ1σ2-connected. �

The τ1τ2-frontier of a subset A of a bitopological space (X, τ1, τ2), denoted by τ1τ2-fr(A), is defined by

τ1τ2-fr(A) = τ1τ2-Cl(A) ∩ τ1τ2-Cl(X −A)

= τ1τ2-Cl(A)− τ1τ2-Int(A).

Theorem 5. The set of all points x ∈ X at which a function f : (X, τ1, τ2) → (Y, σ1, σ2) is not (τ1, τ2)-

continuous is identical with the union of the τ1τ2-frontier of the inverse images of σ1σ2-open sets containing

f(x).

Proof. Suppose that f is not (τ1, τ2)-continuous at x ∈ X . There exists a σ1σ2-open set V of Y containing
f(x) such that f(U) 6⊆ V for every τ1τ2-open set U of X containing x. Then, U ∩ (X − f−1(V )) 6= ∅ for
every τ1τ2-open set U of X containing x. Thus, x ∈ τ1τ2-Cl(X − f−1(V )). On the other hand, we have
x ∈ f−1(V ) ⊆ τ1τ2-Cl(f−1(V )) and hence x ∈ τ1τ2-fr(f−1(V )).

Conversely, suppose that f is (τ1, τ2)-continuous at x ∈ X and V be any σ1σ2-open set of Y containing
f(x). Then by Theorem 1, we have x ∈ τ1τ2-Int(f−1(V )). Thus, x 6∈ τ1τ2-fr(f−1(V )) for each σ1σ2-open
set V of Y containing f(x). This completes the proof. �
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