

(τ_1, τ_2) -CONTINUITY FOR FUNCTIONS

CHAWALIT BOONPOK, NAPASSANAN SRISARAKHAM*

Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand *Corresponding author: napassanan.sri@msu.ac.th

Received Sep. 28, 2023

Abstract. This article deals with the concept of (au_1, au_2) -continuous functions. Moreover, some characteri-

zations of (τ_1, τ_2) -continuous functions are established.

2020 Mathematics Subject Classification. 54C08; 54E55.

Key words and phrases. $\tau_1 \tau_2$ -open set; $\tau_1 \tau_2$ -closed set; (τ_1, τ_2) -continuous function.

1. INTRODUCTION

The field of the mathematical science which goes under the name of topology is concerned with all questions directly or indirectly related to continuity. Semi-open sets, preopen sets, α -open sets and β -open sets play an important role in the researches of generalizations of continuity. Levine [11] introduced and investigated the concept of semi-continuous functions. Mashhour et al. [14] introduced and investigated the notion of precontinuous functions. Mashhour et al. [13] introduced and studied the concept of α -continuous functions. Noiri [16] investigated several characterizations of α -continuous functions. Moreover, Noiri [15] introduced and studied the concept of almost α -continuous functions as a generalization of α -continuity. Abd El-Monsef et al. [1] introduced the notion of β -continuous functions as a generalization of semi-continuity and precontinuity. Marcus [12] introduced and investigated the concept of quasi-continuous functions. Borsík and Doboš [8] introduced the notion of almost quasi-continuity which is weaker than that of quasi-continuity and obtained a decomposition theorem of quasi-continuity is equivalent to β -continuity. Viriyapong and Boonpok [18] introduced and studied the concept of (Λ , *sp*)-continuous functions. Furthermore, several characterizations of almost (Λ , *s*)-continuous functions were investigated in [2]. In [3], the present authors introduced and

DOI: 10.28924/APJM/11-21

studied the concept of weakly (Λ, p) -continuous functions. Laprom et al. [10] studied the notion of $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Viriyapong and Boonpok [19] introduced and investigated the concept of $(\tau_1, \tau_2)\alpha$ -continuous multifunctions. Moreover, some characterizations of almost weakly (τ_1, τ_2) -continuous multifunctions and $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions were established in [4] and [5], respectively. In [7], the author investigated several characterizations of (i, j)-M-continuous functions in biminimal structure spaces. Dungthaisong et al. [9] introduced and studied the notion of $g_{(m,n)}$ -continuous functions in bigeneralized topological spaces. In this article, we introduce the concept of (τ_1, τ_2) -continuous functions. In particular, several characterizations of (τ_1, τ_2) -continuous functions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [6] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [6] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [6] of A and is denoted by $\tau_1 \tau_2$ -Int(A).

Lemma 1. [6] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -*Cl*(*A*) and $\tau_1 \tau_2$ -*Cl*($\tau_1 \tau_2$ -*Cl*(*A*)) = $\tau_1 \tau_2$ -*Cl*(*A*).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ - $Cl(A) \subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1\tau_2$ -*Cl*(*A*) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2$ - $Cl(X A) = X \tau_1 \tau_2$ -Int(A).

3. On (τ_1, τ_2) -continuous functions

In this section, we introduce the concept of (τ_1, τ_2) -continuous functions. Furthermore, several characterizations of (τ_1, τ_2) -continuous functions are discussed.

Definition 1. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing f(x), there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called (τ_1, τ_2) -continuous if f has this property at each point of X.

Theorem 1. For a function $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is (τ_1, τ_2) -continuous at $x \in X$;
- (2) $x \in \tau_1 \tau_2$ -Int $(f^{-1}(V))$ for every $\sigma_1 \sigma_2$ -open set V of Y containing f(x);
- (3) $x \in f^{-1}(\sigma_1 \sigma_2 \text{-}Cl(f(A)))$ for every subset A of X with

 $x \in \tau_1 \tau_2 \text{-} Cl(A);$

(4) $x \in f^{-1}(\sigma_1 \sigma_2 \text{-} Cl(B))$ for every subset B of Y with

$$x \in \tau_1 \tau_2 \text{-} Cl(f^{-1}(B));$$

(5) $x \in \tau_1 \tau_2$ -Int $(f^{-1}(B))$ for every subset B of Y with

$$x \in f^{-1}(\sigma_1 \sigma_2 \operatorname{-Int}(B));$$

(6) $x \in f^{-1}(K)$ for every $\sigma_1 \sigma_2$ -closed set K of Y with

$$x \in \tau_1 \tau_2 \text{-} Cl(f^{-1}(K)).$$

Proof. (1) \Rightarrow (2): Let *V* be any $\sigma_1 \sigma_2$ -open set of *Y* containing f(x). By (1), there exists a $\tau_1 \tau_2$ -open set *U* of *X* containing *x* such that $f(U) \subseteq V$. Thus, $U \subseteq f^{-1}(V)$ and hence $x \in \tau_1 \tau_2$ -Int $(f^{-1}(V))$.

(2) \Rightarrow (3): Let *A* be any subset of *X*, $x \in \tau_1 \tau_2$ -Cl(*A*) and *V* be any $\sigma_1 \sigma_2$ -open set of *Y* containing f(x). By (2), we have

$$x \in \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(V))$$

and there exists a $\tau_1\tau_2$ -open set U of X such that $x \in U \subseteq f^{-1}(V)$. Since $x \in \tau_1\tau_2$ -Cl(A), we have

$$\emptyset \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A).$$

Thus, $f(x) \in \sigma_1 \sigma_2$ -Cl(f(A)) and hence $x \in f^{-1}(\sigma_1 \sigma_2$ -Cl(f(A))).

 $(3) \Rightarrow (4): \text{Let } B \text{ be any subset of } Y \text{ and } x \in \tau_1 \tau_2 \text{-} \text{Cl}(f^{-1}(B)). \text{ By } (3), \text{ we have } x \in f^{-1}(\sigma_1 \sigma_2 \text{-} \text{Cl}(f(f^{-1}(B)))) \subseteq f^{-1}(\sigma_1 \sigma_2 \text{-} \text{Cl}(B)) \text{ and hence } x \in f^{-1}(\sigma_1 \sigma_2 \text{-} \text{Cl}(B)).$

(4) \Rightarrow (5): Let *B* be any subset of *Y* such that $x \notin \tau_1 \tau_2$ -Int $(f^{-1}(B))$. Then,

$$x \in X - \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(B)) = \tau_1 \tau_2 \operatorname{-Cl}(X - f^{-1}(B))$$
$$= \tau_1 \tau_2 \operatorname{-Cl}(f^{-1}(Y - B)).$$

By (4),

$$x \in f^{-1}(\sigma_1 \sigma_2 \operatorname{-Cl}(Y - B)) = f^{-1}(Y - \sigma_1 \sigma_2 \operatorname{-Int}(B))$$
$$= X - f^{-1}(\sigma_1 \sigma_2 \operatorname{-Int}(B)).$$

Thus, $x \notin f^{-1}(\sigma_1 \sigma_2 \operatorname{-Int}(B))$.

(5) \Rightarrow (6): Let *K* be any $\sigma_1 \sigma_2$ -closed set of *Y* and $x \notin f^{-1}(K)$. Then,

$$x \in X - f^{-1}(K) = f^{-1}(Y - K)$$

= $f^{-1}(\sigma_1 \sigma_2 - \text{Int}(Y - K))$

By (5), we have

$$x \in \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(Y - K)) = \tau_1 \tau_2 \operatorname{-Int}(X - f^{-1}(K))$$
$$= X - \tau_1 \tau_2 \operatorname{-Cl}(f^{-1}(K))$$

and hence $x \notin \tau_1 \tau_2$ -Cl $(f^{-1}(K))$.

(6) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Suppose that $x \notin \tau_1\tau_2$ -Int $(f^{-1}(V))$. Then,

$$x \in X - \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(V)) = \tau_1 \tau_2 \operatorname{-Cl}(X - f^{-1}(V))$$
$$= \tau_1 \tau_2 \operatorname{-Cl}(f^{-1}(Y - V)).$$

By (6), $x \in f^{-1}(Y - V) = X - f^{-1}(V)$ and hence $x \notin f^{-1}(V)$. This contraries to the hypothesis.

(2) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). By (2), we have $x \in \tau_1 \tau_2$ -Int $(f^{-1}(V))$ and there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $U \subseteq f^{-1}(V)$. Thus, $f(U) \subseteq V$ and hence f is (τ_1, τ_2) -continuous at x.

Theorem 2. For a function $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is (τ_1, τ_2) -continuous;
- (2) $f^{-1}(V)$ is $\tau_1\tau_2$ -open in X for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $f(\tau_1\tau_2$ - $Cl(A)) \subseteq \sigma_1\sigma_2$ -Cl(f(A)) for every subset A of X;
- (4) $\tau_1\tau_2$ - $Cl(f^{-1}(B)) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $f^{-1}(\sigma_1 \sigma_2 \operatorname{-Int}(B)) \subseteq \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(B))$ for every subset B of Y;
- (6) $f^{-1}(K)$ is $\tau_1 \tau_2$ -closed in X for every $\sigma_1 \sigma_2$ -closed set K of Y.

Proof. (1) \Rightarrow (2): Let *V* be any $\sigma_1 \sigma_2$ -open set of *Y* and $x \in f^{-1}(V)$. Then, $f(x) \in V$ and there exists a $\tau_1 \tau_2$ -open set *U* of *X* containing *x* such that $f(U) \subseteq V$. Thus, $U \subseteq f^{-1}(V)$ and hence

$$x \in \tau_1 \tau_2$$
-Int $(f^{-1}(V))$.

Therefore, $f^{-1}(V) \subseteq \tau_1 \tau_2$ -Int $(f^{-1}(V))$. This shows that $f^{-1}(V)$ is $\tau_1 \tau_2$ -open in X.

(2) \Rightarrow (3): Let *A* be any subset of *X*, $x \in \tau_1 \tau_2$ -Cl(*A*) and *V* be any $\sigma_1 \sigma_2$ -open set of *Y* containing f(x). Then, $x \in \tau_1 \tau_2$ -Int($f^{-1}(V)$) and there exists a $\tau_1 \tau_2$ -open set *U* of *X* such that $x \in U \subseteq f^{-1}(V)$. Since $x \in \tau_1 \tau_2$ -Cl(*A*), we have $U \cap A \neq \emptyset$ and

$$\emptyset \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A).$$

Thus, $f(x) \in \sigma_1 \sigma_2$ -Cl(f(A)).

 $(3) \Rightarrow (4)$: Let *B* be any subset of *Y*. Then by (3),

$$f(\tau_1\tau_2\operatorname{-Cl}(f^{-1}(B))) \subseteq \sigma_1\sigma_2\operatorname{-Cl}(f(f^{-1}(B))).$$

Thus, $\tau_1\tau_2$ -Cl $(f^{-1}(B)) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(B)).

 $(4) \Rightarrow (5)$: Let *B* be any subset of *Y*. By (4), we have

$$X - \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(B)) = \tau_1 \tau_2 \operatorname{-Cl}(X - f^{-1}(B))$$
$$= \tau_1 \tau_2 \operatorname{-Cl}(f^{-1}(Y - B))$$
$$\subseteq f^{-1}(\sigma_1 \sigma_2 \operatorname{-Cl}(Y - B))$$
$$= f^{-1}(Y - \sigma_1 \sigma_2 \operatorname{-Int}(B))$$
$$= X - f^{-1}(\sigma_1 \sigma_2 \operatorname{-Int}(B))$$

and hence $f^{-1}(\sigma_1 \sigma_2 \operatorname{-Int}(B)) \subseteq \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(B))$.

(5) \Rightarrow (6): Let *K* be any $\sigma_1 \sigma_2$ -closed set of *Y*. Then, Y - K is $\sigma_1 \sigma_2$ -open in *Y* and $Y - K = \sigma_1 \sigma_2$ -Int(Y - K). By (5),

$$X - f^{-1}(K) = f^{-1}(Y - K)$$

= $f^{-1}(\sigma_1 \sigma_1 \operatorname{-Int}(Y - K))$
 $\subseteq \tau_1 \tau_2 \operatorname{-Int}(f^{-1}(Y - K))$
= $\tau_1 \tau_2 \operatorname{-Int}(X - f^{-1}(K))$
= $X - \tau_1 \tau_2 \operatorname{-Cl}(f^{-1}(K)).$

Thus, $\tau_1\tau_2$ -Cl $(f^{-1}(K)) \subseteq f^{-1}(K)$. This shows that $f^{-1}(K)$ is $\tau_1\tau_2$ -closed in X.

(6) \Rightarrow (2): The proof is obvious.

(2) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). By (2), we have $x \in \tau_1 \tau_2$ -Int $(f^{-1}(V))$ and there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $U \subseteq f^{-1}(V)$, Thus, $f(U) \subseteq V$ and hence f is (τ_1, τ_2) -continuous at x. This shows that f is (τ_1, τ_2) -continuous.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -compact [6] if every cover of X by $\tau_1 \tau_2$ -open sets of X has a finite subcover.

Theorem 3. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a (τ_1, τ_2) -continuous surjection and (X, τ_1, τ_2) is $\tau_1 \tau_2$ -compact, then (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -compact.

Proof. Let $\{V_{\gamma} \mid \gamma \in \Gamma\}$ be any cover of Y by $\sigma_1 \sigma_2$ -open sets of Y. Since f is (τ_1, τ_2) -continuous, by Theorem 2, $\{f^{-1}(V_{\gamma}) \mid \gamma \in \Gamma\}$ is a cover of X by $\tau_1 \tau_2$ -open sets of X. Thus, there exists a finite subset

 Γ_0 of Γ such that $X = \bigcup_{\gamma \in \Gamma_0} f^{-1}(V_{\gamma})$. Since f is surjective, $Y = f(X) = \bigcup_{\gamma \in \Gamma_0} V_{\gamma}$. This shows that (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -compact.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -connected [6] if X cannot be written as the union of two nonempty disjoint $\tau_1 \tau_2$ -open sets.

Theorem 4. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a (τ_1, τ_2) -continuous surjection and (X, τ_1, τ_2) is $\tau_1 \tau_2$ -connected, then (Y, σ_1, σ_2) is $\sigma_1 \sigma_2$ -connected.

Proof. Suppose that (Y, σ_1, σ_2) is not $\sigma_1 \sigma_2$ -connected. There exist nonempty $\sigma_1 \sigma_2$ -open sets U and V of Y such that $U \cap V = \emptyset$ and $U \cup V = Y$. Then, $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ and

$$f^{-1}(U) \cup f^{-1}(V) = X.$$

Moreover, $f^{-1}(U)$ and $f^{-1}(V)$ are nonempty $\tau_1\tau_2$ -open sets of X. Thus, (X, τ_1, τ_2) is not (τ_1, τ_2) connected. Therefore, (Y, σ_1, σ_2) is $\sigma_1\sigma_2$ -connected.

The $\tau_1\tau_2$ -frontier of a subset A of a bitopological space (X, τ_1, τ_2) , denoted by $\tau_1\tau_2$ -fr(A), is defined by

$$\tau_1 \tau_2 \operatorname{-fr}(A) = \tau_1 \tau_2 \operatorname{-Cl}(A) \cap \tau_1 \tau_2 \operatorname{-Cl}(X - A)$$
$$= \tau_1 \tau_2 \operatorname{-Cl}(A) - \tau_1 \tau_2 \operatorname{-Int}(A).$$

Theorem 5. The set of all points $x \in X$ at which a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is not (τ_1, τ_2) continuous is identical with the union of the $\tau_1\tau_2$ -frontier of the inverse images of $\sigma_1\sigma_2$ -open sets containing f(x).

Proof. Suppose that f is not (τ_1, τ_2) -continuous at $x \in X$. There exists a $\sigma_1 \sigma_2$ -open set V of Y containing f(x) such that $f(U) \not\subseteq V$ for every $\tau_1 \tau_2$ -open set U of X containing x. Then, $U \cap (X - f^{-1}(V)) \neq \emptyset$ for every $\tau_1 \tau_2$ -open set U of X containing x. Thus, $x \in \tau_1 \tau_2$ -Cl $(X - f^{-1}(V))$. On the other hand, we have $x \in f^{-1}(V) \subseteq \tau_1 \tau_2$ -Cl $(f^{-1}(V))$ and hence $x \in \tau_1 \tau_2$ -fr $(f^{-1}(V))$.

Conversely, suppose that f is (τ_1, τ_2) -continuous at $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). Then by Theorem 1, we have $x \in \tau_1 \tau_2$ -Int $(f^{-1}(V))$. Thus, $x \notin \tau_1 \tau_2$ -fr $(f^{-1}(V))$ for each $\sigma_1 \sigma_2$ -open set V of Y containing f(x). This completes the proof.

Acknowledgements

This research project was financially supported by Mahasarakham University.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- [2] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math. 16 (2023), 336–362.
- [3] C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math. 15 (2022), 415–436. https://doi.org/10.29020/nybg.ejpam.v15i2.4274.
- [4] C. Boonpok, C. Viriyapong, Upper and lower almost weak (τ₁, τ₂)-continuity, Eur. J. Pure Appl. Math. 14 (2021), 1212–1225. https://doi.org/10.29020/nybg.ejpam.v14i4.4072.
- [5] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon. 6 (2020), e05367. https://doi.org/10.1016/j. heliyon.2020.e05367.
- [6] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ₁, τ₂)-precontinuous multifunctions, J. Math. Comp. Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- [7] C. Boonpok, M-continuous functions in biminimal structure spaces, Far East J. Math. Sci. 43 (2010), 41–58.
- [8] J. Borsík and J. Doboš, On decompositions of quasicontinuity, Real Anal. Exchange, 16 (1990/91), 292–305.
- [9] W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized closed sets in bigeneralized topological spaces, Int. J. Math. Anal. 5 (2011), 11751184.
- [10] K. Laprom, C. Boonpok, C. Viriyapong, $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces, J. Math. 2020 (2020), 4020971. https://doi.org/10.1155/2020/4020971.
- [11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Mon. 70 (1963), 36–41. https: //doi.org/10.1080/00029890.1963.11990039.
- [12] S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty, Colloq. Math. 8 (1961), 47–53.
- [13] A.S. Mashhour, I.A. Hasanein, S.N. El-Deeb, α-continuous and α-open mappings, Acta Math Hung. 41 (1983) 213–218.
 https://doi.org/10.1007/bf01961309.
- [14] A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt. 53 (1982), 47–53. https://cir.nii.ac.jp/crid/1573950400472990592.
- [15] T. Noiri, Almost α -continuous functions, Kyungpook Math. J. 28 (1988), 71–77.
- [16] T. Noiri, On α -continuous functions, Časopis Pěst. Mat. 109 (1984), 118–126. http://dml.cz/dmlcz/108508.
- [17] V. Popa, T. Noiri, On β -continuous functions, Real Anal. Exchange. 18 (1992/93), 544–548.
- [18] C. Viriyapong and C. Boonpok, (Λ, sp) -continuous functions, WSEAS Trans. Math. 21 (2022), 380–385.
- [19] C. Viriyapong, C. Boonpok, (τ₁, τ₂)α-continuity for multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/ 10.1155/2020/6285763.