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AssTRACT. In this article, we provide some new multidimensional nonlinear integral inequalities of Volterra-
Fredholm type with delay. By adopting novel analysis techniques, the upper bounds of the unknown
functions are given. Our main results can be applied to the research of boundedness, and uniqueness of
solutions of a class of Volterra-Fredholm type integral equations of several variables. An application is
given to show the validity of our established inequalities.
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1. INTRODUCTION

The fundamental integral inequality of Gronwall [8] and its generalizations contribute significantly
to the study of existence, uniqueness, boundedness, oscillation, stability, and other qualitative properties
of solutions of differential and integral equations. Over the last decades, many authors have given
several significant extensions and developments to the forms of classical integral inequalities [1-3,5,10].
Recently, many researchers have been interested in giving new integral inequalities with delay of the
Volterra-Fredholm type [4,7,11,14].

Pachpatte [ 13] has discussed the following linear retarded integral inequality of Volterra-Fredholm

type in two variables

v(x)  rAW) V(M) rA(N)
u(z,y) < c—|—/ / a(z,y, s, t)u(s,t)dtds —I—/ / b(x,y, s, t)u(s,t)dtds. (1)
v(@o0) J Myo) v(@o) /Ayo)
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In [12], Ma and Pecari¢ proved the nonlinear retarded Volterra-Fredholm integral inequality in two
variables as follows

@ AW .
wwy) < k4 L :xo) A (yj) o1(5,4) [f(s,t)w (u(s,1)) + /7 N /A e (u(T,.g))dng] dtds

AN) s t
/ (w0) /A(yo) [ (1) (U(S’t))Jr/w(mo) /A(x0)02(7’£)w (“(7’5))‘@7] dtds(2)

Kendre et al. in [9] established the following nonlinear integral inequality

/ F(t, s) ds+/b (t, s)uP(s)ds. (3)

The following Volterra-Fredholm integral inequality with delay, proved by El-Deeb and Ahmed [6].

v(t) b
WP (t) < c(t) +/0 ki(t, s)w(s)ds +/ ka(t, s)wP(s)ds. (4)

In some problems, it is desirable to establish some new integral inequalities of the above type in
more general cases, in order to achieve a diversity of desired goals. In this paper, motivated by the
above results, we discuss a class of useful retarded integral inequalities of Volterra-Fredholm type in
several variables. The upper bound estimation of the unknown function is given by some integral
inequality techniques. Finally, we propose an application of our results to study the boundedness of

solutions of multidimensional Volterra-Fredholm integral equations with delay.

2. MAIN RESULTS

Throughout this article, let the following notations: J = [2°,T] = J; x Jo x ... x J,, where J; =
[x?,Ti] vi=1,..,n,and 20 = (:L'(l),... :L'O) ,T7 = (T1,....,T,) € R", A = {(a:,s) cJ?:20<s<x< T}.

) n
If x = (z1,...,2p) and y = (v1, ..., yn) belong to R", we write x < y (z < y) if and only if z; < y;

L= (22,....2p), (2")! = (a9, ...,29), and

(v; <yi),i=1,..,n. Weputz = (x1,2'), where x
® Dz‘ = Bimi’i = 1,...,TL,

o dx!' =dx,...dxs,

;‘0 ds - ;E(l)l fﬁ)ﬂ d31 f f(xo)l . ..d51d81,
° fo?é((zxo)) ...ds = f;l((jl)) fan((zﬂi)”) .dsn...dSL

In what follows, we give some new generalizations of the multidimentional Volterra-Fredholm type

integral inequalities.

Theorem 2.1. Let u € C (J,Ry), and f,g,a € C(A,Ry) be nondecreasing functions in x for each s €
Jy(z) = (71(21), oy () € CL(J, ), where v; € C*(J;,J;) be nondecreasing functions on J;, with
vi(zi) < i, i =1,...,n. Let w € C(R4,Ry) be nondecreasing with w(u) > 0, for u > 0, and

v ds
F(v):/v0 m,vzvo>O,F(+oo):+oo, (5)
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(T)
Hy(u) =u— /( 0 g(z,s)F~ ! {F (u) + go(s)} ds — uyp, (6)
y(z

where p(z) = fj((;o)) a(z, s) [1 + fj(xo) f(S,T)dT:| ds, Hy is increasing for u > g and Hy(u) = 0 has a
solution c for u > wy, then. If u(x) satisfies

v()

wu@) < uo+ / oz, s)

u(s) + /: } f(S,T)u(T)dT] ds

(T)
+ / " gl solu(s))ds. %
i

(z°)
for x € J, where ug > 0 is a constant, then
V(@) s
F(c)+ / a(z,s) |1+ / f(s,m)dr|ds| |, (8)
2l v(=0)
for x € J, where F~ and Hy " are the inverse functions of F and H), respectively.

u(z) <w ! <F1
(z°)

Proof. Letup > 0and X = (X7, ..., X,,) € J fixed, then for << X<T,let

v(z)
z(x) = uo—l—/ a(X,s)
V(@)

u(s) + /y(mo) f(S,T)u(T)dT] ds

v(T)
X, s)w(u(s))ds.
v [, o sputs)

It is obvious to see that z(z) is a positive and nondecreasing function on J, so we have

u(e) < w ™ (2(2) ©)
and .
DiDux(@) £ 7 @alX, 1@ GO [1+ [ f(w,T)dT] ,
then .
D;...Dpz(x) (a . e 2 P\dr
ity ST @aae) 1+ [ )d],
or

D1...Dn_1z(x) V(@) . 7)dT
D, (w_l(zm) 1+ A L [ ] (10)

Fixing z1, ..., x,,—1, setting z,, = s, then the integration of (10) with respect to s,, from 20 to z,, gives

Dl...Dn,12($) < /'yn(:rn)
wH(z(x)) Yn(20)

) < ¥ (@)a(X.(x))

CL(X, ’Yl(ﬂfl)a ""7771—1(3371,—1)7 Sn) X

Y1 (1) Sn
1 +/ / f(X,m, ....,Tn)dTn] Yi(@1) X oo X Yy (T—1)dSp.
8! 8!

1(29) n(z9)
Using the same method above, we obtain

v2(22) Y (2n)
Di2(z) < / / a(X,y1(21), 82, +ery Sn) X
gt g

w(2(z)) 2(29) n(29)
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m(z1) 2 sn
1+/ / / F(X, 71y ey mo)dmn | Yy (21)ds". (11)
=) @) Jm(af)

Keeping 2! = (22, ..., ,,) fixed, replacing z; by s; then the integration of (11) with respect to s; from

29 to z1, gives

V(@) s
F(2(z)) < F (2(29,2")) +/ a(X,s) |1 +/ f(s,7)dr| ds,
v(20) i v(20) |
then we get
() [ s 1
2(z) < F7F (2(2f,2")) +/ a(X,s) |1 +/ f(s,7)dr ds] . (12)
¥(z9) i v(z9) ]

From (9) and (12), we obtain

v(z

u(z) < w {F_l

)
a(X,s)
)

1+ A(wo) f(S,T)dT] ds] } . (13)

(1)
saat) =uo+ [ g s)ululs))ds. (14)
Y

In addition, we have

Using (13) in (14), we obtain

y(T)
z(a:?,xl) < up +/ 9(X, S)F_1
v(20)

v(s)
F(z(:z?,a:l)) +/ a(X,0)
gl (=)

1+ /0 f(H,T)dT] d9] ds.
gl

Since X is chosen arbitrarily, we have

(T)
z(x?,ml) —ug — /7 g(x,s)F~! [F (z(x(l), xl)) + (p(s)] ds < 0. (15)
7(z%)

From (15) and the definition of H;, we get
H,y (z($(1),x1)) < 0= Hi(c).
Since H is increasing, then the above inequality gives
2(2f,2!) <e. (16)

From (16), (13), and the fact that X is chosen arbitrarily, we get the result (8).

For ug = 0, we repeat the same procedure above replacing ug by € > 0 and finally let ¢ — 0. 0

Remark 2.2. For w(u) = uP,p > 1,v(z) = z and x' = (2, ..., z,,) fixed, Theorem 2.1 reduces to Theorem 2.5
in [9]. Also for w(u) = uP,p > 1, v(z) =z, f = 0 and z* = (x2, ..., x,) fixed, inequality (7) in Theorem 2.1

reduces to (3).

Remark 2.3. For w(u) = uP,p > 1, f =0, and z' = (x9, ..., v,,) fixed, inequality (7) in Theorem 2.1 reduces
to (4).
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w1 (w)

Theorem 2.4. Let u(x), f(x),g(x),a(x) € C(J,Ry) and ~y is defined as in Theorem 2.1. Let w, ~—— €

C(Ry,Ry) are nondecreasing with w(u) > 0, for u > 0, and

[V ugexp(s)ds 0> 50) = +oo
Gl = [ AR 0> > 0. Gleo0) =+ a7)
If u(z) satisfies
+(@) . (1)
w (u(x)) < uo + /7 ) [ut) + L L f /7 » g(T)w(u(T))dT] ds,  (18)

for x € I, where ug > 0 is a constant, then

V(z) s
wz) <w  ugexp | G |G(B(z a(s) |1 T)dT | ds , 19
() < {o p< (B@)+ [ | a +Lwﬁ<>] ])} (19)
for x € I, where
() Y(T)
B(x) = a(s T)dT | ds. 20
(x) Aw>“<£wﬂ()> (20)

Proof. Let ug > 0, and

¥(T)

u(s) + L(IO) f(Du(r)dr + [y(wo) g(T)w(u(T))dT] ds,

V(@)
z(z) = uo + / a(s)
(=)

where z(x) is a positive and nondecreasing function on J, so we have
{U(l’) <w ™ (2(2))

z(m?,xl) = ug,

and
() (T)
Di.Dysle) < wmmwm»!fwawm»+/’ S G+ [ mﬂaﬂm]
~(x0) y(x0)
() a(T)
< v%wﬁwvcw)[w‘1@0ﬂxb)+l/ f@ﬁw—1@0ﬂ>df+wdv@»>/" gCﬂdT]
~(x0) 7(x0)
, W @) | W e () D
gv@mmmmwm[ oot o O m+Awﬂmm]
or

z(z) z(vy(z) (a0) (1) (@)
then
Dy...D,_12(7) (Dl w(z(v(2))) (@) Tw—l(z(T)) i A1) g
Q«“ﬂ>§M)«ﬂ»[lmM)+ij()zﬁ)6i+ﬁwg”dl

(21)
Fixing x1, ..., x,—1, setting =, = s, then the integration of (21) with respect to s,, from :c?l to x,, gives

Dy...Dy—12(x) < /%(”””)
z(x) @)

w (1), s Y1 (Tn-1), 5n))
2(v1(x1)y ooy Y1 (Tn—1), Sn)

0 (11 (21), eoes Yoot (@) ) [
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1 (1) Sn -1 Y (T)
+/ / f(T)w(Z(T))dT—f-/ g(T)dT] X
v@9)  Jy(ad) 2(7) ~(29)

Vi(m1) X oo X ALy (T—1)dSnp.

After (n — 1) steps, we find

g Y

2(23) (x9) z(v1(x1), 820y Sn)

T Lette et

Keeping 2! = (22, ..., z,,) fixed in (22), replacing z1 by s1, then the integration of (22) with respect to

s1 from 9 to z1, gives

1 <u0 > S/7(900) ()[ Z(S) +[y(zo)f() Z(T) d +/7(5E0) g( )d ds.

Using (20), and since B(x) is nondecreasing so the last inequality can be can be restated as follows

()< [ et

for x < X < T. Define a function v(x) on J by

B () wl (z(s)) s wl (2(7'))
M@_wa®[wﬂ+ﬁwﬂﬂdﬂm

then, v(z) is positive and nondecreasing and

ds+ B(X),

ds + B(X),

z(z) < ugexp (v(z)), (23)

wl (uo exp (v(y(m))))

ug exp (v(v(x)))
ugexp (v(zx)) Di...Dpv(x) ()
w™ (ugexp (v(x))) 1+ [{(xo) f(T)dT] :

let’s integrate the above inequality from z to z; (i = 2, .., n), after (n — 1) steps, we obtain

ug exp (v(z))D1v(z) </72(x2) /”’"(”C") 1+/v1(x1)/ /
- v Y Y1 a:l 72(:v2) 'yn(:to

wl (uo exp (v(x))) 2(29) n(25)
(24)

IN
\Q\
S
S
—~
=
8

or

<7 (z)a(y(2))

(m1(z1), 8
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Keeping 2! = (22, ..., z,,) fixed in (24), replacing x1 by s and then integrating with respect to s; from

29 to z1, we obtain

(z) Sn
G (v(x)) <G(B(X))+ /’Y a(s) |1 +/ f(rydr| ds,
gl

v(x0) (=)

therfore, we have

v(2) Sn ]
G(B(X))+/ a(s) 1+/ f(r)dr ds].

v(20) (=)

v(z) < G!

Since X is chosen arbitrarily, and from (23) we have

()

G (B(z)) + / a(s)

z(z) < wugpexp (G_l
v(29)

1+ /V(J:O) f(T)dT] ds]) . (25)

Since u(z) < w™! (2(x)), then from (25), yields the result (19).

For up = 0, we repeat the same procedure above replacing uy by ¢ > 0 and finally let ¢ — 0. O

Remark 2.5. For w(u) = uP,p > 1,v(z) = z and x' = (v, ..., z,,) fixed, Theorem 2.4 reduces to Theorem 2.6

in [9].

Theorem 2.6. Let u € C (J,Ry),a,b € C(A,Ry) and a, b are nondecreasing in x for each s € J, either  is

defined as in Theorem 2.1. Let w, vl ¢ o (R4, Ry) be nondecreasing with w(u) > 0, for u > 0, and

u

F(v) = / WCZ),FQ(U) _ / f%,v > v > 0, Fy(+00) = Fy(+00) = +00, (26)

(T)

:

is increasing for u > wy. If u(zx) satisfies

b(x, 3)ds> , (27)

(z)
ue) < wot [ aleshlu(s)
Y

(z0) (z0)

u(s) + /S b(S,T)w(u(T))dT] ds
gl

¥(T)
+[y(x0) a(z, s)w(u(s))

for x € I, where ug > 0 is a constant, then

T) V(@) V(z)
YR F | H? / a(x,s)ds +/ b(z,s)ds +/ a(z,s)ds ||,
v(z0) ¥(0) ()

(29)

u(s) + /s b(s,T)w(u(T))dT] ds, (28)

u(z) < F!

for @ € I, where F{ ', Fy ' and H~" are the inverse functions of Fy, Fy and H, respectively.

Proof. Letug >0, X = (X1,...,X,,) € I fixed, and for 20 <z < X < T, we define a function z(z) by

z(x) = uo—i-/ a(X, s)w(u(s))
v

u(s) + /W(x()) b(s,T)w(u(T))dT] ds
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Y(T)
a(X, s)w(u(s
w [, asguts)

where z(x) is positive and nondecreasing, then

u(s) + /7(10) b(S,T)w(U(T))dT] ds,

u(x) < z(x), (30)
and
v(x)
D1..Dpz(z) < +(x)a(X,y(2))w(2(v(2)) [z(v(w)) +/ b(’r(iﬁ),T)w(z(T))dT]
()
v(z)
< A@a(X,v(@)w(z(v(z))) | 2(2) +/ b(éU,T)w(Z(T))dT]
¥(z0)
v(@)
< A(@)a(X, y(2)w(z(v(2))) Z($)+/ b(XaT)w(Z(T))dT]
7(z0)
< A @a(X,v(@)w(z(v(z)))x(2), (31)
where -
~y(z
z1(z) = z(x) + /ﬂwo) b(X, T)w(z(T))dT
Hence,
21(2°) = 2(29), z(x) < z1(x). (32)

Differentiating z; (=) and using (31) and (32) we get

Dy...Dyz() < o (@)a( X, v (@)1 (1(2))21 () + 7 (@)b(X, 7 (@) (21 (1(2))-
So
D1 ...Dnzl (.’E)

z1()
then

D (DB )l 0) ) [ (0o )1 (01 (20,20 0)

+b(X7 ’Yl(Il), '--a'Yn(xn

))w(zl(%(fﬁl)a-~-a7n($n)))] ) (33)

21(x1,y ooy )
Fixing z1, ..., 1, setting =, = s, and the integration of (33) with respect to s,, from x% to x,, gives

Dl...Dn_lzl(x) < /
o

z1(x)

n(2n)
! [a(X, V(1) oens Yn—1(Tn-1), sn)w (21 (71 (1), --ovs Yn—1(Tn-1), Sn))

n(73)

+ b(X, '71(5(51), ..... ’Yn—l(xn—l)v Sn)w(zl(71($1)7 """ ’Yn—l(xn—l)a Sn)):| %

Zl(x17 vy Tn—1, Sn)

Yi(@1) X oo X Y1 (T—1)dSn.

Using the same method above, we obtain (after n — 1 steps)

D v2(%2) Yn(Tn)
121(:6) S / / |:a(X771($1)7527"'78n)w (21 (’71(]:1)7327"‘7871))
z1(z) 2@ Sl
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B (1), 52, oy 5 L@, 82, S"))] J(21)ds. (34)

21(.7}1, 892,y -0y Sn)
Keeping z! = (z2, ..., z,,) fixed in (34), replacing z; by s; then the integration with respect to s; from
29 to 71, gives

()

In (z1(2)) < In (21 (29, 2)) + / [a(X, s)w (21 (s)) + b(X, s)w(zl(s))} ds. (35)

+(a0) z1(s)

Define a positive and nondecreasing function z;(z) by the right-hand side of (35), then
22(1'(1),33‘1) =In (Zl(x?vxl)) ) Zl(x) < exp (22($)) (36)

Differentiating z(z) and using (36) we have

DieDya(e) = (e) falXo(o))e (1 (20) 48X, r () “EHED)
< 7(x) [a(X,'y(w))W(exp (22(7(2)))) +b(X,v(x))“if;p(ii%;i))]
< V@2 2EOD [k ) exp (a2 () + HCX ()] (@)
= O e Gty 1 ]

w(z)

since w, = are nondecreasing functions. From (37), we have
o oD Dun(0) 1) ) exp ((a0) + X))
w (exp (22(90)))
then
exp (22 (x))Dl...D,L_122 (z)
D, ( w(eXp(Zz(iC))b’Lg) ) < [a(X771(x1)7--w’Yn(l‘n))eXp (22(')/(1'))) +b(Xﬂ71(Il)77’7n(xn))i|

(@) X o X Yy (),

Fixing z1, ..., x,,—1, setting x,, = s,, then the integration of the above inequality from 20 to z,, gives

exp (22(x))D1...Dp—122(x) n(@n)
@ (exp(z2()) = /MW

b(X,v1(21), -, Yn—1(Tn—-1), Sn) 71(1’1) X X '7;1—1($n71)d5n-

[G(Xv 71 (xl)a "'777171(:1:7171), Sn) eXp 22($) +

After n — 1 steps, we get

exp z2(x) D1 22(x)

w (exp zo(x))

2 (z2) Yn (%)
/ / |:a(X7’}/1(ZL‘1),82,....,Sn)eXpZQ(’y(l'))+b<X,’}/1(.'L'1)7827....,Sn)i|
v v

X} (x1)ds".
Keeping z! = (22, ..., 7,,) fixed in the above inequality, replacing z; by s1, integrating with respect to s;
from x(l) to 1 and from (26), we get
~(z)

b(X, s)ds +/ a(X, s)exp zo(s)ds
v(z°)

v()
Fy (expz(z)) < Fy (expzz(x(l),xl)) +/( 0
’Y xT
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v(X1) v(z)
b(X,s)ds + / a(X,s)expza(s)ds,  (38)

< Fifopaia) - [
v(z0)

v(x0)
for z° < z < X; < T, where Xj is arbitrary.
Define a positive and nondecreasing function z3(z) by the right-hand side of (38). Then
0 .1 0 .1 1) ~1
z3(zy, ) = F1<6XP (22(2d, 2 ))) +/( 3 b(X,s)ds, exp (z2(x)) < Fy ' (23(2)). (39)
y(x

We know that differentiating z3(z) and using (39), we deduce that

Dy...Dpzs(x) = 7 ()a(X,7(z)) exp (22(7(2)))

< A (x)a(X,v(2)) exp (22(2))
< A (@)a(X, y(x) Fy ! (23(x),
then
D1...DnZ3(:c) ’ 2a T
Ty S @A)
and

D <D1...Dn_123(.%')
n —1
Fy {zs(a)}
The integration of the above inequality from z9) to z,,, gives

Dl...Dn_123($) </W”(x")
Fr ' {z3(2)} Y (@9)

After (n — 1) steps, we obtain

D Z €T 72(502) FYTL('Z,")
_1173() </ / a(X,v1(21), 82, ..., 80)7 (21)dst.
Fy {z3(2)} v2(z9) Yn(29)

Keeping ! = (22, ..., z,,) fixed in the above inequality, replacing x1 by s, integrating with respect to s

) < A (1) X oo X Ap(20)a(X A1 (21)s s )

CL(X, 71(901% -'-a7n71($n71)a5n)'71(1'1) X X %-1($n71)d«9n-

from 29 to 1, and using (26), we obtain
0 1 ¥(z)
Fy (23(2)) < Fy (23(2f, 2")) +/ a(X, s)ds,
v(20)

then

Then from (30), (32), (36), (39) and (40) we have

[ v(z)
u(r) < F7U|Fy? (Fg (Z3(33(1),331)) +/( 0 a(X, s)ds)]

[ (x1) (@)
= Ffl F{l (FQ <F1 (exp (2’2(:6(1)7331))) + /7 b(X, S)dS) + /7 a(X, s)ds)]
L v Y

(0)
7(X1)

r v(2)
= F'E! (FQ <F1 (21(a,2")) —l—/( ; b(X, 3)d5’> +/( 0 a(X, 3)d3>]
i y(z yz

a(X, s)ds) . (40)
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v(X1) V(x)
FyU B By (2(2, 2h)) -l—/ b(X,s)ds —l—/ a(X,s)ds || .
7(z0) (z0)

Since X € J is arbitrary, so we get

— Ffl

u(z) < Fyt | Fyt (Fg <F1 (2(29,2%)) + A :Z)) b(X, s)ds> - /7 2:)) a(X, s)ds)] . (41)
Since
22(af, x%) — up = ug + 2 /W(OT) a(X, s)w(u(s)) |u(s) + / (s, T)w(u(T))dT] ds = z(T),
7(20) 7(20)

and from (41), we have

22(xy,2') —ug = 2(T) < F*

y(T) y(T)
YRR (z(x?,xl))Jr/ b(X,s)ds +/ a(X,s)ds || .
v(z9) ¥(z9)

Hence

(T) (T)
Py (22(30(1),301) —up) < Fyt (Fg <F1 (z(ac(l),xl)) + /7 b(X, s)ds) +/ a(X, s)ds) ,

SO

and

Since H is increasing, we have

(T)
2(29, Yy < H! (/ a(X, s)ds) (42)
v(=0)

Since X € J is chosen arbitrary, so substituting (42) into (41), we get the estimate (29).

For up = 0, we repeat the same procedure above replacing uy by ¢ > 0 and finally let ¢ — 0. O

Remark 2.7. For b = 0, w(u) = 11 and 2% = (x3, ..., z,,) fixed, inequality (28) in Theorem 2.6 reduces to
inequality (1).

Remark 2.8. When the known function o1 (s, t) in (2) is replaced by a(x, s)w(u(s)), and for x* = (z3, ..., Ty
fixed, the bound for u(x) in (28) reduces to (2).
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3. APPLICATION

This section suggests an application of our results to study the boundedness of the solutions of

certain multidimensional Volterra-Fredholm integral equations with delay of the form

x(z) = XO"‘/E:A|:$,S,X(S—)\(S)),/SB(S,T,X(T—)\(T)))dT] ds

lEO
T S
—l—/ A [m,s,x(s—)\(s)),/ B(S7T,X(T—)\(T)))d7':| ds, (43)
0 20
where x € C(J,R), A € C(A x RER),B € C(A x RR),J = [2°T] c R*, A =

{(z,s) e J?:2"<s<2<T} C R"and A € C'(J,J) is nondecreasing on J such that A\(z) =
AL (1) ooy An(Tn)) w5 — Ni(21) > 0,0 () < 1, and \(2?) = 0, fori = 1,...,n,2 = (21, ..., 7),2° =
(x(l), ...,x%) e R".

In the following, we give the estimate of the unknown function y in the multidimensional Volterra-

Fredholm integral equation (43).

Theorem 3.1. Suppose that the functions A, B in (43) satisfy the conditions

Az, 5, 2,9)| < alz, s)w (|2]) [12] + 1yl ], (44)
|B(s,T,z)| <b(s,7)w(|2]), (45)
where a, b are as in Theorem 2.6.
Let M = My x ... x M,,, where
1
M; =max————,i=1,...n (46)

and v(x) = z — AN(x) € CY(J, J) is increasing on J, and v(z) < . Assume that the function
(T)

H*(u) = Fa(F1 (2u — |xol) ) — F2 (Fl(u) + o)

M b(x, ’7_1(8))618) , (47)

is increasing for u > |xol. If x is a solution of (43) on J, then

( (z
Fy! (Fz <F1 (H*—l < ( OT))M a(x,v*(s))ds)) + / ((OjM b(m‘l(s»ds)

()
M a(z,v (s))ds | |, 48
v [, Mates o) )] (48)

x(@)] < F'

where 'y, Fy, F| Y and F2_1 are as in theorem 2.6.

Proof. From the conditions (44), (45), and the equation (43), we can obtain the inequality

@)l < ol + [t s =MD [l =M+ [ 865, (7 = Al | ds
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using the change of variables v(z) = = — A(z), and (46), then the last inequality can be restated as

follows
K@) <l + a0 [0+ [ b m(x ) s ds
T s
+ [ ate (KON [N+ [ b, ) ar | s
" a(z,y(s))w s S ) 5,7 H(T))w T T| ds
< Dol [ Mae s @)l [+ [ Mbte s @ ar | d
(1) s
v [ e @) @) X+ M e ] s, )
for z € J. Now, we can obtain the bound on the solution x(xz) given in (48) by applying Theorem 2.6
to (49). O
ConcrusioN

In this paper, we established some new multidimensional retarded integral inequalities of Volterra-
Fredholm type in Theorem 2.1, Theorem 2.4, Theorem 2.6, which generalize some results given in
[6],[9], [12], [13]. Using novel analysis techniques, the bounds of the unknown functions are given
explicitly. These results can be used in the analysis of the qualitative properties to solutions of Volterra-
Fredholm integral equations in n independent variables. An application of our results is given to study
the boundedness of the solutions of some multidimensional Volterra-Fredholm integral equations with

delay.
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