

ISHIKAWA ITERATIVE PROCESS FOR TWO NONLINEAR MAPPING IN CAT(0) SPACES

KRITSANA SOKHUMA

Department of Mathematics, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok 10220, Thailand k_sokhuma@yahoo.co.th

Received Jan. 1, 2024

ABSTRACT. In this paper, we construct an iteration scheme involving a hybrid pair of the asymptotically nonexpansive mapping t and the Suzuki generalized multi-valued nonexpansive mappings T of a complete CAT(0) spaces. In process, we remove a restricted condition (called end-point condition) in Akkasriworn and Sokhuma's results [12] and utilize the same to prove some convergence theorems. This results we obtain are analogs of CAT(0) spaces results of Sokhuma and Sokhuma [10].

2020 Mathematics Subject Classification. 47H04; 49J53.

Key words and phrases. Ishikawa iteration; CAT(0) spaces; multi-valued mapping; asymptotically nonexpansive mapping; Suzuki generalized nonexpansive mapping.

1. INTRODUCTION

Fixed point theory in a CAT(0) space was first studied by Kirk [18], [19]. He showed that every nonexpansive mapping defined on a bounded closed convex subset of a complete CAT(0) space always has a fixed point. Since then the existence problem of fixed point and the \triangle - convergence problem of iterative sequences to a fixed point for nonexpansive mappings, asymptotically nonexpansive mappings in a CAT(0) space have been rapidly developed and many papers have appeared.

Let (X, d) be a geodesic metric space. We denote by FB(K) the collection of all nonempty closed bounded subsets of X, KC(K) the collection of all nonempty compact convex subsets of X. A subset K of X is called proximinal if for each $x \in X$, there exists an element $k \in K$ such that

$$d(x,k) = \operatorname{dist}(x,K) = \inf\{d(x,y) : y \in K\}.$$

We shall denote by PB(K), the collection of all nonempty bounded proximinal subsets of *K*.

DOI: 10.28924/APJM/11-25

Let *H* be the Hausdorff metric with respect to *d*, that is,

$$H(A,B) = \max\{ \sup_{x \in A} \operatorname{dist}(x,B), \sup_{y \in B} \operatorname{dist}(y,A) \}, \ A,B \in FB(X),$$

where $dist(x, B) = inf\{d(x, y) : y \in B\}$ is the distance from the point x to the subset B.

A mapping $t : K \to K$ is said to be *nonexpansive* if

$$d(tx, ty) \le d(x, y)$$
 for all $x, y \in K$.

A point *x* is called a fixed point of *t* if tx = x.

A mapping $t : K \to K$ is called asymptotically nonexpansive if there is a sequence $\{k_n\}$ of positive numbers with the property $\lim_{n\to\infty} k_n = 1$ such that

$$d(t^n x, t^n y) \le k_n d(x, y)$$
 for all $n \ge 1, x, y \in K$.

A multi-valued mapping $T: K \to FB(K)$ is said to be *nonexpansive* if

$$H(Tx, Ty) \le d(x, y)$$
 for all $x, y \in K$.

In 2010, Abkar and Eslamian [1] mentioned the Suzuki generalized multi-valued nonexpansive mapping as follows:

A multi-valued mapping $T : K \to FB(K)$ is said to be a *Suzuki generalized multi-valued nonexpansive* mapping if

$$\frac{1}{2}\text{dist}(x,Tx) \le d(x,y) \Rightarrow H(Tx,Ty) \le d(x,y) \text{ for all } x,y \in K.$$

Let $T: K \to PB(K)$ be a multi-valued mapping and define the mapping P_T for each x by

$$P_T(x) := \{ y \in Tx : d(x, y) = \text{dist}(x, Tx) \}.$$

A point *x* is called a fixed point for a multi-valued mapping *T* if $x \in Tx$.

We say that I - T is strongly demiclosed if for every sequence $\{x_n\}$ in K which converges to $x \in K$ and such that $\lim_{n\to\infty} d(x_n, Tx_n) = 0$, we have $x \in T(x)$.

We note that for every continuous mapping $T : K \to 2^K$, I - T is strongly demiclosed but the converse is not true. Notice also that if T satisfies condition (*E*), then I - T is strongly demiclosed.

We use the notation Fix(T) stands for the set of fixed points of a mapping T and $Fix(t) \cap Fix(T)$ stands for the set of common fixed points of t and T. Precisely, a point x is called a common fixed point of t and T if $x = tx \in Tx$.

In 2009, Laokul and Panyanak [15] defined the iterative and proved the \triangle -converges for nonexpansive mapping in CAT(0) spaces as follows:

Let *C* be a nonempty closed convex subset of a complete CAT(0) space and $t : C \to C$ be a nonexpansive mapping with $Fix(t) := \{x \in C : tx = x\} \neq \emptyset$. Suppose $\{x_n\}$ is generated iteratively by $x_1 \in C$,

$$y_n = \beta_n x_n \oplus (1 - \beta_n) x_n,$$
$$x_{n+1} = \alpha_n t y_n \oplus (1 - \alpha_n) x_n,$$

for all $n \in \mathbb{N}$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in [0, 1] such that one of the following two conditions is satisfied:

(i) $\alpha_n \in [a, b]$ and $\beta_n \in [0, b]$ for some a, b with $0 < a \le b < 1$,

(ii) $\alpha_n \in [a, 1]$ and $\beta_n \in [a, b]$ for some a, b with $0 < a \le b < 1$.

Then the sequence $\{x_n\} \triangle$ -converges to a fixed point of *t*.

In 2010, Sokhuma and Kaewkhao [9] proved the convergence theorem for a common fixed point in Banach spaces as follow:

Let *E* be a nonempty compact convex subset of a uniformly convex Banach space *X*, and $t : E \to E$ and $T : E \to KC(E)$ be a single valued nonexpansive mapping and a multi-valued nonexpansive mapping, respectively. Assume in addition that $Fix(t) \cap Fix(T) \neq \emptyset$ and $Tw = \{w\}$ for all $w \in$ $Fix(t) \cap Fix(T)$. Suppose $\{x_n\}$ is generated iterative by $x_1 \in E$,

$$y_n = (1 - \beta_n)x_n + \beta_n z_n,$$
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n ty_n,$$

for all $n \in \mathbb{N}$ where $z_n \in Tx_n$ and $\{\alpha_n\}$, $\{\beta_n\}$ are sequences of positive numbers satisfying $0 < a \le \alpha_n, \beta_n \le b < 1$. Then the sequence $\{x_n\}$ converges strongly to a common fixed point of t and T.

In 2013, Sokhuma [8] proved the convergence theorem for a common fixed point in CAT(0) spaces as follow:

Let *K* be a nonempty compact convex subset of a complete CAT(0) space *X*, and $t : K \to K$ and $T : K \to FC(K)$ a single valued nonexpansive mapping and a multi-valued nonexpansive mapping, respectively, and $Fix(t) \cap Fix(T) \neq \emptyset$ satisfying $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$. Let $\{x_n\}$ is generated iterative by $x_1 \in K$,

$$y_n = (1 - \beta_n) x_n \oplus \beta_n z_n,$$
$$x_{n+1} = (1 - \alpha_n) x_n \oplus \alpha_n t^n y_n,$$

for all $n \in \mathbb{N}$ where $z_n \in Tx_n$ and $\{\alpha_n\}$, $\{\beta_n\}$ are sequences of positive numbers satisfying $0 < a \le \alpha_n$, $\beta_n \le b < 1$. Then the sequence $\{x_n\}$ converges strongly to a common fixed point of t and T.

In 2013, Laowang and Panyanak proved the convergence theorem for a common fixed point in CAT(0) spaces as follow:

Corollary 1.1. [20] Let C be a nonempty bounded closed convex subset of a complete CAT(0) spaces X. Let $f: C \to C$ be a pointwise asymtotically nonexpansive mapping, and $g: C \to C$ a quasi-nonexpansive mapping,

and let $T : C \to KC(C)$ be a multi-valued mapping satisfying conditions (E) and C_{λ} for some $\lambda \in (0, 1)$. If f, g and T are pairwise commuting, then there exists a point $z \in C$ such that $z = f(z) = g(z) \in T(z)$.

In 2015, Akkasriworn and Sokhuma [12] proved the convergence theorem for a common fixed point in a complete CAT(0) spaces as follow:

Theorem 1.2. Let E be a nonempty bounded closed convex subset of a complete CAT(0) space $X, t : E \to E$ and $T : E \to FB(E)$ an asymptotically nonexpansive mapping and a multi-valued nonexpansive mapping, respectively. Assume that t and T are commuting and $Fix(t) \cap Fix(T) \neq \emptyset$ satisfying $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$ and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of the modified Ishikawa iterates defined by

$$y_n = (1 - \beta_n) x_n \oplus \beta_n z_n,$$
$$x_{n+1} = (1 - \alpha_n) x_n \oplus \alpha_n t^n y_n,$$

for all $n \in \mathbb{N}$ where $z_n \in T(t^n x_n)$ and $\{\alpha_n\}, \{\beta_n\} \in [0, 1]$. Then $\{x_n\} \triangle$ -converges to a common fixed point of t and T.

In 2016, Uddin and Imdad [7] introduce the following iteration scheme:

Let *K* be a nonempty closed, bounded and convex subset of Banach space *X*, let $t : K \to K$ be a single valued nonexpansive mapping and let $T : K \to CB(K)$ be a multi-valued nonexpansive mapping with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is a nonexpansive mapping. The sequence $\{x_n\}$ of the modified Ishikawa iteration is defined by

$$y_n = \alpha_n z_n + (1 - \alpha_n) x_n,$$
$$x_{n+1} = \beta_n t y_n + (1 - \beta_n) x_n,$$

where $x_0 \in K$, $z_n \in P_T(x_n)$ and $0 < a \le \alpha_n$, $\beta_n \le b < 1$. Then $\{x_n\}$ converges strongly to a common fixed point of t and T.

In 2022, Sokhuma and Sokhuma [10] proved the convergence theorem for two nonlinear mappings in CAT(0) spaces as follows:

Let *K* be a nonempty closed, bounded and convex subset of CAT(0) space *X*, let $t : K \to K$ and $T : K \to PB(K)$ be a Suzuki generalized nonexpansive single valued and multi-valued mapping, respectively with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is a nonexpansive mapping. The sequence $\{x_n\}$ of the modified Ishikawa iteration is defined by

$$y_n = (1 - \beta_n) x_n \oplus \beta_n z_n,$$
$$x_{n+1} = (1 - \alpha_n) x_n \oplus \alpha_n t y_n,$$

for all $n \in \mathbb{N}$, where $z_n \in P_T(tx_n)$ and $\{\alpha_n\}, \{\beta_n\} \in (0, 1)$.

The purpose of this paper is to study the iterative process, called the Ishikawa iteration method with respect to a pair of single valued asymptotically nonexpansive mapping and a Suzuki generalized multi-valued nonexpansive mapping. We also establish the convergence theorem of a sequence from such process in a nonempty bounded closed convex subset of a complete CAT(0) space. We remove a restricted condition (called end-point condition) in Akkasriworn and Sokhuma's results [12].

Now, we introduce an iteration method modifying the above ones and call it the Ishikawa iteration method.

Definition 1.3. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X, $t : K \to K$ be a single valued asymptotically nonexpansive mapping, and $T : K \to PB(K)$ be a Suzuki generalized multi-valued nonexpansive mapping and

$$P_T(x) = \{y \in Tx : d(x, y) = dist(x, Tx)\}.$$

For fixed $x_1 \in K$. The sequence $\{x_n\}$ of the Ishikawa iteration is defined by

$$\begin{cases} y_n = (1 - \beta_n) x_n \oplus \beta_n z_n, \\ x_{n+1} = (1 - \alpha_n) x_n \oplus \alpha_n t^n y_n, \end{cases}$$
(1)

for all $n \in \mathbb{N}$ where $z_n \in P_T(t^n x_n)$ and $\{\alpha_n\}, \{\beta_n\} \in (0, 1)$.

2. Preliminaries

With a view to make, our presentation self contained, we collect some relevant basic definitions, results and iterative methods which will be used frequently in the text later.

Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ is a map c from a closed interval $[0, s] \subset \mathbb{R}$ to X such that c(0) = x, c(s) = y, and d(c(t), c(u)) = |t - u| for all $t, u \in [0, s]$. In particular, c is an isometry and d(x, y) = s. The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique this geodesic segment is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x, y \in X$. A subset $Y \subseteq X$ is said to be convex if Y includes every geodesic segment joining any two of its points.

A geodesic triangle $\triangle(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of three points x_1, x_2, x_3 in X (the vertices of \triangle) and a geodesic segment between each pair of vertices (the edges of \triangle). A comparison triangle for the geodesic triangle $\triangle(x_1, x_2, x_3)$ in (X, d) is a triangle $\overline{\triangle}(x_1, x_2, x_3) :=$ $\triangle(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ in the Euclidean plane \mathbb{E}^2 such that $d_{\mathbb{E}^2}(\overline{x}_i, \overline{x}_j) = d(x_i, x_j)$ for $i, j \in \{1, 2, 3\}$.

A geodesic space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the following comparison axiom.

CAT(0): Let \triangle be a geodesic triangle in *X* and let $\overline{\triangle}$ be a comparison triangle for \triangle . Then \triangle is said to

satisfy the CAT(0) inequality if for all $x, y \in \triangle$ and all comparison points $\overline{x}, \overline{y} \in \overline{\triangle}, d(x, y) \leq d_{\mathbb{E}^2}(\overline{x}, \overline{y}).$

If x, y_1, y_2 are points in a CAT(0) space and if

$$y_0 = \frac{1}{2}y_1 \oplus \frac{1}{2}y_2$$

then the CAT(0) inequality implies that

$$d(x, y_0)^2 \le \frac{1}{2}d(x, y_1)^2 + \frac{1}{2}d(x, y_2)^2 - \frac{1}{4}d(y_1, y_2)^2.$$
(2)

This is the (CN) inequality of Bruhat and Tits [4]. In fact, a geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality [11].

The following results and methods deal with the concept of asymptotic centers. Let *K* be a nonempty closed convex subset of a CAT(0) space *X* and $\{x_n\}$ be a bounded sequence in *X*. For $x \in X$, define the asymptotic radius of $\{x_n\}$ at *x* as the number

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x_n, x).$$

Let

$$r \equiv r(K, \{x_n\}) := \inf \{r(x, \{x_n\}) : x \in K\}$$

and

$$A \equiv A(K, \{x_n\}) := \{x \in K : r(x, \{x_n\}) = r\}.$$

The number *r* and the set *A* are, respectively, called the asymptotic radius and asymptotic center of $\{x_n\}$ relative to *K*.

It is easy to know that if X is a complete CAT(0) spaces and K is a closed convex subset of X, then $A(K, \{x_n\})$ consists of exactly one point. A sequence $\{x_n\}$ in CAT(0) space X is said to be \triangle -convergent to $x \in X$ if x is the unique asymptotic center of every subsequence of $\{x_n\}$. A bounded sequence $\{x_n\}$ is said to be regular with respect to K if for every subsequence $\{x'_n\}$, we get

$$r(K, \{x_n\}) = r(K, \{x'_n\}).$$

We now give the definition of \triangle -convergence.

2

Definition 2.1.([19], [16]) A sequence $\{x_n\}$ in a CAT(0) space X is said to \triangle -converge to $x \in X$ is the unique asymptotic center of $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case we write $\triangle - \lim_n x_n = x$ and call x the \triangle -limit of $\{x_n\}$.

We now collect some elementary facts about CAT(0) spaces which will be used in the proofs of our main results. The following lemma can be found in ([19], [13], [14]).

Lemma 2.2.([19]) Every bounded sequence in a complete CAT(0) space has a \triangle -convergent subsequence. **Lemma 2.3.**([13]) If K is a closed convex subset of a complete CAT(0) space and if $\{x_n\}$ is a bounded sequence in K, then the asymptotic center of $\{x_n\}$ is in K. **Lemma 2.4.** [14] *Let* (X, d) *be a* CAT(0) *space.*

(*i*) For $x, y \in X$ and $u \in [0, 1]$, there exists a unique point $z \in [x, y]$ such that

$$d(x,z) = ud(x,y)$$
 and $d(y,z) = (1-u)d(x,y).$ (3)

We use the notation $(1 - u)x \oplus ty$ for the unique point *z* satisfying (3).

(*ii*) For $x, y, z \in X$ and $u \in [0, 1]$, we have

$$d((1-u)x \oplus uy, z) \le (1-u)d(x, z) + ud(y, z).$$

We now collect some basic properties of the Suzuki generalized nonexpansive mapping. Although the proofs follow the idea of the proofs in [22]. The following two propositions are very easy to verify.

Proposition 2.5. Let K be a nonempty subset of a CAT(0) space X and $t : K \to K$ be a nonexpansive mapping. Then t is a Suzuki generalized nonexpansive mapping.

Proposition 2.6. Let *K* be a nonempty subset of a CAT(0) space *X*. Suppose $t : K \to K$ is a Suzuki generalized nonexpansive mapping and has a fixed point. Then *t* is a quasi-nonexpansive mapping.

Proposition 2.7. Let K be a nonempty subset of a CAT(0) space X. Suppose $t : K \to K$ is a Suzuki generalized nonexpansive mapping. Then

$$d(x,ty) \le 3d(tx,x) + d(x,y)$$

holds for all $x, y \in K$ *.*

The existence of fixed points for generalized Suzuki nonexpansive mappings in CAT(0) spaces was proved by Nanjaras et al. [2] as the following result.

Theorem 2.8. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space X. Suppose $t: K \to K$ is a Suzuki generalized nonexpansive mappings. Then t has a fixed point in K.

Lemma 2.9. Let K be a closed and convex subset of a complete CAT(0) space X and let $t : K \to X$ be a generalized Suzuki nonexpansive mappings. Let $\{x_n\}$ be a bounded sequence in K such that $\lim_{n\to\infty} d(tx_n, x_n) = 0$ and $\Delta - \lim_{n\to\infty} x_n = w$. Then tw = w.

The existence of fixed points for asymptotically nonexpansive mappings in CAT(0) spaces was proved by Kirk [17] as the following result.

Theorem 2.10. Let K be a nonempty bounded closed and convex subset of a complete CAT(0) space X and let $t: K \to K$ be asymptotically nonexpansive. Then t has a fixed point.

Theorem 2.11.([3]) Let X be a complete CAT(0) space and K be a nonempty bounded closed and convex subset of X and $t : K \to K$ be an asymptotically nonexpansive mapping. Then I - t is demiclosed at 0.

Corollary 2.12.([14]) Let K be a closed and convex subset of a complete CAT(0) space X and let $t : K \to X$ be an asymptotically nonexpansive mapping. Let $\{x_n\}$ be a bounded sequence in K such that $\lim_{n\to\infty} d(tx_n, x_n) = 0$ and $\triangle -\lim_{n\to\infty} x_n = w$. Then tw = w. **Lemma 2.13.**([21]) Let X be a complete CAT(0) space and let $x \in X$. Suppose $\{\alpha_n\}$ is a sequence in [a, b] for some $a, b \in (0, 1)$ and $\{x_n\}, \{y_n\}$ are sequences in X such that $\limsup_{n \to \infty} d(x_n, x) \leq r, \limsup_{n \to \infty} d(y_n, x) \leq r$, and $\lim_{n \to \infty} d((1 - \alpha_n)x_n \oplus \alpha_n y_n, x) = r$ for some $r \geq 0$. Then $\lim_{n \to \infty} d(x_n, y_n) = 0$.

The following fact is well-known.

Lemma 2.14. Let X be a CAT(0) space and K be a nonempty compact convex subset of X and $\{x_n\}$ be the sequence in K. Then,

$$dist(y, Ty) \le d(y, x_n) + dist(x_n, Tx_n) + H(Tx_n, Ty)$$

where $y \in K$ and T be a multi-valued mapping from K in to FB(K).

The important property can be found in [5].

Lemma 2.15. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of nonnegative numbers such that

$$a_{n+1} \le (1+b_n)a_n,$$

for all $n \ge 1$. If $\sum_{n=1}^{\infty} b_n$ converges, then $\lim_{n\to\infty} a_n$ exists. In particular, if there is a subsequence of $\{a_n\}$ which converges to 0 then $\lim_{n\to\infty} a_n = 0$.

3. MAIN RESULTS

We first prove the following lemmas, which play very important roles in this section.

Lemma 3.1. Let $T : K \to PB(K)$ be a multi-valued mapping and

 $P_T(x) = \{y \in Tx : d(x, y) = dist(x, Tx)\}$. Then the following are equivalent

- (1) $x \in Fix(T)$, that is $x \in Tx$;
- (2) $P_T(x) = \{x\}$, that is x = y for each $y \in P_T(x)$;
- (3) $x \in Fix(P_T)$, that is $x \in P_T(x)$.

Further, $Fix(T) = Fix(P_T)$.

Proof. (1) implies (2). Since $x \in Tx$, then d(x,Tx) = 0. Therefore, for any $y \in P_T(x)$, d(x,y) = dist(x,Tx) = 0 and so x = y. That is, $P_T(x) = \{x\}$.

(2) implies (3). Since $P_T(x) = \{x\}$, then $x \in Fix(P_T)$ and we get $x \in P_T(x)$.

(3) implies (1). Since $x \in Fix(P_T)$, then $x \in P_T(x)$. Therefore, d(x, x) = dist(x, Tx) = 0 and so $x \in Tx$ by the closedness of Tx.

This implies that $Fix(T) = Fix(P_T)$.

Lemma 3.2. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space $X, t : K \to K$ and $T : K \to PB(K)$ an asymptotically nonexpansive mapping and a Suzuki generalized multi-valued nonexpansive mapping, respectively, with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1). Then $\lim_{n\to\infty} d(x_n, w)$ exists for all $w \in Fix(t) \cap Fix(T)$.

Proof. Let $x_1 \in K$ and $w \in Fix(t) \cap Fix(T)$, in view of Lemma 3.1 we have $w \in P_T(w) = \{w\}$. Now consider,

$$\begin{aligned} d(x_{n+1},w) &= d((1-\alpha_n)x_n \oplus \alpha_n t^n y_n, w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n d(t^n y_n, t^n w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n d(y_n,w) \\ &= (1-\alpha_n)d(x_n,w) + \alpha_n k_n d((1-\beta_n)x_n \oplus \beta_n z_n,w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n k_n \beta_n d(z_n,w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n k_n \beta_n d(z_n,P_T(w)) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n k_n \beta_n H(P_T(t^n x_n),P_T(w)) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n k_n \beta_n d(t^n x_n,w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n k_n \beta_n d(t^n x_n,w) \\ &\leq (1-\alpha_n)d(x_n,w) + \alpha_n k_n (1-\beta_n)d(x_n,w) + \alpha_n \beta_n k_n^2 d(x_n,w) \\ &= [1+\alpha_n (k_n-1) + \alpha_n \beta_n k_n (k_n-1)]d(x_n,w). \end{aligned}$$

By the convergence of k_n and α_n , $\beta_n \in (0, 1)$, then there exists some M > 0 such that

$$d(x_{n+1}, w) \le [1 + M(k_n - 1)]d(x_n, w).$$

By condition $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and Lemma 2.15, we know that $\lim_{n \to \infty} d(x_n, w)$ exists. \Box Lemma 3.3. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space $X, t : K \to K$ and $T : K \to PB(K)$ an asymptotically nonexpansive mapping and a Suzuki generalized multi-valued nonexpansive mapping, respectively, with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1). Then $\lim_{n \to \infty} d(t^n y_n, x_n) = 0$.

Proof. Let $x_1 \in K$ and $w \in Fix(t) \cap Fix(T)$, in view of Lemma 3.1 we have $w \in P_T(w) = \{w\}$. From Lemma 3.2, we setting $\lim_{n \to \infty} d(x_n, w) = c$. Now consider,

$$d(y_n, w) = d((1 - \beta_n)x_n \oplus \beta_n z_n, w)$$

$$\leq (1 - \beta_n)d(x_n, w) + \beta_n d(z_n, w)$$

$$= (1 - \beta_n)d(x_n, w) + \beta_n dist(z_n, P_T(w))$$

$$\leq (1 - \beta_n)d(x_n, w) + \beta_n H(P_T(t^n x_n), P_T(w))$$

$$\leq (1 - \beta_n)d(x_n, w) + \beta_n d(t^n x_n, w)$$

$$\leq (1 - \beta_n)d(x_n, w) + \beta_n k_n d(x_n, w).$$

We have

$$d(t^{n}y_{n}, w) \leq k_{n}d(y_{n}, w)$$

$$\leq k_{n}[(1 - \beta_{n})d(x_{n}, w) + \beta_{n}k_{n}d(x_{n}, w)]$$

$$= k_{n}(1 - \beta_{n})d(x_{n}, w) + \beta_{n}k_{n}^{2}d(x_{n}, w)$$

$$= (k_{n} - k_{n}\beta_{n} + \beta_{n}k_{n}^{2})d(x_{n}, w)$$

$$= [k_{n} + \beta_{n}k_{n}(k_{n} - 1)]d(x_{n}, w)$$

$$\leq [1 + \beta_{n}k_{n}(k_{n} - 1)]d(x_{n}, w).$$

Then we have,

$$\limsup_{n \to \infty} d(t^n y_n, w) \le \limsup_{n \to \infty} k_n d(y_n, w) \le \limsup_{n \to \infty} [1 + \beta_n k_n (k_n - 1)] d(x_n, w).$$

By $k_n \to 1$ as $n \to \infty$ and $\alpha_n, \beta_n \in (0, 1)$, which implies that

$$\limsup_{n \to \infty} d(t^n y_n, w) \le \limsup_{n \to \infty} d(y_n, w) \le \limsup_{n \to \infty} d(x_n, w) = c.$$
(4)

Since, $c = \lim_{n \to \infty} d(x_{n+1}, w) = \lim_{n \to \infty} d((1 - \alpha_n)x_n \oplus \alpha_n t^n y_n, w).$ Then by condition of α_n and Lemma 2.13, we have $\lim_{n \to \infty} d(t^n y_n, x_n) = 0.$

Lemma 3.4. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space $X, t : K \to K$ and $T : K \to PB(K)$ an asymptotically nonexpansive mapping and a Suzuki generalized multi-valued nonexpansive mapping, respectively, with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1). Then $\lim_{n\to\infty} d(x_n, z_n) = 0$.

Proof. Let $x_1 \in K$ and $w \in Fix(t) \cap Fix(T)$, in view of Lemma 3.1 we have $w \in P_T(w) = \{w\}$. Consider,

$$d(x_{n+1}, w) = d((1 - \alpha_n)x_n \oplus \alpha_n t^n y_n, w)$$

$$\leq (1 - \alpha_n)d(x_n, w) + \alpha_n d(t^n y_n, w)$$

$$\leq (1 - \alpha_n)d(x_n, w) + \alpha_n k_n d(y_n, w)$$

and hence

$$\frac{d(x_{n+1},w) - d(x_n,w)}{\alpha_n} \le k_n d(y_n,w) - d(x_n,w).$$

Therefore, since $0 < a \le \alpha_n \le b < 1$,

$$\left(\frac{d(x_{n+1},w) - d(x_n,w)}{\alpha_n}\right) + d(x_n,w) \le k_n d(y_n,w)$$

Thus,

$$\liminf_{n \to \infty} \left\{ \left(\frac{d(x_{n+1}, w) - d(x_n, w)}{\alpha_n} \right) + d(x_n, w) \right\} \le \liminf_{n \to \infty} k_n d(y_n, w).$$

It follows that

$$c \le \liminf_{n \to \infty} d(y_n, w)$$

Since, from (4), $\limsup_{n \to \infty} d(y_n, w) \le c$, we have

$$c = \lim_{n \to \infty} d(y_n, w) = \lim_{n \to \infty} d((1 - \beta_n) x_n \oplus \beta_n z_n, w)$$

Recall that

$$d(z_n, w) = \text{dist}(z_n, P_T(w)) \le H(P_T(t^n x_n), P_T(w)) \le d(t^n x_n, w) \le k_n d(x_n, w).$$

Hence we have

$$\limsup_{n \to \infty} d(z_n, w) \le \limsup_{n \to \infty} k_n d(x_n, w) \le \limsup_{n \to \infty} d(x_n, w) = c.$$

Thus,
$$\lim_{n \to \infty} d(x_n, z_n) = 0.$$

Lemma 3.5. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space $X, t : K \to K$ and $T : K \to PB(K)$ an asymptotically nonexpansive mapping and a Suzuki generalized multi-valued nonexpansive mapping, respectively, with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1). Then $\lim_{n\to\infty} d(t^n x_n, x_n) = 0$.

Proof. Consider,

$$d(t^{n}x_{n}, x_{n}) \leq d(t^{n}x_{n}, t^{n}y_{n}) + d(t^{n}y_{n}, x_{n})$$

$$\leq k_{n}d(x_{n}, y_{n}) + d(t^{n}y_{n}, x_{n})$$

$$= k_{n}d(x_{n}, (1 - \beta_{n})x_{n} \oplus \beta_{n}z_{n}) + d(t^{n}y_{n}, x_{n})$$

$$\leq k_{n}[(1 - \beta_{n})d(x_{n}, x_{n}) + \beta_{n}d(x_{n}, z_{n})] + d(t^{n}y_{n}, x_{n})$$

$$= k_{n}\beta_{n}d(x_{n}, z_{n}) + d(t^{n}y_{n}, x_{n}).$$

Then, we have

$$\lim_{n \to \infty} d(t^n x_n, x_n) \le \lim_{n \to \infty} k_n \beta_n d(z_n, x_n) + \lim_{n \to \infty} d(t^n y_n, x_n).$$

Hence, by Lemma 3.3 and Lemma 3.4, $\lim_{n\to\infty} d(t^n x_n, x_n) = 0$.

Lemma 3.6. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space $X, t : K \to K$ and $T : K \to PB(K)$ an asymptotically nonexpansive mapping and a Suzuki generalized multi-valued nonexpansive mapping, respectively, with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates by (1). Then $\lim_{n \to \infty} d(tx_n, x_n) = 0$.

Proof. Consider,

$$d(tx_n, x_n) = d(x_n, tx_n)$$

$$\leq d(x_n, t^n x_n) + d(t^n x_n, tx_n)$$

$$\leq d(x_n, t^n x_n) + k_1 [d(t^{n-1} x_n, t^{n-1} x_{n-1}) + d(t^{n-1} x_{n-1}, x_n)]$$

$$\leq d(x_n, t^n x_n) + k_1 k_{n-1} d(x_n, x_{n-1}) + k_1 d(t^{n-1} x_{n-1}, x_n)$$

$$\leq d(x_n, t^n x_n) + k_1 k_{n-1} \alpha_{n-1} d(t^{n-1} y_{n-1}, x_{n-1})$$

$$+ k_1 (1 - \alpha_{n-1}) d(x_{n-1}, t^{n-1} x_{n-1}) + k_1 k_{n-1} \alpha_{n-1} d(y_{n-1}, x_{n-1})$$

$$\leq d(x_n, t^n x_n) + k_1 k_{n-1} \alpha_{n-1} d(t^{n-1} y_{n-1}, x_{n-1})$$

$$+ k_1 (1 - \alpha_{n-1}) d(x_{n-1}, t^{n-1} x_{n-1}) + k_1 k_{n-1} \alpha_{n-1} \beta_{n-1} d(z_{n-1}, x_{n-1}).$$

It follows from Lemma 3.3, Lemma 3.4 and Lemma 3.5, we have $\lim_{n \to \infty} d(tx_n, x_n) = 0$.

Theorem 3.7. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space $X, t : K \to K$ and $T : K \to PB(K)$ an asymptotically nonexpansive mapping and a Suzuki generalized multi-valued nonexpansive mapping, respectively, with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1). Then $\{x_n\} \bigtriangleup$ -converges to y implies $y \in Fix(t) \cap Fix(T)$.

Proof. Since that $\{x_n\} \triangle$ -converges to y. From Lemma 3.6, we have

$$\lim_{n \to \infty} d(tx_n, x_n) = 0.$$

By Corollary 2.12, we have $y \in K$ and ty = y, that is $y \in Fix(t)$. From Lemma 2.14 we have

$$dist(y, P_T(y)) \le d(y, x_n) + dist(x_n, P_T(x_n)) + H(P_T(x_n), P_T(y))$$
$$\le d(y, x_n) + d(x_n, z_n) + d(x_n, y) \to 0 \text{ as } n \to \infty.$$

It follows that $y \in Fix(P_T)$, we get $y \in Fix(T)$. Therefore $y \in Fix(t) \cap Fix(T)$ as desired.

Theorem 3.8. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space $X, t : K \to K$ and $T : K \to PB(K)$ an asymptotically nonexpansive mapping and a Suzuki generalized multi-valued nonexpansive mapping, respectively, with $Fix(t) \cap Fix(T) \neq \emptyset$ such that P_T is nonexpansive and $\sum_{n=1}^{\infty} (k_n - 1) < \infty$. Let $\{x_n\}$ be the sequence of Ishikawa iterates defined by (1). Then $\{x_n\} \bigtriangleup$ -converges to a common fixed point of t and T.

Proof. Since Lemma 3.6 guarantees that $\{x_n\}$ is bounded and $\lim_{n\to\infty} d(tx_n, x_n) = 0$. We now let $\omega_w(x_n) := \cup A(\{u_n\})$ where the union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$. We claim that $\omega_w(x_n) \subset \operatorname{Fix}(t) \cap \operatorname{Fix}(T)$, then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. By Lemma 2.2 and Lemma 2.3 there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that $\triangle - \lim_{n\to\infty} v_n = v \in K$. Since

 $\lim_{n\to\infty} d(tv_n, v_n) = 0$, then $v \in Fix(t)$. Since,

$$\begin{aligned} \operatorname{dist}(v, P_T(v)) &\leq \operatorname{dist}(v, P_T(v_n)) + H(P_T(v_n), P_T(v)) \\ &\leq d(v, z_n) + d(v_n, v) \\ &\leq d(v, v_n) + d(v_n, z_n) + d(v_n, v) \to 0 \\ \end{aligned}$$

It follows that $v \in Fix(P_T)$, we get $v \in Fix(T)$ by Lemma 3.1. Therefore, $v \in Fix(t) \cap Fix(T)$ as desired. We claim that u = v. Suppose not, since t is asymptotically nonexpansive mapping and $v \in Fix(t) \cap Fix(T)$, $\lim_{n \to \infty} d(x_n, v)$ exists by Lemma 3.2. Then by the uniqueness of asymptotic centers,

$$\limsup_{n \to \infty} d(v_n, v) < \limsup_{n \to \infty} d(v_n, u)$$
$$\leq \limsup_{n \to \infty} d(u_n, u)$$
$$< \limsup_{n \to \infty} d(u_n, v)$$
$$\leq \limsup_{n \to \infty} d(x_n, v)$$
$$= \limsup_{n \to \infty} d(v_n, v)$$

a contradiction, and hence $u = v \in Fix(t) \cap Fix(T)$.

To show that $\{x_n\} \triangle$ -converges to a common fixed point, it suffices to show that $\omega_w(x_n)$ consists of exactly one point. Let $\{u_n\}$ be a subsequence of $\{x_n\}$. By Lemma 2.2 and Lemma 2.3 there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that $\triangle - \lim_{n \to \infty} v_n = v \in K$. Let $A(\{u_n\}) = \{u\}$ and $A(\{x_n\}) = \{x\}$. We have seen that u = v and $v \in \text{Fix}(t) \cap \text{Fix}(T)$.

We can complete the proof by showing that x = v. Suppose not, since $\lim_{n \to \infty} d(x_n, v)$ exists, then by the uniqueness of asymptotic centers,

$$\begin{split} \limsup_{n \to \infty} d(v_n, v) &< \limsup_{n \to \infty} d(v_n, x) \\ &\leq \limsup_{n \to \infty} d(x_n, x) \\ &< \limsup_{n \to \infty} d(x_n, v) \\ &= \limsup_{n \to \infty} d(v_n, v) \end{split}$$

a contradiction, and hence the conclusion follows.

4. Acknowledgments

The author thanks for the support of the Institute for Research and Development, Phranakhon Rajabhat University.

CONFLICTS OF INTEREST

The author declares that there are no conflicts of interest regarding the publication of this paper.

References

- A. Abkar, M. Eslamian, Fixed point theorems for Suzuki generalized nonexpansive multivalued mappings in banach spaces, Fixed Point Theory Appl. 2010 (2010), 457935. https://doi.org/10.1155/2010/457935.
- [2] B. Nanjaras, B. Panyanak, W. Phuengrattana, Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Anal.: Hybrid Syst. 4 (2010), 25–31. https://doi.org/10.1016/ j.nahs.2009.07.003.
- [3] B. Nanjaras, B. Panyanak, Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010 (2010), 268780. https://doi.org/10.1155/2010/268780.
- [4] F. Bruhat, J. Tits, Groupes réductifs sur un corps local: I. Données radicielles valuées, Publ. Math. l'IHÉS, 41 (1972), 5–251. http://www.numdam.org/item?id=PMIHES_1972_41_5_0.
- [5] H. Zhou, R.P. Agarwal, Y.J. Cho, et al. Nonexpansive mappings and iterative methods in uniformly convex Banach spaces, Georgian Math. J. 9 (2002), 591–600. https://doi.org/10.1515/gmj.2002.591.
- [6] I. Uddin, A.A. Abdou, M. Imdad, A new iteration scheme for a hybrid pair of generalized nonexpansive mappings, Fixed Point Theory Appl. 2014 (2014), 205. https://doi.org/10.1186/1687-1812-2014-205.
- [7] I. Uddin, M. Imdad, A new iteration scheme for a hybrid pair of nonexpansive mappings, Honam Math. J. 38 (2016), 127–139. https://doi.org/10.5831/HMJ.2016.38.1.127.
- [8] K. Sokhuma, △- Convergence theorems for a pair of single valued and multivalued nonexpansive mappings in CAT(0) spaces, J. Math. Anal. 4 (2013), 23–31.
- [9] K. Sokhuma, A. Kaewkhao, Ishikawa iterative process for a pair of single-valued and multivalued nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2010 (2010), 618767. https://doi.org/10.1155/2010/618767.
- [10] K. Sokhuma, K. Sokhuma, Convergence theorems for two nonlinear mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl. 27 (2022), 499–512. https://doi.org/10.22771/NFAA.2022.27.03.03.
- [11] M. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Springer, Berlin, 1999.
- [12] N. Akkasriworn, K. Sokhuma, Convergence theorems for a pair of asymptotically and multivalued nonexpansive mapping in CAT(0) spaces, Commun. Korean Math. Soc. 30 (2015), 177–189. https://doi.org/10.4134/CKMS.2015. 30.3.177.
- [13] S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8 (2007), 35–45.
- [14] S. Dhompongsa, W.A. Kirk, B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Anal.: Theory Meth. Appl. 65 (2006), 762–772. https://doi.org/10.1016/j.na.2005.09.044.
- [15] T. Laokul, B. Panyanak, Approximating fixed points of nonexpansive mappings in CAT(0) spaces, Int. J. Math. Anal. 3 (2009), 1305–1315.
- [16] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179–182.
- [17] W.A. Kirk, Geodesic geometry and fixed point theory II, in: International Conference on Fixed Point Theory and Applications, Yokohama Publ., Yokohama, 2004, pp. 113–142.
- [18] W.A. Kirk, Geodesic geometry and fixed point theory, in: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), pp. 195–225. Univ. Sevilla Secr. Publ., Seville, (2003).

- [19] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal.: Theory Meth. Appl. 68 (2008), 3689–3696. https://doi.org/10.1016/j.na.2007.04.011.
- [20] W. Laowang, B. Panyanak, A note on common fixed point results in uniformly convex hyperbolic spaces, J. Math. 2013 (2013), 503731. https://doi.org/10.1155/2013/503731.
- [21] W. Laowang, B. Panyanak, Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010 (2009), 367274. https://doi.org/10.1155/2010/367274.
- [22] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023.