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1. Introduction

Fractional Calculus is an active and evolving area of research in various fields of science and engi-
neering. It deals with derivatives and integrals of non-integer orders. Many researchers from all over
the world have shown interest in the fractional calculus. Especially in the field of Biophysics, Econo-
physics, Fluid Dynamics and QuantumMechanics and so on. For example, modeling the behaviour
of biological systems with memory, such as neuronal firing patterns, studying financial markets and
economic systems with long-term correlations and delayed feedback, understanding the behaviour
of complex fluids with memory effects, like viscoelastic materials and describing quantum systems
with non-local and memory-dependent operators have been studied with the applications of fractional
calculus [4, 8, 9, 11, 15].

Over the last decade, stochastic fractional differential equations have surfaced as essential tools
in mathematically modeling real-world phenomena. These type of equations have received a lot of
attention in the field of mathematics, one can refer [1, 3, 5, 7, 14]. Several events are quantitatively
represented in the scientific community using stochastic fractional delay integro-differential equations
[2, 10]. Integro-differential equations combine integral and differential terms. It is a delay differential
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equation because the value of a variable at a given moment relies on its previous values, adding a
temporal component to the equation [6,13, 19, 21].

Numerous applications have been addressed the existence, uniqueness, and stability of stochastic dif-
ferential equations [16,17,20] aswell as fractional differential equations [12,22]. In [20], Umamaheswari
et al., discussed the investigation of a specific mathematical problem related to nonlinear stochastic
fractional delay differential equations with Gaussian noise. The author explored the existence and
uniqueness of solutions to this complex equation.

CDαx(t) = b(t, x(t), x(t− δ)) + σ(t, x(t), x(t− δ))dW (t)

dt
, t ∈ J = [0, T ]

x(t) = ξ(t), t ∈ [−δ, 0]

The author also had analyzed the nonlinear system, an equivalent nonlinear integral equation is
introduced, which is deemed easier to work with. Her focus then shifted to establishing conditions that
ensure the stability of the stochastic fractional differential equations when subjected to Gaussian noise.
The Picard-Lindelof method, specifically the technique of successive approximation, was employed as
a mathematical tool to derive the results.

Inspired by the aforementioned works, we considered stochastic fractional delay integrodifferential
equations with gaussian noise of the form:

CDκh(t) = b
(
t, h(t),

t∫
0

f
(
t, θ, h(t−∆)

)
dθ
)

+ b1
(
t, h(t),

t∫
0

g
(
t, θ, h(t−∆)

)
dθ
)dW (t)

dt
,

t ∈ J = [0, v],

h(t) = ε(t), t ∈ [−τ, 0].

(1)

where κ ∈ (1
2 , 1
)
, J = [0, v], ∆ > 0, b, b1, f, g are some suitable functions defined on a separable

Hilbert spaceD, ε is a G0−measurableD−valued randomvariable and W = {W (t), 0 ≤ t} isQ−wiener
process on a complete probability space (Ω,G,P).

This paper is organized as follows: Section 2 contains the basic notations, definitions, and lemmas.
The main results from the existence and uniqueness are developed in Section 3. In Section 4, stability
analysis is established.

2. Preliminaries

Consider the two real separable Hilbert spaces with their vector norms and inner products which
are expressed by (D, ||.||D, 〈., .〉D) and (K, ||.||K, 〈., .〉K). Also, L(K,D) the space of bounded linear
operators from K into D. We are working with the complete probability space (Ω,G,P) that includes a
normal filtration {Gt}t∈[0,v]. TheQ-Wiener process on (Ω,G,P) is defined byW (t) = {W (t), t ≥ 0}, with
the covariance operatorQ satisfying Tr(Q) <∞. Assume that the existence of a complete orthonormal
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system {γm} ∈ K, a bounded sequence of non-negative real numbers {λm}m∈N such that

Qγm = λmγm, γm ≥ 0, m ∈ N,

and a sequence of independent real-valued Brownian motion {κ1m}m≥1 such that

〈W (t), γ〉K =

∞∑
m=1

√
λm〈γm, γ〉κ1m(t), γ ∈ K, t ∈ [0, v]

and Gt = GWt is the σ - algebra induced by {W (θ) : 0 < θ ≤ t}.
The space of all Hilbert-Schmidt operators fromQ

1
2K intoD is denoted asS0

2, specifically represented
as S0

2(Q
1
2K,D). This set incorporates the inner product 〈Φ̄, φ̄〉S0

2
= Tr[Φ̄Qφ̄∗]. Also, Banach space

comprises all continuous functions from the interval [0, v] to S2(Ω,D) that satisfy certain specific
conditions.

i.e., sup
t∈[0,v]

E||h(t)||2 < ∞ is determined as B([0, v],S2(Ω,D)). Clearly, it is Banach space with the

norm: ||h||B([0,v],S2(Ω,D)) =
(

sup
t∈[0,v]

E||h(t)||2
) 1

2 .

The purpose of this paper is to investigate the existence and uniqueness for the stochastic fractional
delay integrodifferential equations with gaussian noise (1) whose the solution takes the form as below:

h(t) = ε(0) +
1

Γ(κ)

t∫
0

(t− θ)κ−1b
(
θ, h(θ),

θ∫
0

f
(
θ, τ, h(τ −∆)

)
dτ
)
dθ

+
1

Γ(κ)

t∫
0

(t− θ)κ−1b1
(
θ, h(θ),

θ∫
0

g
(
θ, τ, h(τ −∆)

)
dτ
)
dW (θ)

(2)

Definition 2.1. The fractional integral of a function h : [0,∞) → R, with the order κ and zero as its lower

limit, is denoted as:

Iκh(t) =
1

Γ(κ)

t∫
0

h(θ)

(t− θ)1−κdθ, 0 < t, κ ∈ R+,

provided that the right hand side is defined pointwise over the interval [0,∞).

Definition 2.2. [18] The Riemann-Liouville derivative of a function h : [0,∞)→ R with the order κ and zero

as its lower limit, is denoted as:

LDκh(t) =
1

Γ(n− κ)

dn

dtn

t∫
0

h(θ)

(t− θ)1+κ−ndθ, 0 < t, n− 1 < κ < n.

Definition 2.3. [18] The Caputo derivative of a function h : [0,∞)→ R with the fractional order κ and zero

as its lower limit, is denoted as:
CDκh(t) = LDκ

[
h(t)−

n−1∑
j=0

tj

j!h
j(0)

]
, 0 < t, n > κ > n− 1.



Asia Pac. J. Math. 2024 11:27 4 of 15

Remark 2.1. (1) If h(t) ∈ Bn[0,∞), then

CDκh(t) =
1

Γ(n− κ)

t∫
0

hn(θ)

(t− θ)n−κ−1
dθ = In−κh(n)(t), 0 < t, n > κ > n− 1.

(2) Assuming h is an abstract function taking values in D, the integrals in the definitions (2.1) and (2.2)

are understood in the sense of Bochner.

(3) CDκ(K ) = 0 (where K is any constant).

Definition 2.4. (Mittag - Leffler function) The one - parameter and two - parameter Mittag-Leffler function is

defined by

Eκ(y) =

∞∑
j=0

yj

Γ(κj + 1)
, y ∈ C, Re(κ) > 0.

and

Eκ,κ1(y) =

∞∑
j=0

yj

Γ(κj + κ1)
, y, κ1 ∈ C, Re(κ) > 0.

Definition 2.5. (Stochastic Process)

A set containing the collection of random variables {Y(t)|t ≥ 0} is called as stochastic process.

Definition 2.6. (Chebyshev’s Inequality) When Y is considered a random variable and

1 ≤ m <∞, then

P(|Y| ≥ λ) ≤ 1

λm
E(|Y|m), for all 0 < λ.

Lemma 2.1. (Borel-Cantelli Lemma:) If {Sm} ⊂ G and
∞∑
m=1

P(Sm) <∞, then

P
(

lim
m→∞

supSm

)
= 0.

Lemma 2.2. Consider the continuous functions h, h1 : [0, v]→ [0,∞) and if h1 is non-decreasing, ∆ ≥ 0 and

κ ≥ 0 3

h(t) = h1(t) + ∆
t∫

0

(t− θ)κ−1x(θ)dθ, t ∈ [0, v], next

h(t) = h1(t) +
t∫

0

[ ∞∑
n=1

(∆Γ(κ))n

Γ(nκ) (t− θ)n∆−1h1(θ)
]
dθ, t ∈ [0, v],

If h1(t) = c, a constant on the interval [0, v], the inequality above is then simplified to:

h(t) ≤ cEκ
(
∆Γ(κ)tκ

)
, t ∈ [0, v].

The Mittag-Lefller function Eκ in the instance above is obtained as

Eκ(z) =
∞∑
n=0

zn

Γ(nκ+1) , z ∈ C, Re(κ) ≥ 0.

Lemma 2.3. A measurable function f : [0, v]→ D is Bochner integrable, if ||f || is the Lebesgue integrable.
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Lemma 2.4. Let the space Θ = {Υ(·, ·) : Υ is linearly bounded on [0, k] × Ω 3 Υ(t) is Gt -measurable

∀ t ∈ [0, k]} ∈ Rn. If Υ ∈ Θ with
k∫
0

E|Υ(t)|2dt <∞, then

E
∣∣ k∫

0

Υ(t,W )dW (t)
∣∣2 ≤ Tr(Q)

k∫
0

E|Υ(t)|2dt.

3. Main Result

Before proving the main result, let us assume the following hypotheses to demonstrate the existence
and uniqueness of mild solutions for (1)

(H1) b, b1 : J ×D ×D → S0
2 fulfills:

(a) For all (∆, h) ∈ D ×D, b1(·,∆, h) : J → S0
2 is measurable.

(b) Arbitrary ∆1,∆2, h1, h2 ∈ D fulfilling
E||∆1||2, E||∆2||2, E||h1||2, E||h2||2 ≤ q, ∃ sb(q), sb1(q) > 0, such that
(1) E||b(t,∆1, h1)− b(t,∆2, h2)||2 ≤ sb(q)(E||∆1 −∆2||2 + E||γ1 − γ2||2),

(2) E||b1(t,∆1, h1)− b1(t,∆2, h2)||2 ≤ sb1(q)(E||∆1 −∆2||2 + E||γ1 − γ2||2),

∀ t ∈ [0, v].

(c) There exists rb, rb1 ≥ 0, such that
(1) E||b(t,∆, h)||2 ≤ rb(1 + E||∆||2 + E||h||2), ∀∆, x ∈ D, t ∈ [0, v],

(2) E||b1(t,∆, h)||2 ≤ rb1(1 + E||∆||2 + E||h||2), ∀∆, x ∈ D, t ∈ [0, v].

(H2) f, g : J×D → D fulfills:
(a) f(t, θ, ·) : D → D is continuous ∀ (t, θ) ∈ J = {(t, θ) ∈ D → D|θ ∈ [0, v]},

g(t, θ, ·) : D → D is continuous ∀ (t, θ) ∈ J = {(t, θ) ∈ D → D|θ ∈ [0, v]}.

(b) f(∆, θ, ·), g(∆, θ, ·) : D → D is continuous
∀(∆, θ) ∈ J = {(∆, θ) ∈ J × J , θ ∈ [0, v]}.

(c) For arbitrary (∆, θ) ∈ J, and ∆1,∆2 ∈ D fulfilling E||∆1||2,E||∆2||2 ≤ q,

∃ sf (q), sg(q) > 0, such that
(1) E||f(t, θ,∆1)− f(t, θ,∆2)||2 ≤ sf (q)(E||∆1 −∆2||2),

(2) E||g(t, θ,∆1)− g(t, θ,∆2)||2 ≤ sg(q)(E||∆1 −∆2||2).

(d) There exists rf , rg > 0 such that
(1) E||f(t, θ,∆)||2 ≤ rf (1 + E||∆||2), ∀ ∆ ∈ D,

(2) E||g(t, θ,∆)||2 ≤ rg(1 + E||∆||2), ∀ ∆ ∈ D.

(H3): There existsM > 0 3 t ≥ 0,

(1) ||Eκ,κ1(Atκ)|| ≤Me−ρt.

Theorem 3.1. (Existence and Uniqueness) Let (t, h) belongs to the set J ×D, where κ is in the interval (1
2 , 1),

and where b and b1 belong to the set D. Also, letW =
{
W (t), t ≥ 0

}
be a Q-Wiener process on a complete
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probability space (Ω,G,P). Furthermore, assume that the conditions (H1) and (H2) are satisfied.

Let us define a random variable, denoted as ε(0), on the probability space (Ω,G,P). This random variable

is independent of σ− algebra Gtθ ⊂ G, which is generated by the collection {W (θ), t ≥ θ ≥ 0}, and such that

E
∣∣ε(0)

∣∣2 <∞. Then the initial value problem has a unique solution which is t-continuous with the property that

h(t, ω) is adapted to the Gε0t generated by ε0 and {W (θ)(·), t ≥ θ} and

sup
0≤t≤v

E||h(t)||2 <∞. (3)

Existence:

Proof. Let us prove the initial value problem (2.1) has a solution. Employing induction, let’s define
h0(t) = ε(0) and hm(t) = hm(t, ω) as follows.

hm+1(t) = ε(0) +
1

Γ(κ)

t∫
0

(t− θ)κ−1b
(
θ, hm(θ),

θ∫
0

f
(
θ, τ, hm(τ −∆))dτ

)
dθ

+
1

Γ(κ)

t∫
0

(t− θ)κ−1b1
(
θ, hm(θ),

θ∫
0

g
(
θ, τ, hm(τ −∆)

)
dτ
)
dW (θ)

for m = 0, 1, 2, · · · .

(4)

If, for a fixed value m (wherem ≥ 0), the approximation hm(t) is measurable with respect to the
σ− algebra Gt and exhibits continuity on the set J , then it can be deduced from the conditions (H1)
and (H2) that the integral in the equation (4) is well-defined. Consequently, the subsequent process
denoted as hm+1 becomes measurable with respect to the σ− algebra Gt and maintains continuity on
the set J .

Since the initial value h0(t) is evidently measurable with respect to Gt and continuous on J , we
can establish by induction that this property holds true for every hm(t) withm = 0, 1, 2, · · · .

As ε(0) is Gt -measurable and E||ε(0)||2 is finite and hence

sup
0≤t≤v

E||ε(0)||2 <∞.

Incorporating the Ito isometry, the hypotheses and the Cauchy-Schwartz inequality, we establish
from (4) that

E||hm+1(t)||2 ≤ 3E||ε(0)||2 +
3

(Γ(κ))2

v2κ−1

(2κ− 1)

t∫
0

||b
(
θ, hm(θ),

θ∫
0

f
(
θ, τ, hm(τ −∆))dτ

)
||2dθ

+
3

(Γ(κ))2

v2κ−1

(2κ− 1)
Tr(Q)

t∫
0

||b1
(
θ, hm(θ),

θ∫
0

g(θ, τ, hm(τ −∆))dτ
)
||2dθ
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E||hm+1(t)||2 ≤ 3E||ε(0)||2 +
3

(Γ(κ))2

v2κ−1

(2κ− 1)

t∫
0

[
rb
(
1 + E||hm(θ)||2

)

+ v

θ∫
0

rf
(
1 + E||hm(τ)||2

)
dτ
]
dθ +

3

(Γ(κ))2

v2κ−1

(2κ− 1)
Tr(Q)

×
t∫

0

[
rb1
(
1 + E||hm(θ)||2

)
+ v

θ∫
0

rg
(
1 + E||hm(τ)||2

)
dτ
]
dθ.

Hence,

E||hm+1(t)||2 ≤ 3E||ε(0)||+ 3

(Γ(κ))2

v2κ−1

(2κ− 1)

[
rb
(
1 + rfv

2
)

+ Tr(Q)rb1
(
1 + rgv

2
)] t∫

0

[
1 + E||hm(θ)||2

]
dθ, form = 0, 1, 2, · · · .

By means of induction, we get sup
0≤t≤v

E||hm(t)||2 ≤ K0 <∞, for m = 1, 2, 3, · · · , and

K0 is a positive constant.

Next we claim that

E||hm+1(t)− hm(t)||2 ≤ ABm (Ct)m+1

(m+ 1)!
, form = 0, 1, 2, · · · .

Depending on some constants A, B and C, where

A =
[
rb(1 + rfv

2) + Tr(Q)rb1(1 + rgv
2)
][

1 + E||ε0||2
]
,

B = sb(q)(1 + rfv
2) + Tr(Q)sb1(q)(1 + rgv

2), and C =
2

(Γ(κ))2

v2κ−1

(2κ− 1)
.

Applying the Schwartz inequality, and Ito isometry along with the hypothesis (H1) and (H2) we
get,

E||hm+1(t)− hm(t)||2 ≤ 2

(Γ(κ))2

v2κ−1

(2κ− 1)

t∫
0

E
[∣∣∣∣b(θ, hm(θ),

θ∫
0

f(θ, τ, hm(τ −∆))dτ
)

− b
(
θ, hm−1(θ),

θ∫
0

f(θ, τ, hm−1(τ −∆))dτ
)∣∣∣∣2]dθ

+
2

(Γ(κ))2

v2κ−1

(2κ− 1)
Tr(Q)

t∫
0

E
[∣∣∣∣b1(θ, hm(θ),

θ∫
0

g(θ, τ, hm(τ −∆))dτ
)

− b1
(
θ, hm−1(θ),

θ∫
0

g(θ, τ, hm−1(τ −∆))dτ
)∣∣∣∣2]dθ,
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E||hm+1(t)− hm(t)||2 ≤ 2

(Γ(κ))2

v2κ−1

(2κ− 1)

t∫
0

[
sb(q)

(
E||hm(θ)− hm−1(θ)||2

+ v

θ∫
0

sf (q)E
∣∣∣∣hm(τ)− hm−1(τ)

∣∣∣∣2dτ)]dθ
+

2

(Γ(κ))2

v2κ−1

(2κ− 1)
Tr(Q)

t∫
0

[
sb1(q)

(
E||hm(θ)− hm−1(θ)||2

+ v

θ∫
0

sg(q)E
∣∣∣∣hm(τ)− hm−1(τ)

∣∣∣∣2dτ)]dθ,
E||hm+1(t)− hm(t)||2 ≤ 2

(Γ(κ))2

v2κ−1

(2κ− 1)

[
sb(q)

(
1 + v2sf (q)

)
+ Tr(Q)sb1(q)

(
1 + v2sg(q)

)]
×

t∫
0

E
∣∣∣∣hm(θ)− hm−1(θ)

∣∣∣∣2dθ. (5)

form = 0,

E||h1(t)− h0(t)||2 ≤ 2

(Γ(κ))2

v2κ−1

(2κ− 1)

t∫
0

E||b
(
θ, h0(θ),

θ∫
0

f(θ, τ, h0(τ −∆))dτ
)
dθ||2

+
2

(Γ(κ))2

v2κ−1

(2κ− 1)

t∫
0

E||b1
(
θ, h0(θ),

θ∫
0

g(θ, τ, h0(τ −∆))dτ
)
dW (θ)||2

E||h1(t)− h0(t)||2 ≤ 2

(Γ(κ))2

v2κ−1

(2κ− 1)

t∫
0

rb
(
1 + E||h0(θ)||2 + rfv

2
[
1 + E||h0(θ)||2

])
dθ

+
2

(Γ(κ))2

v2κ−1

(2κ− 1)
Tr(Q)

t∫
0

rb1
(
1 + E||h0(θ)||2 + rgv

2
[
1 + E||h0(θ)||2

])
dθ

≤ 2

(Γ(κ))2

v2κ−1

(2κ− 1)

[
rb(1 + rfv

2) + Tr(Q)rb1(1 + rgv
2)
]
(t)
[
1 + E||ε0||2

]
.

Now form = 1,

E||h2(t)− h1(t)||2 ≤
[

2

(Γ(κ))2

v2κ−1

(2κ− 1)

]2(
sb(q)(1 + rfv

2) + Tr(Q)sb1(q)(1 + rgv
2)
)

×
t∫

0

E
[
||h1(t)− h0(t)||2

]
dθ

≤ C2B
(
rb(1 + rfv

2) + Tr(Q)rb1(1 + rgv
2)
)[

1 + E||ε0||2
] t2
2!
.

Proceeding as before, we will have form = 2

E||h3(t)− h2(t)||2 ≤ C3B2
(
rb(1 + rfv

2) + Tr(Q)rb1(1 + rgv
2)
)[

1 + E||ε0||2
] t3
3!
.
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Thus, using the mathematical induction principle, we obtain

E||hm+1(t)− hm(t)||2 ≤ ABm (Ct)m+1

(m+ 1)!
, form = 0, 1, 2, · · · .

where A, B, and C are constants which depend on κ, v, sb, sb1 , rf , rg and E||ε0||.

Note that

sup
0≤t≤v

||hm+1(t)− hm(t)||2 ≤ 2 sup
0≤t≤v

t∫
0

(t− θ)κ−1
[
||b
(
θ, hm(θ),

θ∫
0

f(θ, τ, hm(τ −∆))dτ
)

− b
(
θ, hm−1(θ),

θ∫
0

f(θ, τ, hm−1(τ −∆))dτ
)
||2
]
dθ

+ 2 sup
0≤t≤v

t∫
0

(t− θ)κ−1||b1
(
θ, hm(θ),

θ∫
0

g(θ, τ, hm(τ −∆))dτ
)

− b1
(
θ, hm−1(θ),

θ∫
0

g(θ, τ, hm−1(τ −∆))dτ
)
||2dW (θ).

E
[

sup
0≤t≤v

||hm+1(t)− hm(t)||2
]
≤ 2

Γ(κ)2

v2κ−1

(2κ− 1)

(
sb(q)(1 + rfv

2) + Tr(Q)sb1(q)(1 + rgv
2)
)

× E
[

sup
0≤t≤v

t∫
0

∣∣∣∣hm(θ)− hm−1(θ)
∣∣∣∣2dθ].

Using the submartingale theorem, it yields

E
[

sup
0≤t≤v

||hm+1(t)− hm(t)||2
]
≤ 4BC

t∫
0

E||hm+1(t)− hm(t)||2dθ

≤ ABm (Ct)m+1

(m+ 1)!
,

where A, B and C are constants depending on κ, v, sb, sb1 , sf , sg, rb, rb1 , rf , and rg.

With the help of Chebyshev’s inequality, it yields

P

[
sup

0≤t≤v
||hm+1(t)− hm(t)||2 > 1

K2

]
≤ 1(

1
K2

)2E[ sup
0≤t≤v

||hm+1(t)− hm(t)||2
]
.

Using the above two inequalities and summing up the results, we get

∞∑
k=0

(
P
(

sup
0≤t≤v

||hm+1(t)− hm(t)||2 > 1

K2

))
≤
∞∑
k=0

ABmK
4(Ct)m+1

(m+ 1)!
,

where the convergence of the RHS series is demonstrated by the ratio test.
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Since the series on the left hand side converges, we may deduce from the Borel-Cantelli lemma that
sup

0≤t≤v
||hm+1(t)− hm(t)||2 very likely converges to 0 (i.e., the successive approximations hm(t) converge

uniformly and almost certainly on J ) at a limit h(t) given by

lim
n→∞

(
h0(t) +

n∑
k=1

[
hm(t)− hm−1(t)

])
= lim

n→∞
hn(t) = h(t)

Hence from equation (2),

h(t) = ε(0) +
1

(Γ(κ))

t∫
0

(t− θ)κ−1b
(
θ, h(θ),

θ∫
0

f
(
θ, τ, h(τ −∆)

)
dτ
)
dθ

+
1

(Γ(κ))

t∫
0

(t− θ)κ−1b1
(
θ, h(θ),

θ∫
0

g
(
θ, τ, h(τ −∆)

)
dτ
)
dW (θ) ∀ t ∈ J .

Hence the existence of a solution is obtained. �

Uniqueness:

Proof. Let the two solutions be h1(t, ω) and h2(t, ω)with (0, ε(0)) = ε(0)(ω) and (0, ϕ(0)) = ϕ(0)(ω), ω ∈

Ω. Then as a result of Itô isometry and Schwartz inequality, we have

E
∣∣∣∣h1(t)− h2(t)

∣∣∣∣2 ≤ 3E
∣∣∣∣ε(0)− ϕ(0)

∣∣∣∣2
+

3

(Γ(κ))2

v2κ−1

(2κ− 1)

t∫
0

E
(∣∣∣∣b(θ, h1(θ),

θ∫
0

f(θ, τ, h1(τ −∆))dτ
)

− b
(
θ, h2(θ),

θ∫
0

f(θ, τ, h2(τ −∆))dτ
)∣∣∣∣2)dθ

+
3

(Γ(κ))2

v2κ−1

2κ− 1
Tr(Q)

t∫
0

E
(∣∣∣∣b1(θ, h1(θ),

θ∫
0

g(θ, τ, h1(τ −∆))dτ
)

− b1
(
θ, h2(θ),

θ∫
0

g(θ, τ, h2(τ −∆))dτ
)∣∣∣∣2)dθ,

E
∣∣∣∣h1(t)− h2(t)

∣∣∣∣2 ≤ 3

(Γ(κ))2

v2κ−1

(2κ− 1)

(
sb(q)

(
1 + v2sf (q)

)
+ Tr(Q)sb1(q)

(
1 + v2sg(q)

))
×

t∫
0

E
∣∣∣∣h1(θ)− h2(θ)

∣∣∣∣2dθ.
We state h(t) = E

∣∣∣∣h1(t)− h2(t)
∣∣∣∣2.
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Subsequently the function h fulfills h(t) ≤ X + Y
t∫

0

h(θ)dθ,where X = 3E
∣∣∣∣ε(0)− ϕ(0)

∣∣∣∣2
and Y = 3

(Γ(κ))2
v2κ−1

(2κ−1)

(
sb(q)

(
1 + v2sf (q)

)
+ Tr(Q)sb1(q)

(
1 + v2sg(q)

))
.

By means of applying Gronwall inequality, we found that

h(t) ≤ Xexp(Y t).

Let ε(0) = ϕ(0). Then X = 0 and hence h(t) = 0 ∀ t ≥ 0. i.e.,

E
∣∣∣∣h1(t)− h2(t)

∣∣∣∣2 = 0.

Therefore,
2∫

0

∣∣∣∣h1(t)− h2(t)
∣∣∣∣2dP = 0.

Hence h1(t) = h2(t) a.s. ∀ t ∈ J . i.e.,

P
{
||h1(t, ω)− h2(t, ω)|| = 0 ∀ t ∈ J

}
= 1.

Hence the uniqueness is proved for the given stochastic fractional delay integrodifferential equation. �

4. Stability Analysis

In this part, we examine the quadratic mean of a trivial solution’s exponentially asymptotic stability.
Think about the stochastic fractional nonlinear system described below.

CDκh(t) = b
(
t, h(t),

t∫
0

f
(
t, θ, h(θ −∆)

))
dθ + b1

(
t, h(t),

t∫
0

g
(
t, θ, h(θ −∆)

))
dW (θ),

t ∈ J = [0, v],

h(t) = ε(0), t ∈ [−∆, 0],

(6)

where κ ∈ (1
2 , 1
)
, b, b1 ∈

(
J ×D×D, D

)
, andW =

{
W (t), t ≥ 0

} is a Q-Wiener process on a complete
probability space (Ω,G,P). From this point onward, lets consider that b(t, 0, 0) = b1(t, 0, 0) ≡ 0 for
almost every t. Consequently, equation (6) possesses trivial solution.

Definition 4.1. If there are constants K and r such that the trivial solution to equation (6) is exponentially

stable in the quadratic mean, then

E(||h(t)||2) ≤ KE
(
||ε(0)||2

)
exp(−rt), t ≥ 0,

where 1 > κ > 0, and κ1 = 1, 2, and κ.
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Lemma 4.1. Supposing that the hypothesis (H3) is valid, for any stochastic process

F : [0,∞)→ D which is strongly measurable with
r∫
0

E||F (t)||2dθ <∞, 0 < v ≤ ∞, the below inequality is

true on (0, v],

E||
t∫

0

Eκ,κ1
(
A(t− θ)κ

)
F (θ)dθ||2 ≤

(
M2/a

) t∫
0

exp
(
− ρ(t− θ)

)
E||F (θ)||2dθ,

where κ ∈ (1/2, 1) and κ1 = 1, 2 and κ.

Proof. Assume that the hypothesis (H3) holds; then ∃ a constant ρ > 0 andM > 0 3 for t ≥ 0,

||Eκ,κ1
(
Atκ

)
|| ≤Me−ρt, where 1 > κ > 0 and κ1 = 1, 2 and κ.

Using Holder’s inequality, we get r ≥ t > 0,

E||
t∫

0

Eκ,κ1
(
A(t− θ)κ

)
F (θ)dθ||2 ≤ E

( t∫
0

Mexp
(
− (ρ/2)(t− θ)

)
× exp

(
− (ρ/2)(t− θ)

)
||F (θ)||dθ

)2
≤ E

( t∫
0

Mexp
(
− (ρ/2)(t− θ)

)
dθ
)2

× E
( t∫

0

exp
(
− (ρ/2)(t− θ)

)
||F (θ)||dθ

)2
,

E||
t∫

0

Eκ,κ1
(
A(t− θ)κ

)
F (θ)dθ||2 ≤ (M2/ρ)

( t∫
0

exp
(
− ρ(t− θ)

)
E||F (θ)||dθ

)2
.

Thus, the lemma is established. �

Lemma 4.2. Supposing that the hypothesis (H3) is valid, then for any Bt− adapted predictable process ϕ :

[0,∞)→ D with
t∫

0

E||ϕ(θ)||2dθ <∞, 0 ≤ t, the below inequality is true on (0, v],

E||Eκ,κ1
(
A(t− θ)κ

)
ϕ(θ)dW (θ)||2 ≤M2

t∫
0

exp
(
− ρ(t− θ)

)
E||ϕ(θ)||2dθ, 1

2
< κ < 1,

where κ1 = 1, 2 and κ.

Theorem 4.1. Assuming that the conditions of theorem (3.1) are met, the solution of the equation (6) is

exponentially stable in the quadratic mean provided

Θ
(
ρ, rb, rb1 , rf , rg,M

)
=

3

(Γ(κ))2

v2κ−1

2κ− 1
M2
[(
rb/ρ

)(
1 + rfv

2
)

+ Tr(Q)rb1
(
1 + rgv

2
)]
.
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Proof. The solution of the equation (6) takes the form:

h(t) = Eκ
(
Atκ

)
ε(0)

+
1

(Γ(κ))

t∫
0

(t− θ)κ−1Eκ,κ
[
A(t− θ)κ

]
b
(
θ, h(θ),

θ∫
0

f
(
θ, τ, h(τ −∆)

)
dτ
)
dθ

+
1

(Γ(κ))

t∫
0

(t− θ)κ−1Eκ,κ
[
A(t− θ)κ

]
b1
(
θ, h(θ),

θ∫
0

g
(
θ, τ, h(τ −∆)

)
dτ
)
dW (θ).

By using Holder’s inequality and lemmas (4.1) and (4.2),

E||h(t)||2 ≤ 3M2exp
(
− at

)
E
∣∣∣∣ε(0)

∣∣∣∣2 +
3

(Γ(κ))2

M2

a

v2κ−1

2κ− 1

t∫
0

exp
[
− a(t− θ)κ

]

× E||b
(
θ, h(θ),

θ∫
0

f
(
θ, τ, h(τ −∆)

)
dτ
)
||2dθ

+
3

(Γ(κ))2
M2 v

2κ−1

2κ− 1
Tr(Q)

t∫
0

exp
[
− a(t− θ)κ

]

× E||b1
(
θ, h(θ),

θ∫
0

g
(
θ, τ, h(τ −∆)

)
dτ
)
||2dθ.

Using hypothesis (H3) and for b(t, 0, 0) = b1(t, 0, 0) ≡ 0 a.e. t gives,

exp(ρt)E||h(t)||2 ≤ 3M2E
∣∣∣∣ε(0)

∣∣∣∣2
+

3

(Γ(κ))2

M2

ρ

v2κ−1

2κ− 1

[
rb
(
1 + rfv

2
)] t∫

0

exp(ρθ)E||h(θ)||2dθ

+
3

(Γ(κ))2
M2 v

2κ−1

2κ− 1
Tr(Q)

[
rb1
(
1 + rgv

2
)] t∫

0

exp(ρθ)E||h(θ)||2dθ

≤ 3M2E||ε(0)||2 +
3

(Γ(κ))2
M2 v

2κ−1

2κ− 1

×
[
(rb/a)

(
1 + rfv

2
)

+ Tr(Q)rb1
(
1 + rgv

2
)] t∫

0

exp(ρθ)E||h(θ)||2.

With the help of Gronwall’s inequality, the above inequality becomes,

exp(ρt)E||h(t)||2 ≤ 3M2E||ε(0)||2exp
[

3

(Γ(κ))2

v2κ−1

2κ− 1
M2
[(

1 + rfv
2
)rb
ρ

+ Tr(Q)rb1
(
1 + rgv

2
)]
t

]
.

As a result, E||h(t)||2 ≤ KE||ε(0)||2exp(−rt), t ≥ 0 where r = ρ− κ1 and K = 3M2. �
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5. Conclusion

This study delves into the analysis of stochatic fractional delay integrodifferential equations under
the influence of Gaussian noise. Utilizing the Picard-Lindelof successive approximation scheme, the
research establishes the existence and uniqueness of solutions. Additionally, the stability of these
solutions is demonstrated through the application of the Mittag-Leffler function. These findings
contribute valuable insights into the dynamics and behaviour of complex systems governed by stochastic
fractional equations, furthering our understanding or their mathematical properties and potential
applications.
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