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Abstract. For any QTAG-module M , we consider pairs {S1, S2} of submodules of M such that S2 is
maximal with respect to the property S1 ∩ S2 = {0}, and in some special cases we settle the question
for certain kind of submodules, thus S2 is not h-pure submodule of M . In addition, some interesting
properties regarding center of h-purity are obtained. Moreover, some characterizations of maximality of
submodules are investigated.
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1. Introduction and Fundamentals

As it is well-known, module theory can only be processed by generalizing the theory of abelian
groups that provide novel viewpoints of various structures for torsion abelain groups. The theory of
torsion abelian groups is significant as it generates the natural problems in QTAG-module theory. The
notion ofQTAG (torsion abelian group like) module is one of themost important tool in module theory.
Its importance lies behind the fact that this module can be applied in order to generalized torsion abelian
group accurately. Significant work onQTAG-module was produced by many authors, concentrating in
establishing when torsion abelian groups are actually QTAG-modules. In 1976, Singh [18] began his
investigations into the torsion abelian groups or TAG-modules over an arbitrary (associative, unitary)
ring R, defined by satisfying the following two conditions.
(i) Every finitely generated submodule of any homomorphic image ofM is a direct sum of uniserial
modules.
(ii) Given any two uniserial submodules U1 and U2 of a homomorphic image ofM , for any submodule
N of U1, any non-zero homomorphism φ : N → U2 can be extended to a homomorphism ψ : U1 → U2,
provided the composition length d (U1/N) ≤ d (U2/φ(N)) holds.
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It was shown that, for almost all applications, one of these conditions was not needed; ignoring
this nearly superfluous condition, the slightly more general concept of a QTAGmodule was initiated
by the same author in [19]. Since then, many forms of this notion have been defined and studied
by many authors. For instance, in a subsequent series of articles, the authors [14] have explored the
same kind of developments for nice bases of QTAG-modules, and extended some results analogous to
abelian groups from [1,3]. Likewise, in [7] the author also have investigate the criteria of exposing
finitely generated submodules of QTAG-modules and obtained the results for the QTAG-module
by generalizing [2, Problem 1-2]. The present work, then, translates a few of the ideas of the abelian
p-groups from [16] over to the theory of modules with the above condition (i) only. It is fairly to note
that many results in QTAG-modules are valid to the earlier results of TAG-modules [17].

We begin by reviewing some terminology. Rings considered here are with unity (1 6= 0) and
modules are unital QTAG-modules; our notations and terminology are standard and may be found in
the texts [4, 5]. A moduleM over a ring R is called uniserial if it has a unique decomposition series of
finite length. A moduleM is called uniform if intersection of any two of its non-zero submodules is
non-zero. An element x inM is called uniform if xR is a non-zero uniform (hence uniserial) module.
For any moduleM with a unique decomposition series, d(M) denotes its decomposition length. For
any uniform element x of M , its exponent e(x) is defined to be equal to the decomposition length
d(xR). For any 0 6= x ∈ M , HM (x) (the height of x in M) is defined by HM (x) = sup{d(yR/xR) :
y ∈M,x ∈ yR and y uniform }. For k ≥ 0, Hk(M) = {x ∈M | HM (x) ≥ k} denotes the submodule of
M generated by the elements of height at least k and Hk(M) is the submodule ofM generated by the
elements of exponents at most k.

Next, we review the following concepts. The set of modules {Hk(M)}k=0,1,...,∞ forms a base for the
neighbourhood system of zero. This gives rise to a topology known as h-topology. The closure of a
submodule S ⊂ M is defined as S = ∩∞k=0 (S +Hk(M)) and it is closed with respect to h-topology
if S = S. The sum of all simple submodules of M is called the socle of M , denoted by Soc(M).
For any k ≥ 0, Sock(M) is defined inductively as follows: Soc0(M) = 0 and Sock+1(M)/Sock(M) =

Soc
(
M/Sock(M)

).
Moreover, we add some basic definitions as well from [11]. The moduleM is called h-divisible if

H1(M) =M and it is h-reduced if it does not contain any h-divisible submodule. In other words, it is
free from the elements of infinite height. A submodule S ofM is h-pure inM if S ∩Hk(M) = Hk(S),
for every integer k ≥ 0. A submodule S ofM is h-neat inM if S ∩H1(M) = H1(S).

2. Main Results

The concept of high submodules of QTAG-modules was introduced by Khan in [10]: A submodule
S1 ofM is high if it is maximal with respect to having zero intersection with Hω(M). Mehdi [13] and,
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subsequently, Hasan [6] have also consider and give further results concerning these high submodules:
A submodule S2 ofM maximal with respect to disjointness from S1 is called a S1-high submodule
of M , or S1-high in M . This kind of S1-high submodules has been widely investigated in [8] and
discussed its properties. Among the properties of S1-high submodule is their h-purity inM . One of
first questions, namely, for which submodules S1 it is clear that all S1-high submodules are h-pure,
was recently unanswered. This question has been investigated in [9] to characterizing submodules S1
ofM such that all S1-high submodules are `-imbedded, in particular, h-pure inM . Our global aim
here is to establish in this direction some new characterizations of such high submodules, and thereby
to examine some assertions in the light of h-purity as well as maximality of these high submodules.

So, we are giving our first main characterization.

Theorem 2.1. Suppose {S1, S2} is a pair of submodules of a QTAG-moduleM such that S2 is S1-high inM .

Then either for t ≥ 0 the equality S2 ∩Ht(M) = Ht (S2) hold or ∃ uniform elements u ∈ S2, v ∈ Soc (S1) such

that HM (u) = HM (v) < HM (v − u).

Proof. Assume that S2∩Ht(M) 6= Ht (S2). Then there exist equations tc = x for some c ∈M , x ∈ S2 and
t is an integer. But observing that these equations have no solution for c ∈ S2. Among all such equations,
let ty = z be one for which t is least positive integer for some y ∈M , z ∈ S2. By the h-neatness of S2
and t > 1, we have d(yR/aR) = t for some a ∈ S2, so thatH1 ((y

′ − a)R) = 0where d (yR/y′R) = t−1.
Thus, y′ − a ∈ Soc(M) where d (yR/y′R) = t − 1. Since Soc(M) = Soc (S2) ⊕ Soc (S1), we get that
y′ − a = u+ v, for some u ∈ Soc (S2) , v ∈ Soc (S1).

Let us assume now thatHM (v) ≥ t− 1. then v = w′ for some w ∈M and d (wR/w′R) = t− 1, which
in tern, yields that a + u = Ht−1((y − w)R) = b′ for some b ∈ S2 and d (bR/b′R) = t − 1. This gives
that y′ = b′ + v with d (yR/y′R) = d (bR/b′R) = t− 1 or, y′ = b′ = z with d (yR/y′R) = d (bR/b′R) = t,
which is contrary to the choice of t. Therefore,HM (v) < t− 1 and y′ − (u+ a) = v. If u = −(u+ a), we
have

HM (u) = HM (v) < HM (v − u),

and the result follows. �

Now, we proceed by proving

Corollary 2.1. Suppose {S1, S2} is a pair of submodules of a QTAG-moduleM such that S2 is S1-high inM .

If either S2 ⊆ H1(M) or Soct (S1) = H1

(
Soct (S1)

)
for some t, then S2 ∩Ht(M) = Ht (S2).

Proof. By h-neatness of S2 and S2 ⊆ H1(M), we have S2 = H1 (S2). Thus, for each u ∈ S2 and
v ∈ Soct (S1), either HM (u) =∞ or, HM (v) =∞. We are done. �
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The following, then, reformulates Theorem 2.1.

Proposition 2.1. Suppose {S1, S2} is a pair of submodules of a QTAG-moduleM such thatM = S1 and let

S2 be S1-high inM . If S2 is not h-pure inM , then there exist uniform elements u ∈ S2, v ∈ Soc (S1) such that

HM (u) = 0 = HM (v) < HM (v − u).

Proof. In virtue of Theorem 2.1, (S2 + y) ∩ S1 6= 0 for some y ∈M . Then there exist nonzero uniform
elements of S1 of the form x+ ty and t a positive integer. Let t1 > 0 such that u+ t1y ∈ S1, u+ t1y 6= 0

for some u ∈ S2.
Since v = u+y′ where d (yR/y′R) = t2 for some t2 < t, we have v ∈ Soc (S1) andHM (u) = HM (v) <

HM (v− u) = t2. Now,Ht−1 (y
′) = z where d (yR/y′R) = 1 for some z ∈ S2, so that by choice of z there

exists w ∈ S2 such that Ht−1(wR) = z = Ht(yR). Hence Ht−1 ((y
′ − w)R) = 0 where d (yR/y′R) = 1

and t− 1 > 0. By using equalityM = S1, we obtain that y′−w ∈ S1 where d (yR/y′R) = 1. It is plainly
observe that y′ − w 6= 0where d (yR/y′R) = 1, so that t2 = 1. This gives that HM (u) = HM (v) = 0, as
wanted. �

Analogous to center of purity in abelian group [15], it was given the following notion in [12].

Definition 2.1. A submodule S of a QTAG-module M is called a center of h-purity in M if every S-high

submodule ofM is h-pure inM .

Now, we will verify the validity of the following proposition.

Proposition 2.2. Suppose {S1, S2} is a pair of submodules of a QTAG-moduleM such that S2 is S1-high in

M . If φ is a homomorphism onM such that

(i) Soct (S1) ⊂ kerφ for some t;

(ii) HM (u) = HM (φ(v)) for all u ∈ S2.

Then S2 ∩Ht(M) = Ht (S2).

Proof. For u ∈ S2 and v ∈ S1, we have

HM (u) = HM (φ(u)) = HM (φ(u− v)) ≥ HM (u− v) = HM (v − u),

so that the condition in Theorem 2.1 alternative to h-purity of S2 cannot hold. Hence S2 ∩Ht(M) =

Ht (S2), and we are done. �

The following corollary extends [12, Theorem 6] to QTAG-modules.

Corollary 2.2. Let M be a QTAG-module M with H∞(M) = ∩tHt(M) for some t, and H∞+1(M) = 0.

Then any submodule S ofM such thatHk(M) ⊇ S ⊇ Hk+1(M) for some k, 0 ≤ k ≤ ∞ is a center of h-purity

inM .
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Proof. Let φ : M → M/S be the canonical homomorphism, so that Hk+1(M/S) = 0, and hence
HM (φ(u)) ≤ k for all u ∈M,u /∈ S. Suppose thatHn(φ(v)) = φ(u) for some integer n and u /∈ S. Then
Hn(v) + w = u for some w ∈ S. Since S ⊆ Hk(M), n ≤ k, and for n < ∞,∃ x ∈ M such that x′ = w

where d (xR/x′R) = n. Hence, y′ = u where d (yR/y′R) = n and y = v + x. ThusHM (u) ≥ HM (φ(u)).
By hypothesis, HM (u) ≤ HM (φ(u)). Therefore, HM (u) = HM (φ(u)) for all u ∈M,u /∈ S. The proof is
over. �

Next, we concentrate on the following easy observation.

Lemma 2.1. Suppose {S1, S2} is a pair of submodules of a QTAG-moduleM such that S2 ⊆ S1 and let S2 be

the maximal submodule ofM . Then S1 is a center of h-purity inM if and only if for all u ∈M,uR ∩ S1 = 0

and HM (u) = 0 imply HM (u+ v) = 0 for all v ∈ S2.

Proof. Suppose S1 satisfies the condition. Then by Proposition 2.1, S1 is a center of h-purity inM .
Next, we deal with the converse implication. Then there exists a submodule S3 ofM maximal disjoint

from S1 containing u. For v ∈ S2, let us assume thatHM (v) > 0, it is clear thatHM (u+v) = HM (u) = 0.
We next assume that v ∈ S2 and HM (v) = 0, then v = v1 + v2 where e (v1) = k for some k ≥ 0 and
e (v2) = 1. Therefore HM (v2) =∞, and hence HM (v) = HM (v1) = 0.

In this connection, observe thatHM (u+v) = HM (u+ v1) ≥ n (say). Letw ∈M such thatw′ = u+v1

where d (wR/w′R) = n. Then w′ = u′ where d (wR/w′R) = t, d (uR/u′R) = k and t = n + k. From
the h-pureness of S3,∃ a ∈ S3 such that a′ = u′ where d (aR/a′R) = t and d (uR/u′R) = k. Hence
Hk ((a

′ − u)R) = 0 where d (aR/a′R) = n. Since S2 ⊆ S1 and S3 ∩ S1 = 0, we obtain a′ = u where
d (aR/a′R) = n. Therefore, by hypothesis on u, we have n = 0. Thus. HM (u+ v1) = HM (u+ v) = 0,
as desired. �

Motivated by center of h-purity, we introduce the following.

Definition 2.2. A submodule S of aQTAG-moduleM containing maximal submodule is called a special center

of h-purity inM if S is a center of h-purity and ∃ u ∈M such that u 6= 0, uR ∩ S = 0.

So, we will now argue the following theorem.

Theorem 2.2. Suppose {S1, S2} is a pair of submodules of a QTAG-moduleM such that 0 6= S2 6=M and let

S2 be the maximal submodule ofM . The following are equivalent.

(i) S2 is h-divisible;

(ii) Every submodule ofM is a center of h-purity inM ;

(iii)M contains a special center of h-purity.

Proof. Clearly (i) implies (ii). Assuming (ii) then to verify (iii), letM be a QTAGmodule such that
0 6= S2 6=M . It follows that S2 is a special center of h-purity.
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Finally, we assume (iii) is true and verify (i). Let S2 be a special center of h-purity inM . Assume that
S2 is not h-divisible, then Soct (S2) is not h-divisible for some t. Therefore, there exists a ∈ Soct (S2)
such that HM (a) = 0. Let 0 6= u ∈ M,uR ∩ S1 = 0 and v = u′ + a where d (uR/u′R) = 1. Clearly
vR ∩ S1 = 0 andHM (v) = 0. HenceHM (v − a) ≥ 1. This a contradiction by Lemma 2.1 and completes
the proof. �

If S1 is maximal disjoint from S2 inM , we consider here certain circumstances under which we can
reduce the assumption of the h-purity of S1 inM to an analogous assumption in a submodule ofM , or
in a quotient submodule ofM .

We can now give the second main characterization of this paper.

Theorem 2.3. Suppose {S1, S2} is a pair of submodules of a QTAG-moduleM such thatM = S1 + S2. Then

(i) For a submodule S3 ⊆ S2, S1 is S3-high inM if and only if S1 ∩ S2 is S3-high in S2.

(ii) If (S1 ∩ S2) ∩Ht (S2) = Ht (S1 ∩ S2) then S1 ∩Ht(M) = Ht (S1).

(iii) If S4 is a maximal submodule of S2 and S1 ∩Ht(M) = Ht (S1) then (S1 ∩ S2)∩Ht (S2) =Ht (S1 ∩ S2).

Proof. (i) If S1 is S3-high in M and u ∈ S2, u /∈ S1 ∩ S2 then (S1 + u) ∩ S3 6= 0. Hence there exist
v ∈ S1, t ≥ 0 such that v + tu ∈ S3 and v + tu 6= 0. Since S3 ⊆ S2, we obtain v + tu ∈ S2, and so that
v ∈ S1 ∩ S2. Thus, [(S1 ∩ S2) + u] ∩ S3 6= 0.

Conversely, if S1 ∩ S2 is S3-high in S2 and x ∈ M,x /∈ S1 then by hypothesis x = v + u for
some v ∈ S1, u ∈ S2. Since x /∈ S1, we get u /∈ S1 ∩ S2, and hence [(S1 ∩ S2) + u] ∩ S3 6= 0. Let
v ∈ S1 and n be any integer, ∃ 0 6= z ∈ M such that z = y + nu ∈ S3. This, in tern, implies that
y+nx = z+nv, and so y−nv+nx = z ∈ S3. Henceforth, y−nv ∈ S1; that is, (S1 + x)∩S3 6= 0. Since
0 = S1 ∩ S2 ∩ S3 = S1 ∩ S3, S1 is S3-high inM , as stated.
(ii) If (S1 ∩ S2) ∩Ht (S2) = Ht (S1 ∩ S2) and let kx = v ∈ S1, x = y + u for some y ∈ S1, u ∈ S2 and
k ≥ 0. Then v = kx = ky = ku, and so that v − ky = ku ∈ S1 ∩ S2. From the h-purity of S1 ∩ S2 in
S2,∃ w ∈ S1 ∩ S2 such that kw = v − ky. Hence k(y + w) = v such that y + w ∈ S1, as needed.
(iii) If S4 ⊆ S2 and S1 ∩ Ht(M) = Ht (S1), let ku = v ∈ S1 ∩ S2 for some u ∈ S2, k ≥ 0. From the
h-purity of S1 in M ∃ y ∈ S1 such that ky = v. Then k(y − u) = 0, and so that y − u ∈ S4 ⊆ S2.
Consequently, y ∈ S1 ∩ S2. Therefore, (S1 ∩ S2) ∩Ht (S2) = Ht (S1 ∩ S2), as required. �

The following characterization is a slight variation on Theorem 2.1 and 2.3.

Theorem 2.4. Suppose {S1, S2} is a pair of submodules of a QTAG-moduleM such that S2 is S1-high inM ,

and let S3 be the maximal submodule ofM such that S3 ⊆ S1. The following are equivalent.

(i) S2 ∩Ht(M) = Ht (S2) for some t > 0;

(ii) (S2 + S3) /S3 is h-pure inM/S3;

(iii) (S2 + S3) /S3 is (S1/S3)-high inM/S3.
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Proof. (i) ⇒ (ii). It is evident that if S2 ∩ Ht(M) = Ht (S2) then (S2 + S3) ∩ Ht(M) = Ht (S2 + S3).
Since S2 + S3 = S2⊕ S3 and S3 ∩Ht(M) = Ht (S3), then (S2 + S3)∩Ht(M) =Ht (S2 + S3) if and only
if (S2 + S3) /S3 is h-pure inM/S3.
(iii)⇒ (ii). If (S2 + S3) /S3 is (S1/S3)-high inM/S3, then it plainly follows that (S2 + S3) /S3 is h-pure
inM/S3.
(i)⇒ (iii). If S2 ∩Ht(M) = Ht (S2) and let x+ S3 ∈M/S3, x+ S3 /∈ (S2 + S3) /S3. Then x /∈ S2, and
there exist y ∈ S2, t ≥ 0 such that y + tx ∈ S1 and y + tx 6= 0. If y + tx − a ∈ S3, then na = 0 for
some integer n. Hence ny = −ntx, and from h-purity of S2 inM, ∃ b ∈ S2 such that ntb = ny. Then
n(tb − y) = 0, and so that tb = y because S2 ∩ S3 = 0. Now, a = y + tx = t(b + x) ∈ S3, therefore,
b + x ∈ S3. But this contradicts that x + S3 /∈ (S2 + S3) /S3. Henceforth, (y + tx) + S3 ∈ S1/S3

and y + tx+ S3 6= S3. By the hypothesis of disjointness, we get that (S2 + S3) /S3 is (S1/S3)-high in
M/S3. �

We recollect that a QTAG-moduleM is defined to be bounded if ∃ t ≥ 0 such that HM (u) ≤ t, for
some u ∈M (see [18] for more details).

Besides, we state the following.

Definition 2.3. Let S be the maximal submodule of a QTAG-module M with 0 6= S 6= M . We say that

M satisfies the maximal element condition if each coset of S in M contains an uniform element u such that

HM (u) = HM (u+ S).

The following assertion relates above concept to our investigation.

Theorem 2.5. Suppose {S1, S2} is a pair of submodules of a QTAG-moduleM such that 0 6= S2 6=M and let

S2 be the maximal submodule ofM , and suppose that

(i)M satisfies the maximal element condition;

(ii)M/S2 is h-divisible;

(iii) ∩t ∩k Hk (S2) is bounded for some t ≥ 0.

ThenM is a summand ofM .

Proof. In each coset of S2 inM , we choose an element u such that HM (u) = HM (u+ S2). Then, by
(ii) HM (u) =∞. Let S1 be the submodule ofM generated by the elements inM such that HM (u) =

HM (u+ S2), for some u ∈M . Then it is fairly to see that S1 ∩ S1 ⊆ ∩t ∩k Hk (S2), and hence by (iii)

S1 ∩ S2 is bounded. Therefore,M is a summand ofM , as required. �

3. Open Problems

We shall pose in this section some questions that remain unanswered yet.
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Problem 3.1. Suppose {S1, S2} is a pair of submodules of a QTAG-moduleM such that S2 is S1-high inM .

What are the conditions under which S1 ∼= S2?

Problem 3.2. What are the conditions under which any center of h-purity between the QTAG-moduleM and

Soc(M) is special center of h-purity?

Problem 3.3. Does it follow that the Theorem 2.5 remains true without the given conditions (i), (ii), and (iii)?
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