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Abstract. In this study, we explore new associated curves in Minkowski 3−space E3
1 by using the Darboux

frame {T, ζ, η} instead of Frenet frame {T,N,B} of the spacelike curve α having a spacelike principal
normal lying on a timelike surfaceM . These associated curves, denoted as D̄n, D̄r , and D̄o, lie in planes
defined by {ζ, η}, {T, η}, and {T, ζ}, respectively. We establish relationships between the Darboux frame
and the curvatures kg , kn, τg of the curve α as well as the Frenet apparatus of the associated curves.
Furthermore, we derive necessary and sufficient conditions for these associated curves to exhibit helical or
spherical characteristics. Finally, we present relevant examples.
2020 Mathematics Subject Classification. 53A35; 53B30; 53C50.
Key words and phrases. spacelike curve; associated curves; spherical curves; helices; isophote curves;
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1. INTRODUCTION

Minkowski space geometry, integral to both differential geometry and physics, particularly in general
relativity, introduces E3

1 as a non-degenerate (spacelike or timelike) surfaceM due to its unique metric
properties ( [13]). For any arbitrary curve α onM , a Darboux frame {T, ζ, η}, comprising the unit
tangent vector field T of α, the unit vector field η representing the surface’s unit normal restricted to α,
and the timelike vector field ζ = η × T , can be constructed.

Various helical types, including general helices, isophote curves, and relatively normal-slant helices,
play crucial roles in diverse fields such as Computer Aided Geometric Design ( [2]), medical sciences
( [3]), engineering ( [5]), and biology ( [11]). Notably, regular curves inMinkowski space are classified
as general helices if and only if their conical curvature τ/κ is constant ( [12]). Dogan ( [1]) explored
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isophote curves on timelike surfaces, providing necessary and sufficient conditions for their existence
and introduced a specific function,

δo =
knτ

′
g − τgk′n(

k2
n − τ2

g

)3/2 − kg(
k2
n − τ2

g

)1/2 , (1.1)

which remains constant. These curves are valuable in surface interrogation for detecting and visualizing
small irregularities ( [4]).

Nešović et al. ( [6]) defined relatively normal-slant helices on non-degenerate surfaces in Minkowski
3−space and introduced another constant function,

δr =
kgτ
′
g − τgk′g(

k2
g + τ2

g

)3/2 − kn(
k2
g + τ2

g

)1/2 , (1.2)

expressing these helices in terms of geodesic curvature, normal curvature, and geodesic torsion.
In this paper, we adopt the Darboux frame {T, ζ, η} instead of Frenet frame {T,N,B} in Minkowski

3−space E13 to introduce new associated curves, denoted as D̄n, D̄r, and D̄o. These curves lie in planes
spanned by {T, ζ}, {T, η}, and {T, ζ}, respectively, for the spacelike curve α with a spacelike principal
normal on a timelike surface M . Our study establishes relationships between the Darboux frame
and the curvatures kg, kn, τg of α, and the Frenet apparatus of the associated curves. Consequently,
we derive necessary and sufficient conditions for the associated curves to exhibit helical or spherical
characteristics. Relevant examples are also presented to illustrate our findings.

2. FUNDAMENTAL CONCEPTS

Minkowski space E3
1 is a real vector space, denoted as E3, equipped with the standard indefinite flat

metric 〈·, ·〉, defined as:
〈x, y〉 = −x1y1 + x2y2 + x3y3,

for any two vectors x = (x1, x2, x3) and y = (y1, y2, y3) in E3
1. Because this metric is indefinite, any

vector x can have one of three causal characters: it can be spacelike, timelike, or null (lightlike), if
〈x, x〉 > 0,〈x, x〉 < 0, or 〈x, x〉 = 0 and x 6= 0, respectively ( [7]). In particular, the vector x = 0 is
considered spacelike. The norm (length) of a vector x ∈ E3

1 is given by ‖x‖ =
√
|〈x, x〉|. If ‖x‖ = 1, we

refer to it as a unit vector.
The vector product of two vectors u = (u1, u2, u3) and v = (v1, v2, v3) in E3

1 is defined as:

u× v = (u3v2 − u2v3, u3v1 − u1v3, u1v2 − u2v1).

Let u, v, and w be the vectors in E3
1. The following relations hold:

(i) 〈u× v, w〉 = det(u, v, w) = [u, v, w],

(ii) u× (v × w) = −〈u,w〉 v + 〈u, v〉w,

(iii) 〈u× v, u× v〉 = −〈u, u〉 〈 v, v〉+ 〈u, v〉2.
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An arbitrary curve α : I → E3
1 can be locally classified as spacelike, timelike, or null (lightlike) if all of

its velocity vectors α′ are spacelike, timelike, or null, respectively ( [7]). A spacelike or timelike curve
is also referred to as non-null curve.

The Frenet formulae for a unit-speed spacelike or timelike curve α with a non-null principal normal
N in E3

1 are as follows ( [14]):
T ′(s)

N ′(s)

B′(s)

 =


0 ε1κ(s) 0

−ε0κ(s) 0 −ε0ε1τ(s)

0 −ε1τ(s) 0



T (s)

N(s)

B(s)

 , (2.1)

where κ(s) and τ(s) are the first curvature and the second curvature of α, and it holds:

〈T, T 〉 = ε0 = ±1, 〈N,N〉 = ε1 = ±1, 〈B,B〉 = −ε0ε1, (2.2)

T ×N = −ε0ε1B, N ×B = ε0T, B × T = ε1N. (2.3)

To determinewhether the curve α lies on a Lorentzian sphere inMinkowski space, we give the following
Theorems.

Theorem 1. ( [8,9]) Let α(s) be a unit-speed spacelike curve inMinkowski space E3
1, with the non-null principal

normalN , and with curvature κ(s) and torsion τ(s) satisfying 1
κ 6= 0 and 1

τ 6= 0 for each s ∈ I ⊆ R. The image

of α lies on a Lorentzian sphere of radius r > 0 if and only if the following conditions hold:(
1

κ

)2

−
[(

1

κ

)′ 1

τ

]2

= ε1r
2,

and
τ

κ
=

[
1

τ

(
1

κ

)′]′
,

where ε1 = 〈N,N〉 = ±1.

Theorem 2. ( [10]) Let α(s) be a unit-speed timelike curve in Minkowski space E3
1, with curvature κ(s) 6= 0

and torsion τ(s) 6= 0 for each s ∈ I ⊆ R. The image of α lies on a Lorentzian sphere of radius r ∈ R+ if and

only if the following conditions hold: (
1

κ

)2

+

[(
1

κ

)′ 1

τ

]2

= r2,

and
τ

κ
= −

[
1

τ

(
1

κ

)′]′
.
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LetM be a timelike surface in Minkowski 3−space E3
1, parameterized as follows:

X (u, t) = (x1 (u, t) , x2 (u, t) , x3 (u, t)) .

where x1, x2, and x3 represent differentiable functions. The unit spacelike normal vector field onM is
denoted as

n(u, t) =
Xu ×Xt

||Xu ×Xt||
,

which plays a critical role on this surfaceM . Let α : I ⊂ R→M be a spacelike curve with a spacelike
principal normal lying onM . The Darboux frame, comprising the vector fields {T, ζ, η} is orthonormal
and consists of a unit tangential vector field: T = α′, a unit spacelike normal vector field: η = n(u, t)|α,
and a unit timelike vector field ζ = ±η × T . The sign in front of ζ is chosen in such a way that the
determinant det(T, ζ, η) = 1. The Darboux frame satisfies the following relationships:

〈T, T 〉 = 1, 〈ζ, ζ〉 = −1, 〈η, η〉 = 1, (2.4)

〈T, ζ〉 = 〈T, η〉 = 〈ζ, η〉 = 0, (2.5)

and
T × ζ = η, ζ × η = T , η × T = −ζ. (2.6)

The normal curvature kn(s), geodesic curvature kg(s) and geodesic torsion τg(s) of α are respectively defined
as:

kn (s) =
〈
η (s) , T ′ (s)

〉
, kg(s) =

〈
ζ (s) , T ′ (s)

〉
, τg(s) =

〈
η (s) , ζ ′ (s)

〉
, (2.7)

where s is the arc-length parameter of α. Hence Darboux frame’s equations have are as follows:
T ′(s)

ζ ′(s)

η′(s)

 =


0 −kg(s) kn(s)

−kg(s) 0 τg(s)

−kn(s) τg(s) 0



T (s)

ζ(s)

η(s)

 . (2.8)

Also, the Frenet frame and Darboux frame of the spacelike curve α are interrelated through a com-
position of hyperbolic rotation for an angle −θ and symmetry with respect to the null straight line
x1 = −x2, which is expressed as:

T

ζ

η

 =


1 0 0

0 cosh(−θ) sinh(−θ)

0 sinh(−θ) cosh(−θ)




1 0 0

0 0 1

0 −1 0



T

N

B

 , (2.9)

where θ(s) = ∠(η,N) is an angle between a timelike and a spacelike vector. This set of relations, as
described in (2.1), (2.8) and (2.9), yields valuable expressions:

kg = κ sinh θ, kn = −κ cosh θ, τg = θ′ − τ, κ2 = k2
n − k2

g . (2.10)
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Lemma 1. Let α be an arbitrary curve lying on a surface M in E3
1 with the geodesic curvature kg, normal

curvature kn and geodesic torsion τg. Then the following statements hold:

(i) α is a geodesic curve onM if and only if kg = 0;

(ii) α is an asymptotic curve onM if and only if kn = 0;

(iii) α is a line of principal curvature onM if and only if τg = 0.

Throughout the following sections, let R0 denote R\{0}.

3. ON DARBOUX DIRECTIONAL CURVES IN MINKOWSKI 3−SPACE

In this section, we introduce the concept of new associated curves for a spacelike curve lying on a
timelike surface in Minkowski 3−space. We establish conditions for a curve to be a relatively normal-
slant helix and an isophote curve based on the geodesic curvature, normal curvature, and geodesic
torsion of spacelike curves on the lightlike surface. Throughout this section, we assume that all curves
and surfaces are smooth and regular unless stated otherwise.

Let M be a timelike surface in Minkowski space E3
1, and α be a unit spacelike curve lying on M

with the Darboux frame {T, ζ, η}. The Darboux frame can be seen as a dynamic entity with an axis of
rotation determined by the Darboux vector (Arslan et al. 2016, Hartl 1993, Nešović et al. 2016, Öztürk
and Nešović 2016, Scofield 1995). This vector, which plays a pivotal role in this framework, is defined as

T ′ = D × T, ζ ′ = D × ζ, η′ = D × η. (3.1)

By using the relations (2.6), (2.8) and (3.1), we obtain the expression for the Darboux vector:

D = τgT − knζ + kgη. (3.2)

To understanding of the geometric properties associated with the Darboux frame and the curve α, we
introduce three vector fields along the spacelike curve α, each lying in the normal plane T⊥ = Sp {ζ, η},
the rectifying plane ζ⊥ = Sp {T, η} and the osculating pane η⊥ = Sp {T, ζ}:

• The normal Darboux vector field Dn = −knζ + kgη,
• The rectifying Darboux vector field Dr = τgT + kgη,
• The osculating Darboux vector field Do = τgT − knζ,

respectively.
Additionally, we have a vector field k along the curve α. There is an interesting relationship between

the vector field k and the Darbox frame {T, ζ, η} of α. Specifically, we can express k as follows:

k(s) = k1(s)T (s) + k2(s)ζ(s) + k3(s)η(s), (3.3)
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where k1(s), k2(s) and k3(s) are scalar functions in the arc length parameter s of α, and εk is a value
from the set {−1, 0, 1} such that:

〈k, k〉 = k2
1 − k2

2 + k2
3 = εk. (3.4)

With the help of α, we can define a curve β = β (s) with the same parameter as α, such that β is an
integral curve of k (i.e., β′ (s) = k). We then provide the following definition:

Definition 1. Let α be a unit spacelike curve lying on a timelike surfaceM in E3
1, and let k be a vector field

as given in (3.3). A curve β is called a k-directional Darboux curve of α if β is an integral curve of k (i.e.,

β′ = k).

3.1. D̄n−direction curve. The unit normal Darboux vector, denoted as D̄n, is defined as follows:

D̄n =
−knζ + kgη√∣∣k2

g − k2
n

∣∣ if (kg, kn) 6= (0, 0).

Now, consider a curve β as a D̄n−direction curve of the curve α. According to Definition 1, we can
establish the following relationship:

β′ = D̄n.

By using the relation (2.10), β′ is a unit timelike vector, which implies that β is a unit speed timelike
curve with the arc length equal to s. The unit tangent vector Tβ of β is then given by:

Tβ =
−knζ + kgη√

k2
n − k2

g

. (3.5)

Next, by differentiating equation (3.5) with respect to s and using the relation (2.8), we can deduce
that:

T ′β = −
[
kgk
′
n − knk′g
k2
n − k2

g

+ τg

]
T ′√
k2
n − k2

g

,

and since ‖T ′‖ =
√
k2
n − k2

g ,

T ′β = −εD̄n
T ′

‖T ′‖
, (3.6)

where εD̄n =
kgk′n−knk′g
k2
n−k2

g
+ τg.

By taking the norm of equation (3.6), we obtain
∥∥∥T ′β∥∥∥ = εεD̄n , where ε = ±1 (εεD̄n > 0). Then, the unit

normal vector field Nβ of β is given by
Nβ = −ε T ′

‖T ′‖
, (3.7)

which is a spacelike vector. Then, form the relations (3.6) and (3.7), the curvature κβ of β is given by

κβ =
∥∥∥T ′β∥∥∥ =

∥∥D̄n

∥∥ = εεD̄n . (3.8)

Furthermore, using equations (2.8), (3.5), and (3.7), the binormal vector field Bβ of β can be found as

Bβ = Tβ ∧Nβ = εT.
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Moreover, the torsion of β is given by

τβ = −
〈
B
′
β, Nβ

〉
=
√
k2
n − k2

g , (3.9)

respectively. Then, we can state the following theorem:

Theorem 3. Let α be a unit speed spacelike curve with the spacelike principal normal lying on a timelike surface

M in E3
1, and let β be a D̄n-direction curve of α. Then, β is a unit speed timelike curve, and its Frenet vectors

are given by

Tβ = D̄n, Nβ = −ε T ′

‖T ′‖
, Bβ = εT,

and its curvatures are given by

κβ = εεD̄n , τβ =
√
k2
n − k2

g ,

where εD̄n =
kgκ′n−κnκ

′
g

k2
n−κ2

g
+ τg, and ε = ±1.

From the relation (2.10) and Thereom 3, we can give the following corollary.

Corollary 1. Let α be a unit speed spacelike curve with the spacelike normal lying on a timelike surfaceM in

E3
1. Then, D̄o−direction curve is a helix if and only if the curve α is a helix.

The curve β is also the spherical image of the normal Darboux vector field. Namely, β lies on a
Lorentzian sphere with radius r ∈ R+. According to Theorem 2, we have the following relationship:(

1

κβ

)2

+

[
1

τβ

(
1

κβ

)′]2

= r2 = constant.

This implies that
κ′β = ∓τβκβ

√
r2κ

2

β − 1.

By utilizing the expressions for κβ and τβ as defined in Theorem 3, we can derive the following
relationship:

ε′D̄n = ∓εD̄n
√
k2
n − k2

g

√
r2ε2

D̄n
− 1.

If r2ε2
D̄n
− 1 = 0 for all s, then ε′

D̄n
= 0, leading to κβ = 1

r = constant. However, given that β is a
spherical curve, Theorem 2, meaning τβ

κβ
= 0. This aligns with the condition τβ =

√
k2
n − k2

g = 0 which
is coincide with (kg, kn) 6= (0, 0). Therefore, r2ε2

D̄n
− 1 6= 0 for all s, and we can express the above

relation as follows:
ε′
D̄n

rε2
D̄n√

1− 1
r2ε2

D̄n

=
√
k2
n − k2

g . (3.10)

Taking integrate the relation (3.10), we have

εD̄n =
1

r
sec

(∫ √
k2
n − k2

gds

)
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Conversely, assuming εD̄n = 1
r sec

(∫ √
k2
n − k2

gds
)
and r ∈ R+, we can deduce the following relation-

ships from Theorem 3
1

κβ
=

1

εεD̄n
= εr cos

(∫ √
k2
n − k2

gds

)
,

and
1

τβ
=

1√
k2
n − k2

g

,

where (kg, kn) 6= (0, 0) for all s. These relationships, in turn, lead to:

τβ
κβ

+

[
1

τβ

(
1

κβ

)′]′
= 0.

From Theorem 2, we can conclude that the curve β lies on a Lorentzian sphere with the radius r ∈ R+.
Therefore, we can state the following theorem:

Theorem 4. Let α be a unit speed spacelike curve with the spacelike normal lying on a timelike surfaceM in E3
1,

and let β be a D̄n−direction curve of α. Then, β lies on a Lorentzian sphere with the radius r ∈ R+ if and only if

εD̄n =
1

r
sec

(∫ √
k2
n − k2

gds

)
,

everywhere (kn,kg) 6= (0, 0).

3.2. D̄r−direction curve. The unit rectifying Darboux rector is defined as:

D̄r =
τgT + kgη√
k2
g + τ2

g

if (kg, τg) 6= (0, 0) .

Consider β̄ as a D̄r−direction curve of the curve α. Then, from Definition 1, we have

β̄′ = D̄r.

which is a unit spacelike vector. Thus, the curve β̄ is a unit-speed spacelike curve.with the arc length
equal to s. Then, the unit tangent vector Tβ̄ of β̄ is given by:

Tβ̄ =
τgT + kgη√
k2
g + τ2

g

. (3.11)

Differentiating equation (3.11) with respect to s and using the relation (2.8), we get

T ′β̄ =

[(
kgτ
′
g − τgk′g

)
k2
g + τ2

g

− kn

]
ζ ′√

k2
g + τ2

g

.

Since ‖ζ ′‖ =
√
k2
g + τ2

g , we obtain

T ′β̄ = −εD̄r
ζ ′

‖ζ ′‖
, (3.12)
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where εD̄r =
kgτ ′g−τgk′g
k2
g+τ2

g
− kn. Then, the normal vector field of the curve β̄ is given by:

Nβ̄ = −ε ζ ′

‖ζ ′‖
, (3.13)

is a spacelike vector, where ε = ±1 such that εεD̄r > 0. Therefore, the curvature of β̄ can be fond as
κβ̄ = εεD̄r . Also, from the relations (2.6), (2.8), (3.11) and (3.13), the binormal vector field Bβ̄ of β̄ is
given by

Bβ̄ = −Tβ̄ ∧Nβ̄ = εζ, (3.14)

Furthermore, the torsion of the curve β̄ is given by

τβ̄ = −
〈
B
′

β̄, Nβ̄

〉
=
√
k2
g + τ2

g ,

respectively. The following theorem can now be presented:

Theorem 5. Let α be a unit speed spacelike curve with the spacelike principal normal lying on a timelike surface

M in E3
1, and let β̄ be a D̄r−direction curve of α. Then, β̄ is a unit speed spacelike curve with a spacelike principal

normal, and its Frenet appartus
{
Tβ̄, Nβ̄, Bβ̄, κβ̄, τβ̄

}
is given by

Tβ̄ = D̄r, Nβ̄ = −ε ζ ′

‖ζ ′‖
, Bβ̄ = εζ,

and

κβ̄ = εεD̄r , τβ̄ =
√
k2
g + τ2

g ,

where εD̄r =
kgτ ′g−τgk′g
k2
g+τ2

g
− kn, and ε = ±1.

From Thereom 5 and the relation (1.2), the following corollary can be given.

Corollary 2. Let α be a unit speed spacelike curve with the spacelike normal lying on a timelike surfaceM in

E3
1. Then,the D̄r−direction curve β̄ is a helix if and only if the curve α is a relatively normal-slant helix.

Moreover, since the curve β̄ is also the spherical image of the rectifying Darboux vector field, β̄ lies
on a Lorentzian sphere with radius r ∈ R+. Using Theorem 1, we have(

1

κβ̄

)2

−

[
1

τβ̄

(
1

κβ̄

)′]2

= r2 = constant.

It follows that
κ′β̄ = ∓τβ̄κβ̄

√
1− r2κ

2

β̄
,

and by using the expression of κβ̄ and τβ̄ in Theorem 5, we obtain

ε′
D̄r

εD̄r

√
1− r2ε2

D̄r

= ∓
√
k2
g + τ2

g .
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Taking integrate the above relation, we get

εD̄r =
1

r
sech

(∫ √
k2
g + τ2

g ds

)
,

where r ∈ R+.
Conversely, we assume that εD̄r = 1

r sech
(∫ √

k2
g + τ2

g ds
)
and r ∈ R+. Then, from the Theorem 5

we have
1

κβ̄
=

1

εεD̄r
= εr cosh

(∫ √
k2
g + τ2

g ds

)
,

and
1

τβ̄
=

1√
k2
g + τ2

g

,

where (kg,τg) 6= (0, 0) for all s. By using the above equations, we get

τβ̄
κβ̄
−

[
1

τβ̄

(
1

κβ̄

)′]′
= 0,

and from Theorem 1, the curve β̄ lies on a Lorentzian sphere with the radius r ∈ R+. Therefore, the
following theorem can be given.

Theorem 6. Let α be a unit speed spacelike curve with the spacelike normal lying on a timelike surfaceM in E3
1,

and let β̄ be the D̄r−direction curve of α. Then, β̄ lies on a Lorentzian sphere with the radius r ∈ R+ if and only

if

εD̄r =
1

r
sech

(∫ √
k2
g + τ2

g ds

)
,

everywhere (kg, τg) 6= (0, 0).

3.3. D̄o−direction curve. The unit osculating Darboux rector is given by

D̄o =
τgT − knζ√∣∣τ2

g − k2
n

∣∣ if (kn, τg) 6= (0, 0) .

Consider ¯̄β as a D̄o−direction curve of the curve α. Then, from Definition 1, we have

¯̄β′ = D̄o.

Next, we consider three subcases: (I) τ2
g − k2

n > 0; (II) τ2
g − k2

n < 0; (III) τg = ±kn.
(I) If τ2

g − k2
n > 0 for all s, then β is a unit-speed spacelike curve with the arc length equal to s, and the

unit tangent vector T ¯̄β
of ¯̄β is given by

T ¯̄β
=
τgT − knζ√
τ2
g − k2

n

. (3.15)

Differentiating equation (3.15) with respect to s and using (2.8), we get

T ′¯̄β = εD̄o
η′

‖η′‖
,
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where εD̄o =
knτ ′g−τgk′n
τ2
g−k2

n
− kg, with ε = ±1. Then, the normal vector field of the curve ¯̄β is a timelike

vector given by

N ¯̄β
= ε

η′

‖η′‖
, (3.16)

where ε = ±1 such that εεD̄r > 0. Therefore, the curvature of ¯̄β can be fond as κ ¯̄β
= εεD̄o . Also, from

the relations (2.6), (2.8), (3.15) and (3.16), the binormal vector field B ¯̄β
of ¯̄β is given by

B ¯̄β
= T ¯̄β

∧N ¯̄β
= εη (3.17)

Moreover, the torsion of the curve ¯̄β is given by

τ ¯̄β
= −

〈
B′¯̄β, N ¯̄β

〉
=
√
τ2
g − k2

n,

respectively. Therefore, we can give the following theorem.

Theorem 7. Let α be a unit speed spacelike curve with the spacelike principal normal lying on a timelike surface

M in E3
1, and let ¯̄β be a D̄o−direction curve of α. If τ2

g − k2
n > 0, then ¯̄β is a spacelike curve with the timelike

normal, and its Frenet appartus {Tβ, Nβ, Bβ, κβ, τg} is given by

T ¯̄β
= D̄o, N ¯̄β

= ε
η′

‖η′‖
, B ¯̄β

= εη,

and

κ ¯̄β
= εεD̄o , τ ¯̄β

=
√
τ2
g − k2

n,

where εD̄o =
knτ ′g−τgk′n
τ2
g−k2

n
− kg, and ε = ±1 such that εεD̄o > 0.

From Thereom 7 and the relation (1.1), the following corollary can be given.

Corollary 3. Let α be a unit speed spacelike curve with the spacelike normal lying on a timelike surfaceM in

E3
1. Then, the D̄o−direction curve ¯̄β is a helix if and only if the curve α is an isophote curve.

Using Theorem 1, Theorem 7 and following a similar calculation as in Section 3.2, we can prove the
following statement.

Theorem 8. Let α be a unit speed spacelike curve with the spacelike normal lying on a timelike surfaceM in E3
1,

and let ¯̄β be a unit speed spacelike curve with the timelike normal as a D̄o−direction curve of α. Then, ¯̄β lies on a

Lorentzian sphere with the radius r ∈ R+ if and only if

εD̄o =
1

r
sech

(∫ √
τ2
g − k2

nds

)
,

where (kn, τg) 6= (0, 0) and τ2
g − k2

n > 0 for all s.
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(II) If τ2
g − k2

n < 0 for all s, then ¯̄β is a unit-speed timelike curve with the arc length equal to s, and the
unit tangent vector T ¯̄β

of ¯̄β is given by

¯̄β′ = T ¯̄β
=
τgT − knζ√
k2
n − τ2

g

. (3.18)

Differentiating equation (3.18) with respect to s and using (2.8), we get

T ′¯̄β = −εD̄o
η′

‖η′‖
,

where εD̄o =
knτ ′g−τgk′n
τ2
g−k2

n
− kg. Then, its normal vector field is a spacelike vector given by

N ¯̄β
= −ε η′

‖η′‖
, (3.19)

where ε = ±1 such that εεD̄r > 0. Thus, the curvature of ¯̄β is κβ = εεD̄o . Also, from the relations (2.6),
(2.8), (3.18) and (3.19), the binormal vector field B ¯̄β

of ¯̄β is given by

B ¯̄β
= T ¯̄β

∧N ¯̄β
= εη. (3.20)

The torsion of the curve ¯̄β is given by

τ ¯̄β
= −

〈
B
′
¯̄β
, N ¯̄β

〉
=
√
k2
n − τ2

g ,

respectively. Therefore, we can give the following theorem.

Theorem 9. Let α be a unit speed spacelike curve with the spacelike principal normal lying on a timelike surface

M in E3
1, and let ¯̄β be a D̄o−direction curve of α. If τ2

g − k2
n < 0, then ¯̄β is a timelike curve, and its Frenet

apparatus
{
T ¯̄β
, N ¯̄β

, B ¯̄β
, κ ¯̄β

, τ ¯̄β

}
is given by

T ¯̄β
= D̄o, N ¯̄β

= −ε η′

‖η′‖
, B ¯̄β

= εη,

and

κ ¯̄β
= εεD̄o , τ ¯̄β

=
√
k2
n − τ2

g ,

where εD̄o =
τgk′n−knτ ′g
k2
n−τ2

g
+ kg, and ε = ±1 such that εεD̄o > 0.

Corollary 4. Let α be a unit speed spacelike curve with the spacelike normal lying on a timelike surfaceM in

E3
1. Then, the D̄o−direction curve ¯̄β is a helix if and only if the curve α is an isophote curve.

Using Theorem 2, Theorem 9 and following a similar calculation as in Section 3.1, we can prove the
following statement.
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Theorem 10. Let α be a unit speed spacelike curve with the spacelike normal lying on a timelike surfaceM in

E3
1, and let ¯̄β be a unit speed timelike curve as a D̄o−direction curve of α. Then, ¯̄β lies on a Lorentzian sphere

with the radius r ∈ R+ if and only if

εD̄o = −1

r
sech

(∫ √
τ2
g − k2

nds

)
,

where (kn, τg) 6= (0, 0) and τ2
g − k2

n < 0 for all s.

(III) If τg = ±kn for all s, then ¯̄β is a null curve ,and its tangent vector is given by

T ¯̄β
= Do = τgT − knζ.

Taking derivative the last relation and using the relation (2.8), we get

T ′¯̄β =
(
τ ′g + knkg

)
T +

(
−k′n − kgτg

)
ζ.

Here, we have the following two subcases:
(i) if τg = kn for all s, then

T ′¯̄β =
(
k′n + knkg

)
(T − ζ) ,

with ∥∥∥T ′¯̄β∥∥∥ = 0.

It means that ¯̄β is a null straight line.
(ii) if τg = −kn for all s, then

T ′¯̄β = −
(
k′n + knkg

)
(T + ζ) ,

with ∥∥∥T ′¯̄β∥∥∥ = 0,

and so ¯̄β is a null straight line.Therefore, we can give the following theorem.

Theorem 11. Let α be a unit speed spacelike curve with the spacelike principal normal lying on a timelike surface

M in E3
1, and let ¯̄β be a D̄o−direction curve of α. If τg = ±kn for alls, then the D̄o−direction curve ¯̄β of α is a

straight line.

4. Examples

Example 1. Let us consider the timelike ruled surfaceM in E3
1 parametrized as shown in Figure 1

X(s, t) =

(√
2

2
sinh s,

√
2

2
cosh s,

√
6

2
s

)
+ t
(

sinh s+
√

3 cosh s, cosh s+
√

3 sinh s, 1
)
, (4.1)

with its base curve parametrized as

α(s) =

(√
2

2
sinh s,

√
2

2
cosh s,

√
6

2
s

)
.
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Figure 1. The timelike ruled surfaceM and the curve α

The Frenet frame vectors of α have the form

T = α′(s) = (

√
2

2
cosh s,

√
2

2
sinh s,

√
6

2
),

N =
α′′(s)

‖α′′(s)‖
= (sinh s, cosh s, 0) ,

B = T ×N = (

√
6

2
cosh s,

√
6

2
sinh s,

√
2

2
)

and the curvatures κ and τ of α read

κ =
1√
2
, τ =

√
6

2
.

Consequently, α is a unit spacelike curve with the spacelike principal normal. Also, we find that the Darboux

frame of α is given by

T =

(√
2

2
cosh s,

√
2

2
sinh s,

√
6

2

)
,

ζ =
(

sinh s+
√

3 cosh s, cosh s+
√

3 sinh s, 1
)
,

η =

(
√

2 sinh s+

√
6

2
cosh s,

√
2 cosh s+

√
6

2
sinh s,

√
2

2

)
.

According to the relation (2.7), the curvatures kg, kn and τg of α read

kg (s) =

√
2

2
, kn (s) = 1, τg (s) =

√
6

2
.
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Then, the vector fields Dn, Dr and Do are given by

Dn =

(
−
√

3

2
cosh s,

√
3

2
sinh s,−1

2

)
,

Dr =
(

sinh s+
√

3 cosh s, cosh s+
√

3 sinh s, 2
)
,

Do =

(
− sinh s−

√
3

2
cosh s,− cosh s−

√
3

2
sinh s,

1

2

)
.

Therefore, the position vectors of Dn−, Dr− and Do− direction curves of α are given by

β (s) =

(
−
√

3

2
sinh s,

√
3

2
cosh s,−s

2

)
+ C1,

β̄ (s) =

(√
2

2
cosh s+

√
6

2
sinh s,

√
2

2
sinh s+

√
6

2
cosh s, 2s

)
+ C2,

¯̄β (s) =

(
−
√

2 cosh s−
√

6

2
sinh s,−

√
2 sinh s−

√
6

2
cosh s,

√
2

2
s

)
+ C3,

where C1, C2, C3 are constant vectors.

(a) The Dn− direction curves β of α (b) The Dr− direction curves β̄ of α

(c) The Do− direction curves ¯̄β of α

Figure 2. Plots of direction curves

β (s) =
(
−
√

3
2 sinh s,

√
3

2 cosh s,− s
2

)
+ C1,
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Example 2. Let us consider the timelike cylindrical ruled surfaceM in E3
1 parametrized as shown in Figure 3

X(u, t) =

(
−u

5

40
,−u

5

40
+ u,

u3

6

)
+ t(1, 1, 0). (4.2)

with its base curve parametrized as

α(u) =

(
−u

5

40
,−u

5

40
+ u,

u3

6

)
.

Figure 3. The timelike ruled surfaceM and the curve α

The Frenet frame vectors of α have the form

T =

(
−u

4

8
,−u

4

8
+ 1,

u2

2

)
,

N =

(
−u

2

2
,−u

2

2
, 1

)
,

B =

(
u4

8
+ 1,

u4

8
,−u

2

2

)

and the curvatures κ and τ of α read

κ = u, τ = u.
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Consequently, α is a unit spacelike curve with the spacelike principal normal. By using the relations (2.4), (2.5),

(2.6) and (4.2), we find that the Darboux frame of α is given by

T =

(
−u

4

8
,−u

4

8
+ 1,

u2

2

)
,

ζ =

(
u4

8
+ 1,

u4

8
,−u

2

2

)
,

η =

(
u2

2
,
u2

2
,−1

)
.

According to the relation (2.7), the curvatures kg, kn and τg of α read

kg (u) = 0, kn (u) = −u, τg (s) = u.

Then, the vector fields Dn, Dr and Do are given by

Dn =

(
−u

5

8
− u,−u

5

8
,
u3

2

)
,

Dr =

(
−u

5

8
,−u

5

8
+ u,

u3

2

)
,

Do = (u, u, 0) .

Therefore, from Theorem 11, theDo− direction curves of α is a straight line, and also the position vectors ofDn−

and Dr− direction curves of α are given by

β (s) =

(
−u

6

48
− u2

2
,−u

6

48
,
u4

8

)
+ C̄1,

β̄ (s) =

(
−u

6

48
,−u

6

48
+
u2

2
,
u4

8

)
+ C̄2,

where C̄1 and C̄2 are constant vectors.

(a) The Dn− direction curves β of α (b) The Dr− direction curves β̄ of α

Figure 4. Plots of direction curves of α
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