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Abstract. In this paper, we introduce and study closed elements in an almost semi-Heyting algebra

and explore the fundamental characteristics of closed elements in terms of an implication within the

framework of almost semi-Heyting algebras. We rigorously study the nature of closed elements in an

almost semi-Heyting algebra as well as in a semi-Heyting almost distributive lattice in various aspects.

Mainly, we derive a class of pseudo-complemented lattices, a class of Heyting algebras and a class of

Boolean algebras in an almost semi-Heyting algebra. Finally, we prove the class of closed elements in an

almost semi-Heyting algebra forms a Boolean algebra.
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1. Introduction

One of the interesting mathematical structures that lies at the intersection of all posets which are

neither lattices nor distributive is known as an almost distributive lattice [11]. Let’s take a deeper look

at the introduction to understand almost distributive lattices fully. According to [1,3], a poset is referred

to as a lattice when each pair of elements has the least upper bound (usually abbreviated as join 
)

and a greatest lower bound (usually abbreviated as meet �). This pair of operations, meet and join

allows us to compare and combine elements within the lattice systematically. What sets distributive
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lattices [1, 3] apart is their adherence to the distributive law a fundamental principle in mathematics.

The distributive law states that for any elements p, q and rwithin the lattice p�(q
 r) = (p� q)
(p� r),

the meet and join operations interact in a way that distributes over one another, ensuring a consistent

and orderly structure. Here almost distributive lattices [11] add a unique criteria, they preserve

the fundamental lattice characteristics of meets and joins while allowing small deviations from the

distributive law. All of the features of a distributive lattice, with the possible exception of commutativity

of 
, commutativity of �, associativity of 
 and the right distributivity of 
 over �were found to be

satisfied by an almost distributive lattice.

An almost semi-Heyting algebra [2, 8] is a mathematical structure that extends the framework of

almost distributive lattices by introducing a binary operation↠ on the lattice. This operation is defined

in such a way that it adheres to a set of intriguing conditions, which include interactions with a maximal

element u. The result is a rich algebraic structure where meet (�), join (
), implication (↠) and the

maximal element u harmoniously coexist.

McKinsey and Tarski initiated to characterisation of the class of closure algebras [4] through closed

elements in 1946 and continued the same by many authors in different structures of almost distributive

lattices [5–7].

Almost semi-Heyting algebras, denoted as (A,
,�,↠, 0,u), represent a unique and intriguing class

of algebraic structures with distinct properties. One of the defining characteristics of almost semi-

Heyting algebras is the concept of closed elements, which play a fundamental role in understanding

algebra’s behaviour. In this context, a closed element often denoted as x⊚ (where x is an element

of the algebra), is defined as (x ↠ 0)�u. These closed elements exhibit remarkable properties and

significance within this algebraic framework. Closed elements are a fundamental concept within

almost semi-Heyting algebras, and they are defined by the interplay of two crucial components the

implication operation (↠) and the algebra’s maximal element u. The expression (x↠ 0)�u captures

the essence of a closed element, and it represents a specific relationship between an element x and

the constant 0 both under the influence of the maximal element u. To provide a more comprehensive

understanding, let’s break down the definition:

Implication (↠): The implication operation, denoted as↠, signifies the relationship between two

elements within the algebra. It represents a form of logical implication, where x↠ 0 expresses the idea

that x implies 0.

Maximal Element (u): The maximal element u serves as a cornerstone in almost semi-Heyting

algebras, connecting various algebraic operations. It plays a pivotal role in defining and understanding

closed elements.
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Closed Element (x⊚ ): The closed element x⊚ is formed by taking the conjunction (�) of x↠ 0 and u.

This conjunction captures a unique property of x within the algebra, indicating that x is closed under

the operation of implication, with the maximal element u influencing this closure.

The study of closed elements within almost semi-Heyting algebras has far-reaching implications

in various mathematical, logical, and computational applications. Understanding closed elements

helps in analyzing the algebra’s structure and its behaviour when subjected to logical operations and

constraints.

In this exploration, we will delve deeper into the concept of closed elements and uncover their

properties, significance and applications within almost semi-Heyting algebras. These closed elements

offer valuable insights into algebra’s inner workings and provide a foundation for investigating the

broader implications of this unique algebraic structure in the realms of formal logic and mathematics.

Mainly we have obtained a class of pseudo-complemented almost distributive lattices [12], a class

of pseudo-complemented lattices, another class of almost semi-Heyting algebras, a class of Boolean

algebras [10] in an almost semi-Heyting algebra.

2. Preliminaries

A few definitions and findings that are important for the sequel will be reviewed here.

Definition 2.1. [11] The term Almost Distributive Lattice,or ADL for short, refers to (A,
,�,0), an

algebra of type (2,2,0) with the conditions: for all p, q, r ∈A,

(1) p
0 = p

(2) 0�p = 0

(3) (p
 q)� r = (p� r)
(q� r)

(4) p�(q
 r) = (p� q)
(p� r)

(5) p
(q� r) = (p
 q)�(p
 r)

(6) (p
 q)� q = q.

Example 2.2. [11] Upon defining p
 q = p and p� q = q, for any p, q ∈A andA is a non-empty set, we

observed that (A,
,�) is an ADL and is considered as a discrete ADL.

The termA refers to an almost distributive lattice (A,
,�), unless otherwise specified, throughout

the preliminaries section.

A relation ≤ onA is defined by p ≤ q if and only if p = p� q or alternatively p
 q = q, for all p, q ∈A.

As a result, ≤ represents a partial ordering on A. If there is no element p such that u < p, then an

element u is regarded as maximum.

Theorem 2.3. [11] The following conditions are interchangeable for any u ∈A,
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(1) u a Maximal element

(2) u
p = u, ∀p ∈A

(3) u�p = p, ∀p ∈A.

Definition 2.4. [12] If a unary operation ⊚ onA, satisfies the following conditions, it is referred to be a

pseudo-complementation: for all p, q ∈A,

(1) p�p⊚ = 0

(2) p� q = 0⇔ p⊚� q = q

(3) (p
 q)
⊚
= p⊚� q

⊚.

For any binary operation ↠ in an ADL (A,
,�,0) with a maximal element u, let us denote the

identities, given p, q, r ∈A, Considering an ADL (A,
,�,0) with a maximal element u, let us indicate

the identities for any binary operation↠ given p, q, r ∈A,

PI(1) [(p� q)↠ q]�u = u

PI(2) p�(p↠ q) = p� q�u

PI(3) p�(q↠ r) = p�[(p� q)↠ (p� r)]

PI(4) (p↠ q)�u = (p�u)↠ (q�u)

PI(5) p↠ p = u

PI(6) (p↠ q)� q = q

PI(7) p↠ (q� r) = (p↠ q)�(p↠ r)

PI(8) (p
 q)↠ r = (p↠ r)�(q↠ r).

Now, we have the following identities which are the consequences of PI(1), PI(2), PI(3) and PI(4):

CI(1) (p↠ p)�u = u

CI(2) [p�(p↠ q)]�u = p� q�u

CI(3) [p�(q↠ r)]�u = [p�[(p� q)↠ (p� r)]]�u

CI(4) (p↠ q)�u = [(p�u)↠ (q�u)]�u.

Definition 2.5. [7]A is a semi-Heyting almost distributive lattice (abbreviated: SHADL) ifA holds

CI(1), PI(2), PI(3) and PI(4) with a maximal element u.

Definition 2.6. [8]A is an almost semi-Heyting algebra (abbreviated: ASHA) ifA holds PI(1), CI(2),

CI(3) and CI(4) with a maximal element u.

3. Closed elements in almost semi-Heyting algebras

In this section, we define closed elements resembling those found in a semi-Heyting almost

distributive lattice and demonstrate some fundamental algebraic conditions on them.
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The authors defined two algebras on an almost distributive lattice in [7] and [8], one was called a

semi-Heyting almost distributive lattice, an abstraction from semi-Heyting algebra, and the other was

called an almost semi-Heyting algebra, which is a generalisation of a Heyting algebra. The authors

also noted that these two algebras are distinct from one another by using examples in [8].

From the perspective of the variations between these two algebras, we began to discuss closed

elements in an almost semi-Heyting algebra that are similar to those found in a semi-Heyting almost

distributive lattice.

Let us denote x⊚ = (x↠ 0)�u for any element x inA, where u is the maximal element inA.

Definition 3.1. If x⊚⊚ = x, then the element x is a closed element in an almost semi-Heyting algebraA.

Remark 3.2. 1. Zero element is always closed inA.

2. Every maximal element is closed inA.

3. There are some elements inAwhich are not closed. See the illustration below as verification.

Example 3.3. LetA = {0, x,u} be a discrete ADL of 3-elements, where the binary operation↠ given as:

↠ 0 x u

0 m u u

x 0 u u

u 0 x u

Then (L,
,�,↠,0,m) is an ASHA. Here x⊚⊚ = u ≠ x.

The properties discussed in Theorem 3.4 provide mathematical relationships and insights into the

behaviour of elements within an almost semi-Heyting algebra, straightening out how the algebraic

operations interact and influence one another. They are essential for understanding the algebra’s

structure and properties and can be applied in various computational contexts.

Theorem 3.4. For any x, y, z ∈A, whereA is an ASHA and u represents the maximal element, the following

hold:

(1) x�(x↠ y)⊚ = x� y⊚

(2) x� y = 0⇔ x�u ≤ y⊚

(3) u⊚ = 0

(4) x⊚ = u⇔ x = 0

(5) x�x⊚ = 0⇒ x�u ≤ x⊚⊚

(6) x ≤ y⇒ y⊚ ≤ x⊚,x⊚⊚ ≤ y⊚⊚

(7) x� y⊚ = x�(x� y)⊚

(8) (x� y)⊚ = (y�x)⊚. In particular, (x�u)⊚ = x⊚

(9) x�x⊚⊚ = x�u and x⊚⊚�x = x
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(10) x⊚ = x⊚⊚⊚

(11) (x
 y)⊚ = x⊚� y⊚

(12) y�x = x⇒ x� y⊚ = 0

(13) x⊚� y⊚ = y⊚�x⊚

(14) x⊚
 y⊚ = y⊚
x⊚

(15) x� y = 0⇒ x⊚⊚� y = 0

(16) (x� y)⊚⊚ ≤ x⊚⊚

(17) x⊚⊚�(x↠ y)⊚⊚ = x⊚⊚� y⊚⊚

(18) If x� y = 0⇔ x⊚� y = y

(19) (0↠ u)�u = 0⇔ (0↠ x)�u ≤ x⊚ for all x ∈A

(20) x⊚ ≤ (0↠ x)�u, In particular x⊚ ≤ (0↠ x⊚⊚)�u

(21) x�u ≤ (0↠ x⊚)�u

(22) (x↠ x⊚)�u ≤ x⊚ ≤ (x⊚⊚↠ x)�u

(23) If x⊚ ≤ 0↪ x⊚, then (x↪ x⊚)�u = x⊚

(24) x�u ≤ (x⊚⊚↠ x)�u

(25) x�u ≤ (x↠ x⊚⊚)�u

(26) (x⊚⊚ ↪ x⊚)�u ≤ x⊚ ≤ (x↠ x⊚⊚)�u

(27) z ≤ x⇒ z�(x↪ y⊚)�u = z� y⊚

(28) x�u ≤ (0↠ x⊚⊚)�u⇔ x�u ≤ (0↠ x)�u

(29) y�(x↠ y⊚)�u = y�x⊚

(30) y⊚�(x↠ y)�u = y⊚�x⊚

(31) If x� y = 0, then (x↠ y)�u ≤ x⊚

(32) (x⊚
 y⊚)⊚⊚ = (x� y)⊚ = x⊚
y⊚, where x
y = (x⊚�x⊚)⊚

(33) (x� y)⊚ = (x↠ y⊚)�u.

Remark 3.5. If both x and y are closed, then x� y is also closed ((x� y)⊚⊚ = x⊚⊚� y⊚⊚). Because it is

simple to see that (x� y)⊚⊚ ≤ x⊚⊚ and (x� y)⊚⊚ ≤ y⊚⊚. Consequently, (x� y)⊚⊚ ≤ x⊚⊚� y⊚⊚ (by (16)

of Theorem 3.4). The fact that

x� y�(x� y)⊚ = 0 ⇒ x⊚⊚� y�(x� y)⊚ = 0 (by (15) of Theorem 3.4)

⇒ y�x⊚⊚�(x� y)⊚ = 0

⇒ y⊚⊚�x⊚⊚�(x� y)⊚ = 0 (by (15) of Theorem 3.4)

⇒ x⊚⊚� y⊚⊚�(x� y)⊚ = 0

⇒ x⊚⊚� y⊚⊚ ≤ (x� y)⊚⊚. (by (2) of Theorem 3.4)
Therefore, (x� y)⊚⊚ = x⊚⊚� y⊚⊚.

Remark 3.6. If both x and y are closed, then x
 y does not need to be closed (x
 y)⊚⊚ ≠ x⊚⊚
 y⊚⊚.
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Example 3.7. LetA = {0, a, b, c,u} be a distributive lattice, in which 
, � and ↪ are as follows.


 0 a b c u

0 0 a b c u

a a a c c u

b b c b c u

c c c c c u

u u u u u u

� 0 a b c u

0 0 0 0 0 0

a 0 a 0 a a

b 0 0 b b b

c 0 a b c c

u 0 a b c u

↠ 0 a b c u

0 u u u u u

a b u b u u

b a a u u u

c 0 a b u u

u 0 a b c u

Clearly, (A,
,�,↠,0,u) is an ASHA. It is observed that 0, a, b,u are closed elements and c is not

(c⊚⊚ = u ≠ c). Now, put x = a and y = b, then (x
 y)⊚⊚ = (a
 b)
⊚⊚

= c⊚⊚ = u and x⊚⊚
 y⊚⊚ = a⊚⊚
 b⊚⊚ =

a
 b = c. Therefore, (x
 y)⊚⊚ ≠ x⊚⊚
 y⊚⊚.

Remark 3.8. In an SHADL, the property (33) from Theorem 3.4 does not hold. Consider the example

below.

Example 3.9. SupposeA = {0, a,u} is a chain, on which↠ is specified as;

↠ 0 a u

0 u u u

a 0 u a

u 0 a u

It is observed, (A,
,�,↠, 0,u) is an SHADL but not an ASHA (since [(a�u)↪ u]�u ≠ u). If we take

x = a and y = 0, then [a�0]⊚ = 0⊚ = u and [a↠ 0⊚]�u = a�u = a. Therefore, (x� y)⊚ ≠ (x↠ y⊚)�u.

Let us represent the collection of all closed elements of an almost semi-Heyting algebraA by C and

for any x, y ∈ C, let us define x
y = (x⊚� y⊚)⊚. Also, we can observe that x⊚
x = u for x ∈ C.

Remark 3.10. C does not form a filter inA.

Theorem 3.11 quotes three properties that are valid in an ASHA but invalid in an SHADL.

Theorem 3.11. For any x, y ∈A, whereA is an ASHA the following hold.

(1) (x⊚⊚� y)⊚ = (x� y)⊚

(2) (x↠ y⊚)⊚⊚ = (x⊚⊚↠ y⊚)�u
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(3) (x�(y⊚
 y))⊚ = x⊚.

If p ↠ q = p⊚
 q, then it is obvious that a Boolean algebra is a Heyting algebra. Here is what we

have in an ASHA as an alternative.

Theorem 3.12. (x↠ y)⊚⊚ ≤ x⊚
 y⊚⊚, for x, y ∈A, whereA is an ASHA.

The next Theorems 3.13 and 3.14 allow us to derive some important features of an ASHA using the

operation ⊚.

Theorem 3.13. (x
x⊚)�(x↠ y)�u ≤ (x⊚
 y)�u., for x, y ∈A, whereA is an ASHA.

Proof. (x
x⊚)�(x↠ y)�u = [[x�(x↠ y)]
[x⊚�(x↠ y)]]�u

= [(x� y�u)
(x⊚�(x↠ y))]�u

= [(x� y�u)
x⊚]�[(x� y�u)
(x↠ y)]�u

≤ [x⊚
(x� y�u)]

= (x⊚
x)�(x⊚
(y�u)) ≤ (x⊚
 y)�u. �

Theorem 3.14. For x, y, z ∈A, whereA is an ASHA, we have

(1) x⊚
y⊚ = x⊚
z⊚⇔ x⊚⊚� y⊚ = x⊚⊚� z⊚

(2) x⊚⊚�(x↠ y)⊚ = x⊚⊚� y⊚

(3) x⊚⊚�(y↠ z)⊚ = x⊚⊚�[(x� y)↠ (x� z)]⊚

(4) y⊚�(x↠ y)�u = y⊚�x⊚.

Proof. Let x, y, z ∈A.

(1) Suppose x⊚
y⊚ = x⊚
z⊚, then x⊚⊚�(x⊚
y⊚) = x⊚⊚�(x⊚
z⊚)

⇒ (x⊚⊚�x⊚)
(x⊚⊚� y⊚) = (x⊚⊚�x⊚)
(x⊚⊚� z⊚)

⇒ x⊚⊚� y⊚ = x⊚⊚� z⊚. On the other hand, if x⊚⊚� y⊚ = x⊚⊚� z⊚, then x⊚
(x⊚⊚� y⊚) = x⊚
(x⊚⊚� z⊚)

⇒ (x⊚
x⊚⊚)�(x⊚
y⊚) = (x⊚
x⊚⊚) �(x⊚
z⊚)

⇒ x⊚
y⊚ = x⊚
z⊚.

(2) Consider, x⊚
(x ↠ y)⊚) = (x⊚⊚�(x ↠ y)⊚⊚)⊚ = (x�(x ↠ y))⊚ = (x� y�m)
⊚
= (x� y)⊚ =

x⊚
y⊚. Therefore, x⊚⊚�(x↠ y)⊚ = x⊚⊚� y⊚ (by (i) above).

(3) x⊚
(y↠ r)⊚ = [x�(y↠ z)]⊚ = [x�{(x� y)↠ (x� z)}]⊚ = x⊚
 [(x� y)↠ (x� z)]⊚. Therefore,

x⊚⊚�(y↠ z)⊚ = x⊚⊚�[(x� y)↠ (x� z)]⊚ (by (i) above).

(4) y⊚�(x ↠ y)�u = y⊚�[(y⊚�x) ↪ (y⊚� y)]�u = y⊚�[(y⊚�x) ↪ 0]�u = y⊚�(x ↠ 0)�u =

y⊚�x⊚. �

Theorem 3.15 demonstrates a relationship between intersections, implications, and the maximal

element u within an ASHA. It provides insight into how the implication of 0 to various elements in the
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algebra relates to their intersections with the maximal element u, and how this relationship can be

represented and compared within the algebraic framework.

Theorem 3.15. For x ∈A, whereA is an ASHA, we have, (0↠ u)�u = u⇔ x�u ≤ (0↠ x)�u.

Proof. Suppose (0 ↠ u)�u = u ⇒ x�(0 ↠ u)�u = x�u ⇒ (x�u)�(0 ↠ x)�u = x�u ⇒ x�u ≤

(0↠ x)�u. The converse can obtained by replacing x by u. �

Finally, we extract some equivalent conditions for an ASHA to satisfy the condition (0↠ u)�u = 0,

before that we illustrate the following.

Lemma 3.16. IfA is an ASHA satisfying the condition (0↠ u)�u = 0, and x, y ∈A, then

(1) x� y = 0⇒ (x↠ y)�u = x⊚� y⊚

(2) (0↠ y)�u = y⊚

(3) (x↪ x⊚)�u = 0

(4) (x⊚↠ x)�u = 0.

Proof. Suppose x� y = 0. Then y�(x ↠ y)�u = y�[(y�x) ↠ (y� y)]�u = y�(0 ↠ u)�u = 0 ⇒

(x↠ y)�u ≤ y⊚. Again, since x�(x↠ y)�u = x� y�u = 0⇒ (x↠ y)�u ≤ x⊚. Thus (x↠ y)�u ≤

x⊚� y⊚. Now, y⊚�(x ↠ y)�u = y⊚�x⊚ ⇒ x⊚� y⊚�(x ↠ y)�u = y⊚�x⊚ ⇒ y⊚�x⊚ ≤ (x ↠ y)�u.

Hence, (x↠ y)�u = x⊚� y⊚. The rest follows immediately from (1). �

Theorem 3.17. The following are identical: ifA is an ASHA and x, y ∈A, then

(1) (0↠ u)�u = 0

(2) (0↠ x)�u ≤ x⊚

(3) (0↠ x)�u = x⊚

(4) x�(x⊚↠ y)�u = x� y⊚

(5) (x⊚↠ u)�u = x⊚

(6) (x⊚↠ x)�u = 0.

Proof. Let (0 ↠ u)�m = 0. Then 0 = x�(0 ↠ u)�u = x�[0 ↠ (x�u)]�u = x�(0 ↠ x)�u. Thus,

(0 ↠ x)�u ≤ x⊚. Now, assume (2). Then (0 ↠ x)�u = x⊚�(0 ↠ x)�u = x⊚�(0 ↠ 0)�u = x⊚.

Suppose (3) holds. Then x�(x⊚ ↠ y)�u = x�[0 ↠ (x� y)]�m = x�(x� y)⊚ = x�[(x� y) ↠

0)]�u = x�(y↠ 0)�u = x� y⊚. Suppose (4) holds. Replacing y by u in (4), we get x�(x⊚↠ u)�m = 0

and hence, (x⊚ ↠ u) ≤ x⊚. From the definition of an almost semi-Heyting algebra, x⊚ = x⊚�u =

x⊚�(x⊚ ↠ u). Thus x⊚ ≤ (x⊚ ↠ u)�u. Now assume (5). x�(x⊚ ↠ x)�u = x�[0 ↠ (x�u)]�u =

x�(x⊚↠ u)�u = x�x⊚�u = 0 and hence, (x⊚↠ x)�u ≤ x⊚. Also x⊚�(x⊚↠ x)�u = x⊚�x�u = 0.

So that (x⊚↠ x)�u ≤ x⊚⊚. Hence, (x⊚↠ x)�u = 0. Finally, by replacing x by u in (6), we get (1). �
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Here, we make out a class of pseudo-complemented almost distributive lattices through the class of

closed elements in an ASHA.

Theorem 3.18. If (A,
,�,↪,0,u) is an ASHA and x⊚ = (x ↠ 0)�u is defined for each x ∈A, then ⊚ is a

pseudo-complementation onA.

Proof. For x, y ∈ A and x⊚ = (x ↠ 0)�u. Conditions (1) and (2) of pseudo-complementation follow

from (18) and (11) of Theorem 3.4 and x�x⊚ = 0. Hence, ⊚ is a pseudo-complementation onA. �

Theorem 3.19. If A is an ASHA and x, y ∈ A ∋ x�u ≤ y�u, for z ∈ [x�u, y�u], define z⊚xy
= (z ↠

x)� y�u, then ([x�u, y�u],
,�,⊚xy , x�u, y�u) is a pseudo-complemented lattice.

Proof. It is sufficient to show that a� b = x�u⇔ a ≤ b⊚xy for all a, b ∈ [x�u, y�u]. Let z ∈ [x�u, y�u].

Since x�u ≤ z�u, we have x�u ≤ (z↠ x)�u⇒ x� y�u ≤ (z↠ x)� y�u⇒ x�u ≤ (z↠ x)� y�u ≤

y�u. Therefore, z⊚xy
∈ [x�u, y�u]. Let a, b ∈ [x�u, y�u]. Assume that a� b = x�u. Then

b⊚xy
= (b ↠ x)� y�u, a� b⊚xy

= a�(b ↠ x)� y�u = a�(b ↠ x)�u = a�(a� b ↠ x)�u = a�(x ↠

x)�u = a�u = a. Therefore, a ≤ b⊚xy. Conversely, suppose a ≤ b⊚xy
⇒ a = a�(b ↠ x)� y�u. Now,

b� a = b� a�(b↠ x)� y�u = a� b�x� y�u = x�u. Hence, ([x�u, y�u],
,�,⊚xy ,x�u, y�u) is a

pseudo-complemented lattice. �

Corollary 3.20. The algebra ([0,u],
,�,⊚ , 0,u) is a pseudo-complemented lattice, where z⊚ = (z↠ 0)�u for

z ∈ [0,u], ifA is an ASHA.

Theorem 3.21. Assume A is an ASHA and x, y ∈ A with x�u ≤ y�u. For z, t ∈ [x�u, y�u] define

z↠xy t = (z↠ t)� y�u, then the algebraA0 = [[x�u, y�u],
,�,↠xy,x�u, y�u] is a Heyting algebra.

Additionally, if L is an SHADL, thenA0 is a semi-Heyting algebra as well.

Proof. Let z, t, s ∈ [x�u, y�u]. First we note that z↠xy t ∈ [x�u, y�u]. Since x�u ≤ z�u,x�u ≤ t�u,

we get x�u ≤ (z↠ t)�u and hence, c↠xy t ∈ [x�u, y�u]. Now, z�(z↠xy t) = z�(z↠ t)� y�u =

z� t� y�u = z� t. s�(z ↠xy t) = s�(z ↠ t)� y�u = s�[(s� z) ↠ (s� t)]� y�u = s�[(s� z)

↠
xy

(s� t)]. Finally, [(z� y) ↠xy y] = [(z� y) ↠ y]�u� y�u = u� y�u = y�u. Hence, A0 is a

Heyting algebra. �

Here it can be easily proven that the set C = {x⊚ ∣ x ∈ A} of all closed elements in an ASHA,

forms a Boolean algebra (Heyting algebra) with the operations 
 (↠) given by x
y = (x⊚� y⊚)⊚ (

x↠ y = x⊚
 y) for every x, y ∈ C.

Theorem 3.22. (C,
,�,↠,0,u) is a Heyting algebra, with x ↠ y = x⊚
 y for all x, y ∈ C, provided

(A,
,�,↠,0,u) is an ASHA.

Theorem 3.23. (C,
,�,⊚,0,u) is a Boolean algebra, where x
y = (x⊚� y⊚)⊚, for all x, y ∈ C, provided

(A,
,�,↠,0,u) is an ASHA.
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4. Conclusions

In this paper, we have introduced and studied closed elements in an almost semi-Heyting algebra

and explored the fundamental characteristics of closed elements in terms of an implication within the

framework of almost semi-Heyting algebras. We have studied the nature of closed elements in an

almost semi-Heyting algebra as well as in a semi-Heyting almost distributive lattice in various aspects.

Mainly, we derived a class of pseudo-complemented lattices, a class of Heyting algebras and a class

of Boolean algebras in an almost semi-Heyting algebra. Finally, we proved that the class of closed

elements in an almost semi-Heyting algebra forms a Boolean algebra.
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