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Abstract. Stochastic volatility models can generally be considered modifications of the popular Black-
Scholes model. These particular models are more realistic to the obtaining in the financial markets. This
paper examines a hybrid Heston-SABR model, which combines elements from both the Heston and
Stochastic Alpha Beta Rho (SABR) models. This model captures the main features of both models, namely
the mean-revertion for the stochastic volatility process and the skewness regarding the distribution of
the underlying asset returns. We analyze stylized facts of the hybrid Heston-SABR model. Using Monte
Carlo simulations, we plot the simulated paths for European option and examine them for the different
correlation parameter under this model. Further, we conduct numerical simulations to compute option
prices for the European style using Milstein and Euler-Maruyama methods.
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Key words and phrases. Stochastic volatility; Heston-SABR model; Monte Carlo; Heston’s model; SABR
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1. Introduction

Stochastic volatility based model are significant in financial market. Such models play a crucial role
in finance and investment practice, as they enhance pricing accuracy, enable effective risk management,
provide valuable insights for trading and investment decisions, and capture the complex dynamics of
financial markets. So far, a good number of studies have been conducted to price derivatives using
stochastic volatility models. Such as, an analytical solution for options with dynamic volatility, applied
to bond and currency options, as provided by [10] and managing smile risk as given by [9] among
the several valuable research work in this regard. These models, such as the Heston model, have
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lately served as foundation for the development of subsequent hybrid stochastic volatility models. As
explained by [7], the Heston model ranks among the extensively utilized models for stochastic volatility
for pricing derivative, as it considers the non-lognormal characteristics of the asset return distribution,
incorporates the impact of leverage, and accommodates the notablemean-reverting behavior of volatility.
As stated in [15], stochastic volatility models naturally extend the Black-Scholes model to address the
skew and smile patterns observed in real data. Also, observed study shows that volatility is stochastic
and leads to an incomplete market [2, 13, 17, 18], in contradiction to the popular Black-Scholes model
where market completeness is assumed [16].

In our study, we consider a hybrid stochastic volatility model based on [10] and [9]. First, we explore
the model’s properties that aim to address the constraints of the Black-Scholes model, additionally
we observe that, in as much as these individual models can represent the volatility smile and skew
observed in option prices, stylized facts are more pronounced in the hybrid model. Secondly, we
analyze the pricing of the Vanilla options for the model. Finally, we employ Monte Carlo simulations,
to provide numerical simulation for Milstein and Euler-Maruyama methods for the European options
under this model.

The organization of this paper is outlined as follows: Section 2 gives the links to literature giving
relevant background information to our workings. We introduce the hybrid model in section 3, along
with properties required for model existence and scrutinize stylized facts for the model. In section 4,
we get our simulations and give numerical results. Our conclusions are presented in section 5.

2. Literature Review

2.1. Financial Derivatives. Financial Derivatives are contracts or products that derive their value from
underlying assets, which can be any kind of financially relevant quantity. According to [11], the term
“asset" is employed to denote any financial entity with a known present value that is subject to change
over time, with a stock serving as a prime illustration of such an asset.

Many definitions of financial derivatives have been given by different scholars but all point to one
underlying concept that identifies them from other assets. For instance, [12] specified that derivative
securities are financial contracts whose value is derived from underlying cash market instruments,
including stocks, bonds, currencies, and commodities. It can also be described as a financial asset
whose valuation is contingent upon, or derived from, the values of other fundamental underlying
variables, [13]. It is observed from the definitions above that the value of a derivative heavily depends
on other basic cash instruments in a market which is the underlying. A derivative can therefore be
described as a financial instrument or contract whose price is hinged on the value of a basic underlying
variable that can be exchanged for cash in the market. The value of the contracts traded as derivatives
depend on the price of the underlying which can be stock, currency or other assets that have financial
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value as explained by [12]. In reality though, the underlying can be anything of financial value: from
the price of sand to the amount of sunshine on a particular day.

In many cases, to value a derivative requires one to first know the current and establish the possible
future price for the underlying. The value of the underlying and the duration within which the contract
is valid are essential in valuing derivatives. Each trader of derivatives must know how much a contract
can cost before buying it and the possible amount of profit or benefit that may be gained.The derivative
markets have drawn a diverse range of traders and exhibit substantial liquidity. According to [13],
he categorizes traders into three groups: hedgers, speculators, and arbitrageurs. Hedgers employ
derivatives to mitigate potential market variable movements, reducing their risk. Speculators, on
the other hand, speculate on the future direction of market variables. Arbitrageurs adopt offsetting
positions to either limit or entirely eliminate liabilities. For farther information with regard to the
valuation and pricing of options we can refer to [11–14,17].

When valuing derivatives such as options, a critical step is to identify a model that accurately
represents the underlying stock price. This model serves as the foundation for pricing options according
to the underlying price. Typically, we employ stochastic processes to model the security price.

2.2. Stochastic Volatility Models. In 1973, Fisher Black and Myron Scholes released a seminal paper
on option valuation, in which they presented the Black-Scholes model. This paper had major effect on
the world of finance. Some of the most important assumptions of the model are that the underlying
asset’s price process is continuous and that of constant volatility [16]. Nevertheless, these models fail to
account for enduring characteristics of the surface depicting implied volatility, such as the presence of a
volatility smile and skew. These features signify that implied volatility indeed exhibits variations relative
to both strike price and maturity. Stochastic volatility models offer a solution to address a limitation of
the Black–Scholes model. Instead of assuming that the volatility of the underlying price is constant,
these models consider it as a random process. This approach enables a more accurate modeling of
derivatives. They are used in derivative pricing to account for the volatility of the underlying asset,
which can change over time. In these models, the volatility itself is treated as a random variable,
which is typically modeled using a stochastic process. Generally, these models, under a risk-neutral
probability, when X(t) represents the asset price, has an equation of the form:

dX (t) = rX (t) + f (ψ)X (t) dW (t)

where r is the interest rate, W is the Brownian motion, and f (ψ) is a positive process that can be
correlated withW . In these models generally f (ψ) are considered to be volatilities, where f a positive
function and ψ is a diffusion process and satisfies the stochastic differential equation:

dψ (t) = A (t, ψ (t)) dt+B (t, ψ (t)) dW (t)
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where A and B are deterministic functions. Popularly used function f are the square root, the expo-
nential or absolute value and for the driving diffusion ψ we may have the Cox-Ingersol-Ross(CIR),
mean-reverting Ornstein-Uhlenbeck (OU) or the log-normal. A mixture of the aforementioned f and
ψ has resulted into some of the prominent stochastic volatility model, including the Heston and SABR
models.

The Heston model is a mathematical framework for characterizing the behavior of asset prices that
incorporates stochastic volatility. It was developed by [10] and has subsequently emerged as one of
the most extensively employed models for pricing derivatives. The Heston model postulates that the
volatility of the underlying asset is dynamic, governed by a stochastic process. This stochastic process is
driven by two factors: a mean-reverting level of volatility and a stochastic volatility term that captures
the random fluctuations of volatility around the mean level. The Heston model also posits that the
underlying stock follows a geometric Brownian motion, a prevalent assumption in the field of finance.
By merging stochastic volatility with geometric Brownian motion, the Heston model can effectively
encapsulate the intricate dynamics of asset prices and the corresponding option values.

The SABR model is a mathematical framework employed in quantitative finance to represent the
volatility of an underlying asset, be it a stock or a commodity. It accommodates variable volatility
and is applicable for pricing options on a diverse spectrum of underlying assets, spanning interest
rate derivatives, foreign exchange, and commodities. It uses a set of stochastic differential equations
to describe how the volatility of the underlying asset experiences variations over time. This model
derives its name from the trio of parameters employed to delineate the stochastic behavior of volatility:
alpha, beta, and rho. Alpha represents the initial level of the volatility, beta represents the response of
volatility to fluctuations in the spot price, and rho indicates the relationship between the spot price and
the volatility. It was designed to incorporate the volatility smile, which is the observed phenomenon
where implied volatilities change with the exercise price of the option. The SABR model assumes that
the asset’s volatility is governed by a stochastic process, influenced by the value of the underlying asset,
and maintains a consistent correlation with it. It also postulates that the volatility process exhibits
mean-reversion, signifying its tendency to return to a long-term average value as time progresses. This
model is extensively employed in the financial sector for pricing options and other derivatives, especially
those that are exposed to extreme market conditions or that have long maturities. Its flexibility in
capturing the volatility smile and its ability to handle negative and low interest rates make it a popular
choice among practitioners.

2.3. Monte Carlo Methods. According to [6], the Monte Carlo method has shown beyond doubt to
be adaptable and extremely useful computational tool in mathematical finance. They constitute a
category of computational algorithms that employ random sampling to address problems. They find
applications across various domains, encompassing physics, engineering, finance, and biology, for
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modeling intricate systems and studying their responses under diverse scenario. The fundamental
concept underlying Monte Carlo methods involves generating a significant number of random samples
according to the established or assumed probability distribution of the inputs for the system under
investigation. These samples are then used to simulate the behavior of the system over time, and the
results are analyzed statistically to estimate the probability distribution of the system’s outputs. In [5],
they introduce efficient ways to to apply Monte Carlo methods.

Monte Carlo Simulation plays a pivotal role in financial applications across various dimensions.
Firstly, it’s instrumental in options valuation, enabling the analysis of potential risks associated with
pricing equity options. By simulating the fluctuations in underlying stock values across numerous
price paths, it calculates option payoffs for different scenarios. The average of these payoffs provides the
current option price. Secondly, it’s utilized for portfolio valuation. This approach simulates the factors
influencing the value of multiple portfolios to assess a wide array of potential outcomes. Ultimately,
it derives the overall average value of these simulated portfolios, offering a highly accurate portfolio
assessment. Lastly, Monte Carlo Simulation is integral to sensitivity analysis within financial modeling.
In this context, our primary focus is on option valuation.

3. Methods and Materials

3.1. Model Formulation. Consider a complete stochastic foundation denoted as (Ω,F, {F} ,P). This
includes a right-continuous filtered probability space with the filtration {Ft} , 0 ≤ t ≤ T and is P-
complete. All stochastic processes within the filtered complete probability space (Ω,F, {F} ,P) are
required to be well-defined and adapted. This holds within the context of a finite time horizon T . We
examine a financial market scenario involving a single investor whose portfolio encompasses two key
components: a risk-free security, which could be a bond or a money market account, represented as
M (t), and a risky security, which could be a stock or a derivative, denoted as X (t)

Let the price dynamics of the risk-free securityM(t) evolve as follows:dM(t) = RM(t)dt,

M(0) = 1,
(1)

with a fixed interest rate R .
Let the price evolution of the risky security, a stock (or share) X(t), be described by the stochastic
differential equation: dX (t) = r (t)X (t) dt+

√
νX (t) dW s (t) ,

X(0) = X > 0.
(2)

where r(t) represents the risk-free interest rate, while ν denotes the instantaneous volatility, and dW s

is the standard Brownian motion and the dynamics of the Heston model for the instantaneous variance
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ν is given by: dν (t) = κ(θ − ν (t))dt+ η
√
ν (t)dW v (t) ,

ν(0) = ν0 > 0,
(3)

where κ represents the mean reversion speed, θ stands for the long-term variance mean, η denotes the
volatility of volatility, and dW v (t) corresponds to another Wiener process, independent of dW s (t).
The following stochastic differential equation, indigeneously defines the SABR model

dF = σF βdWt

dσ = ασdBt

dWtdBt = ρdt

(4)

In this context, F represents the forward value of the underlying security, while σ denotes the spot
volatility, which is characterized as a stochastic process. The parameters α and β are subsequently
introduced to complete the description, with α > 0 and β ∈ [0, 1].
The implied volatility corresponding to an option featuring a strike price of K and a maturity of T
expressed as follows

σ(K,T ) = α(K,T )(F (K,T ))(β(K,T )) (5)

where F (K,T ) is as already defined, and α(K,T ) and β(K,T ) are parameters. We combine these two
models by replacing the volatility parameter in the Heston model with the SABR volatility formula:

ν = f(σ(K,T ), F (K,T ),K, T ) (6)

where f is a function that maps the SABR parameters to the Heston volatility parameter. The function
f that maps the SABR parameters to the Heston volatility parameter is expressed as:

f(σ(K,T ), F (K,T ),K, T ) = ν0 + ρσ(K,T )(σ(K,T )− σ0) (7)

where ν0 is the initial variance, σ0 is the initial volatility.

3.1.1. SABR Implied Volatility. The distinctive characteristic of the SABR model enables one to calculate
the implied volatility corresponding to a specified strike price. By using the Black’s formula for
European option prices provided in [4] as:

CB = e−rT [FN (d1)−KN (d2)] , PB = V call
0 + e−rT [K − F ]

for d1 =
ln
(
F
K

)
+ 1

2σ
2
BT

σB
√
T

and d2 = d1 − σB
√
T

(8)

where σB is assumed to be constant volatility in the Blacks model.
Thus, equipped with the formula in 8, and using singular perturbation methods, [9] derived an
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analytical expression from the SABR-model for the implied volatility, also referred to as the Hagan
formula:

σB (F,K) =

 α

(FK)
1−β
2

{
1 + (1−β)2

24

(
ln F

K

)2
+ (1−β)4

1920

(
ln F

K

)4
+ ...

} z

χ (z)


[

1 +

(
(1− β)2

24

α2

(FK)(1−β)
+

1

4

αβρν

(FK)
(1−β)

2

+
2− 3ρ2

24
ν2

)
T

]
+ ...

(9)

Here
z =

ν

α
(FK)

(1−β)
2 ln

F

K

χ (x) = ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
Where; σB (F,K) is the implied volatility at strikeK , α is the initial volatility level, F is the current
forward price of the underlying asset, β is the parameter that controls the skewness of the volatility
surface, ρ is as previously specified, ν is the volatility of volatility.
At-the-money, where F = K, the formula in 9 is further simplified to:

σB (F,K) =
α

(F )(1−β)

(
z

χ (z)

)
×[

1 +

(
(1− β)2

24

α2

(F )
(1−β)

2

+
1

4

αβρν

(F )(1−β)
+

2− 3ρ2

24
ν2

)
T

]
+ ...

. (10)

As mentioned in [9], the terms indicated by “..." , can be left out since they are too small.
Further in [1], an approximate formula has been provided when β = 1 for formula 10 becomes:

σB (F,K) ≈ α
[
1 +

(
ραν

4
+

2− 3ρ2

24
ν2

)
T

]
. (11)

3.2. Heston-SABRModel. The hybrid stochastic volatilitymodels belong to a category ofmathematical
models that are utilized to describe the behavior of financial markets. They are used to model the
volatility of asset prices, which is the degree of variation of prices over time. Numerous varieties of
hybrid stochastic volatility models exist, and they can be used for a wide range across various cases,
including but not limited to option valuation, risk assessment, and portfolio enhancement. In our
model formulation we have adopted the Hybrid Model which is a combination of the two stochastic
models; the Heston and the SABR Models. Following [19], this model is mathematically define by:

dX (t) = rX (t) dt+
√
ν (t)Xβ (t) dW s (t)

dν (t) = κ(θ − ν (t))dt+ η
√
ν (t)dW ν (t) ,

where r ∈ R, β ∈ [0, 1] and κ, θ, η, ν (0) > 0

(12)

with the notations as previously described, dW s (t) and dW v (t) are standard brownian motion.
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3.2.1. Some Properties of the model Parameters. To ensure the validity of the model, our parameters will be
estimated whilst abiding by the following conditions: The parameters κ, θ, η, ν0, should all be positive
to indicate respectively; the volatility mean reverts towards its long-term average value, a non-zero
long-term average value for volatility, volatility itself has volatility, the initial volatility level is positive.
Furthermore, the correlation denoted as ρ between the asset price and its volatility must fall within the
range of -1 to 1. This ensures the validity of the relation, signifying that the stock price and volatility
exhibit corresponding or inverse movements, contingent on the sign of ρ. Accordingly, as in [3, 7],
2κθ > η2, the Feller condition.

3.2.2. Stylized Facts of the Model. In this part, we analyze these empirical observations, for the discription
and understanding of the financial market under this model. There are several well known stylized
facts, however, in our case we simply look at the fat-tails, volatility clustering and leverage effects
properties. In figure 1, by using the histogram and the kernel density, we have shown that the simulated
returns are not normally distributed due to high peaks and not clearly symmetrical. Additionally, in
support of the above assertions, a quantile-quantile plot is given in figure 2, hence, these returns for
the hybrid Heston-SABR model typically exhibits characteristics that are more in line with empirical
financial data, such as fat tails, which are not accounted for by a simple normal distribution. This
suggests that the hybrid Heston-SABRmodel provides a better representation of market behavior and is
suitable for capturing the stylized facts of financial returns, hence, accounts for higher levels of market
volatility and unexpected events.

The plotted rolling volatility under the hybrid model in figure 3a reveals the presence of volatility
clustering and this reaffirms the validity of the model in capturing real-world financial dynamics.
Further, in figure 3b, we demonstrate that the hybrid Heston-SABR model incorporates the leverage
characteristics of both models.

(a) Histogram (b) Kennel Density

Figure 1. Histogram and Kennel Density of Returns
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Figure 2. Quantile-Quantile of returns

(a) Rolling Volatility (b) Leverage Effect

Figure 3. Volatility Clustering and Leverage Effect for the Model

4. Discussion and Results

It this section, we delve into the Monte Carlo estimation of the model. Firstly, we discretize the
stochastic differential equations and simulation of the underlying asset.

4.1. Simulation Of the Hybrid Heston-SABR Model. The Monte Carlo simulation method is a
commonly employed approach for modeling the prices of financial assets and derivatives. Accordingly,
we apply this method to simulate our hybrid Heston-SABR model. In our implementation of these
simulation in Matlab R2021a, we firstly choose the model parameters of the hybrid Heston-SABR
model. Next, we create the Brownian motion, which is subsequently employed for simulating both the
underlying asset’s value and its volatility. To achieve this, we generated two sequences of independent
normal random variables Zs and Zv, each of length n. Afterwards, employ these sequences to model
the Brownian motion of the underlying asset’s price and volatility by utilizing the following equations:

Xt = Xt−1e
(r− 1

2
νt−1)∆t +

√
νt−1

√
∆tZs,t (13)
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νt = |νt−1 + κ(θ − νt−1)∆t+ σ
√
νt−1

√
∆tZν,t| (14)

where Xt and νt are the simulated values of the underlying stocks’s price and volatility at time t, r is
the riskless rate, ∆t is the time step, and κ, θ, σ, ρ are the parameters of the Heston model. By using the
simulated values of the underlying asset’s price and volatility to calculate the log-returns, we finally
simulate the implied volatility and then use the following equation

σimp,t = α
Sβt

(αSβt + (1− α)Kβ)
1
β

ν

νt
(15)

where σimp,t represents the simulated implied volatility at time t,K stands for the strike price, while
α, β, ρ, ν denote the parameters of the SABR model.

(a) fig (b) fig

(c) fig

Figure 4. Simulations of the Hybrid Model
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Figure 5. Heston and SABR Models Paths

Figure 6. Hybrid Heston-SABR Model Paths

In figure 4, we have produced two charts: the upper chart displays the simulated stock price as a
time-dependent function, and the lower chart illustrates the implied volatility over time. The stock
price plot shows the simulated stock price for each simulation over time. It shows how the stock price
changes over time and how it varies for different simulations. We can use it to analyze the behavior of
the stock price under different market conditions and to evaluate the risk associated with a particular
investment. The implied volatility plot shows the simulated implied volatility for each time step and
simulation. The plot shows how the implied volatility changes over time and how it varies between
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different simulations. Given that implied volatility reflects market anticipations of future volatility
based on option prices at each time step, it can serve as a tool for studying how implied volatility
behaves in varying market conditions and for assessing the risk associated with a specific investment.
In other words, these simulations and plots provide insights into the behaviour of the stock price and
implied volatility over time based on the specified Heston and SABR model parameters. Thus, can be
used for pricing of financial derivatives, such as options. In the figure 4: a, b, c above are reproduced
for ρ = −0.5, ρ = 0 and ρ = 0.5 respectively, (that is, negative correlation, no correlation and
positive correlation).

In figure 5 and figure 6, we employ python to compare the behaviour of simulated paths for the
underlying asset price(stock price) and variance for individual models and the hybrid model , respec-
tively.

4.2. Numerical Pricing of the European option. Since the probability distributions of the random
variable is not known for our stated hybrid model, the price of the plain Vanilla option cannot be
expressed using an analytical solution, thus, we use Monte Carlo simulations. In our work the Milstein
and Euler-Maruyama methods are applied to update the stock price, Heston variance, and the SABR
volatility paths at each time step. We have done N = 10000 simulations with n = 252 steps, with
terminal time T = 1.0 for 9 different strike prices. We evaluate the mean option prices for the two
schemes. A Corei5(Gen11), 1135G7@2.4GHz2.42GHz with 8GB RAM computer with Windows 10(x64)
is employed to do computations in Python (Anaconda3) and the results given in table 1, for negative
and positive correlations of the respective schemes. Table 2, show results when there is no correlation.
To visualise our European Option prices under the hybrid Heston-SABR model, we plot figures 7,
respectively for Milstein and Euler-Maruyama methods. Both approaches provide higher accuracy
as observed in figure 8, which compares the the two schemes and differ slightly by the first decimal
depending on the strike price, under the negative correlation.
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Table 1. Mean-European Option Prices for the Model

n Strike Price Milstein∗ Euler-Maruyama∗ Milstein∗∗ Euler-Maruyama∗∗

0 80.0 32.210938 32.127348 32.203537 31.889112
1 85.0 28.498816 28.806606 28.711648 28.413035
2 90.0 25.699813 25.068208 25.327530 25.208082
3 95.0 22.357290 22.411554 21.980335 22.402860
4 100.0 19.707789 19.545275 19.587241 19.697529
5 105.0 17.358629 17.294781 17.330058 17.083570
6 110.0 14.763253 15.185878 15.003641 14.791138
7 115.0 13.165819 13.046696 13.206516 13.189936
8 120.0 11.450745 11.180395 11.393477 11.180545

Notes: ∗ρ = −0.5, ∗∗ρ = 0.5, respectively , with S0 = 100, r = 0.05, β = 0.5.
Table 2. Mean-European Option Prices for the Model.

n Strike Price Milstein Euler-Maruyama

0 80 32.062549 32.095253
1 85 28.436043 28.820786
2 90 25.434541 25.522703
3 95 22.078632 22.268216
4 100 19.809803 19.929522
5 105 17.164363 17.306409
6 110 14.788211 14.960135
7 115 12.934181 13.154319
8 120 11.275480 11.19896
ρ = 0, with S0 = 100, r = 0.05, β = 0.5
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(a) Milsteim method (b) Euler-Maruyama method

Figure 7. Mean-European Option Prices(Hybrid Heston-SABR Model)

Figure 8. European Option Prices (Hybrid Heston-SABR Model)
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5. Conclusion

Hybrid Stochastic volatility models play a crucial role in financial and investment practice. In this
study, we have examined the hybrid Heston-SABR model. We have seen how the implied volatilities
change over time for each simulation path and how they tend to vary with the underlying stock price.
We have confirmed the better performance of ρ, when it is negative, as compared to when either positive
or zero for this model. We have observed how the stock prices evolve over time, and how they can
vary significantly across different simulation paths. These simulations are essential for understanding
the dynamics of stock prices and implied volatilities, which are crucial for options pricing and risk
management in quantitative finance. Further, we have performed numerical simulations to demonstrate
that the hybrid Heston-SABR model encompasses a broader range of stylized facts than singly Heston
or SABR models. Lastly, we used Monte Carlo simulations to compute the European Option prices for
the model under different strike prices using Milstein and Euler-Maruyama methods.
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