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Abstract. We study the evolution copula which governs a pair of processes one of which is conditioned by
the exceeding of a peak. We start by clarifying the copula that links different values of the process along its
evolution and after we make clear how to treat the conditioning to any event that involves extreme values
of some regular processes. As a prototype and using classical measures of asymmetry, we focus on the
Wiener process and emphasize skewness produced by the conditioning operation.
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1. Introduction

Dependence between walks of a given process was recently explored by many researchers, among
others, we cite for instance the recent papers [10] and [21]. The most popular process in stochastic
literature is Wiener’s one since it has large applications in finance and market modeling. The idea of
this work is to study the dependence of a price evolution, once when at a previous time, the price has
exceeded some fixed prior level. Precisely, if (Wt)t≥0 denotes a given process, we expect to understand
the behavior of the processWt/Mt ≥ a, where a ∈ R andMt = sup0≤s≤tWs. By a simple change of
variable and taking in account the symmetry ofWt law, one may without further efforts, determine
the behavior and the evolution ofWt/mt wheremt = inf0≤s≤tWs. The definition of Wiener process is
rewritten, as a preliminary at the first subsection (2.1).
The aim of the current paper is to describe the aspect of dependence, on one hand, between any
pair (Wt,Ws), t, s ∈ R, of the Brownian motion and on the other, but more important one, how the
conditioned processes (Wt,Mt) and (Wt,mt) evolve for large values of t. The main tool used here is the
copula which summarizes the dependence property between random variables and allows, in many
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important statistical cases, to rebuild the distribution of a given random vector with a well known
copula and known margins. Let us give an overview on this latter notion.
A copula, is introduced as a tool for modeling the dependence structure between random variables. As
usual, the unavoidable book of Nelson [12] will be our sure reference. Copulas make a link between a
multivariate joint distribution and its uni-variate marginal ones via the famous Sklar’s theorem [1]
or [2]. This latter result gives a bridge between the joint distribution and its margins using a copula. It
was indeed a turning point in the statistical analysis where problems of retrieval are evoked. We cite
among others [22] or more recently [4].
The current paper is organized as follows: First we recall some definitions and results about Wiener
processes and Brownian copulas that will be treated later in the article. We focus on the copula joining
the Brownian motion at two arbitrary times hence a copula governing diffusion process. We estimate
some concordance parameters mainly β of Blomqvist because of its simplicity. We recall some important
results on asymmetry [23] and on classical parameters of concordance mainly Kendal’s τ and ρ of
Spearman. To take in account the asymmetry of data, some new asymmetric copulas were suggested to
describe asymmetric phenomena like it was done in [5]. For more details on asymmetry and orders on
copulas, we refer to [6]. In the third section, we clarify the construction of conditioned Brownianmotion
and give some of its properties. Finally at the fourth section, we study the obtained skewed process
after conditioning. One should understand by study the determination of the copula that governs the
dynamical system. As a prototype of motivation, one may think to fluctuation price behavior when it
has exceeded some critical level. In this context, we give an application to theses results in section 6.

2. Preliminaries

2.1. Wiener’s process. Consider a probability space (Ω,F ,P). A Wiener process (Wt)t≥0 with natural
filtration Ft = σ

{
W−1
s (A) | s ≤ t, , A ∈ B(R)

} where B(R) is the Borel σ-algebra on R is defined as
follows:

Definition 1. A one-dimensional Brownian motion is a real-valued processWt, t ≥ 0 that has the following

properties:

(a) If t0 < t1 < · · · < tn, thenWt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1 are independent.

(b) If s, t ≥ 0, then

P (Ws+t −Ws ∈ A) =

∫
A

(2πt)−1/2 exp
(
−x2/2t

)
dx

(c) With probability 1, t→Wt is continuous.

We denote by

Mt = sup
0≤s≤t

Ws,
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and
mt = inf

0≤s≤t
Ws

respectively the associated running maxima and minima processes. Owing to the continuity of trajecto-
ries, theses quantities exist. The following results are well known

Proposition 1.

P (Mt > a) = 2P (Wt > a)

Proposition 2. We have the following reflection principle:

P (Wt ≤ a/Mt > b) = 2P (Wt > 2b− a/Mt > a)

2.2. Bivariate copula.

Definition 2. A copulaC is a bifunction on I2 into Iwhich satisfies the following conditions for allu, v, u1, v1, u2, v2

in I

(1) Border conditions: C(0, v) = C(u, 0) = 0.

(2) Uniform margins: C(1, v) = v and C(u, 1) = u.

(3) The C−volume property:

VC(R) = C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0

for all rectangle R = [u1, u2]× [v1, v2] ⊂ I2 with u1 < u2 and v1 < v2.

For convenience, we write C to denote the set of all bivariate copulas. Each element of C is framed
between Fréchet-Hoeffding boundsW andM given byW (u, v) = max(u + v − 1, 0) andM(u, v) =

min(u, v). Precisely, we have

∀(x, y) ∈ I2 : W (x, y) ≤ C(x, y) ≤M(x, y).

These bounds (M andW ) are also copulas but in higher dimensions, say for multivariate copulas,W
is not a copula.
Statistically speaking, Fréchet-Hoeffding boundsM andW model respectively the co-monotonicity and
counter monotonicity of empirical variables X and Y . The copula Π : (x, y) ∈ I2 7→ xy characterizes
the total independence between the two variables.

Theorem 1 (Sklar’s theorem). Let H be two-dimensional distribution function on a probability space (Ω, p)

with marginal distribution functions F and G. Then there exists a copula C such that

∀(x, y) ∈ R2 : H(x, y) = C(F (x), G(y)). (1)

If F and G are continuous then the copula C is unique.
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The equality (1) Means simply

∀(x, y) ∈ R2 : P (X ≤ x, Y ≤ y) = C(P(X ≤ x),P(Y ≤ y)).

Definition 3. The survival copula of a given copula C is the function Ĉ defined by the formula

∀u, v ∈ I : Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v)

The copula Ĉ satisfies

∀(x, y) ∈ R2 : P (X > x, Y > y) = Ĉ(P(X > x),P(Y > y)).

Proposition 3. Let X and Y be continuous random variables. If f denotes a strictly increasing function. Then

Cf(X),f(Y ) = CX,Y

For a pair of continuous random vectors (X1, X2) and (Y1, Y2), we denote byQ ( [12, pages,159-182])
the difference of two probabilities

Q = P ((X1 −X2)(Y1 − Y2) > 0)− P ((X1 −X2)(Y1 − Y2) < 0)

If the corresponding copulas are C1 and C2, then

Q(C1, C2) = 4

∫
I2
C1(u, v) dC2(u, v)− 1

The usual first three measures of concordance may be defined in terms of the concordance function
Q.
Kendall’s tau of C is defined by

τ(C) = Q(C,C)

Spearman’s rho by

ρ(C) = 3Q(C,Π)

Gini’s gamma by

γ(C) = Q(C,M) +Q(C,W ).

Blomqvist’s Beta by

β(C) = 4C

(
1

2
,
1

2

)
− 1.



Asia Pac. J. Math. 2024 11:33 5 of 14

2.3. Tail dependence. The following results are extracted from [12, page, 214]

Definition 4. Let X and Y be continuous random variables with distribution functions F and G, respectively.

The upper tail dependence parameter λU is the limit (if it exists)

λU = lim
t→1−

P
(
Y > G(−1)(t)/X > F (−1)(t)

)
(2)

The lower tail dependence parameter λL is the limit (if it exists)

λL = lim
t→0+

P
(
Y ≤ G(−1)(t)/X ≤ F (−1)(t)

)
(3)

Proposition 4. LetX and Y be continuous random variables with distribution functions F and G, respectively,

and let C be the copula of X and Y . If the limits exist, then the upper and lower tail dependence are given by:

λU = 2− lim
t→1−

1− C(t, t)

1− t
and

λL = lim
t→0+

C(t, t)

t
.

3. Brownian Copula

We start by describing a Brownian copula Cs,t which links the two processesWs andWt for two
strictly positive reals s and twith s < t. Φt denotes the cumulative distribution function ofWt and φt
its derivative and shortly Φ = Φ1 and φ = φ1.

P(Wt ≤ y/Ws = x) = P(Wt −Ws ≤ y − x/Ws = x) = P(Wt−s ≤ y − x/Ws = x).

Hence

P(Ws ≤ x,Wt ≤ y) =

∫ x

−∞
P(Wt−s ≤ y − z)dΦs(z).

So

Bs,t (Φs(x),Φt(y)) =

∫ x

−∞
Φ

(
y − z√
t− s

)
dΦs(z).

With the change of variables u = Φs(x), v = Φt(y) and w = Φs(z), we obtain

Bs,t (u, v) =

∫ u

0
Φ

(√
tΦ−1 (v)−

√
sΦ−1(w)√

t− s

)
dw

It is exactly the Gaussian copula with correlation coeficient√ s
t . When t is tending to infinity, or s is

tending to 0, the Brownian copula is tending to the independence one.
The density of the Brownian copula is

bs,t (u, v) =

√
t

t− s
φ

(√
tΦ−1 (v)−

√
sΦ−1(u)√

t− s

)
1

φ (Φ−1 (v))
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4. Diffusion Process Copula

Proposition 5. Let Xt be a diffusion process satisfying the following stochastic differential equation:

dXt = µXtdt+ σXtdWt and X0 > 0.

The classical solution of such SPDE is given explicitly, using the well known Itô’s formula by

Xt = X0exp

(
σWt + (µ− σ2

2
)t

)
.

Proof. Since the mapping w 7→ X0exp
(
σw + (µ− σ2

2 )t
)
is strictly increasing, the copula linking the

two processes Xs and Xt is the Brownian copula Bs,t. �

5. A Parametrized Copula Depending on Time

5.1. A skewed Brownian motion. It is well known that conditioning a variable on a measurable subset
from another random variable causes a skewness parameter [21]. Here we consider a strictly positive
real a > 0 and denote shortly α = αa,t the probability P(Mt > a) which equals 2(1 − Φt(a)) since
α = 2P(Wt > a) and αx = αx,t for any real x > 0.
We denoteXt the processWt/(Mt > a) obtained by conditioning the standard Brownian motionWt by
the measurable setMt > a and we aim to determine the distribution function Fa,t of such process Xa,t.
For any real number x satisfying x ≥ a, we have

P(Xa,t ≤ x) = 1
αP (Wt ≤ x,Mt > a)

= 1
α [P(Wt ≤ x)− P(Wt ≤ x,Mt ≤ a)]

= 1
α [P(Wt ≤ x)− P(Mt ≤ a)]

= 1
α [Φt(x)− 1 + α)]

On the other hand if x ≤ a

P(Xa,t ≤ x) = P (Wt ≤ x/Mt > a)

= P(Wt > 2a− x/Mt > a)

= 1
αP(Wt > 2a− x,Mt > a)

= 1
α [P(Wt > 2a− x)− P(Wt > 2a− x,Mt ≤ a)]

= 1
αP(Wt > 2a− x)

= 1
αΦt(x− 2a)

Finally the distribution function of the process Xa,t is given by

Fa,t(x) =



Φt(x− 2a)

α
if x ≤ a

1− Φt(−x)

α
elsewhere.
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Its density function fa,t is resulting as

fa,t(x) =



φt(x− 2a)

α
if x ≤ a

φt(x)

α
elsewhere

The representative curve of fa,t is symmetrical with respect to the vertical axis x = a. So graphically,
one has immediately E(Xa,t) = a. Let us confirm this result by a direct calculation:

αE(Xa,t) =
∫ a
−∞ xφt(2a− x) dx+

∫ +∞
a xφt(x) dx

= 2a
∫ a
−∞ φt(u) du

= 2a(1− Φt(a))

= αa

which confirms the intuitive geometrical remark above ensuring that E(Xt) = a.
To calculate the variance, we start by the second moment E(X2

a,t).

αE(X2
a,t) =

∫ a
−∞ x

2φt(2a− x) dx+
∫ +∞
a x2φt(x) dx

=
∫ +∞
a

(
(2a− x)2 + x2

)
φt(x) dx

= 4a2
∫ +∞
a φt(x) dx− 4a

∫ +∞
a xφt(x) dx+ 2

∫ +∞
a x2φt(x) dx

= (2a2 + t)α− 2atφt(a)

Finally
V (Xa,t) = a2 + t− 2at

α
φt(a)

5.2. A time parametrized copula. We are interested in this paragraph to search the copula Ca,t linking
the two processesMt and Xa,t which will be denoted shortly Xt in the sequel.
Let be x and y two real numbers. The joint distribution function H ofMt and Xt is given by:

H(x, y) = P(Mt ≤ x,Xt ≤ y)

= P(Xt ≤ y)− P(Mt > x,Xt ≤ y)

= P(Xt ≤ y)− P(Mt > x)P(Xt ≤ y/Mt > x)

I First case: If x ≤ a.

H(x, y) = P(Xt ≤ y)− P(Mt > x)P(Xt ≤ y/Mt > x)

= P(Xt ≤ y)− P(Mt > x)P(Xt ≤ y)

= P(Xt ≤ y)− (1− P(Mt ≤ x))P(Xt ≤ y)

We put u = P(Mt ≤ x) and v = P(Xt ≤ y). Then

u = P(Mt ≤ x) ⇐⇒ 1− u = 2(1− Φt(x))

⇐⇒ x = Φ−1
t

(
1+u

2

)



Asia Pac. J. Math. 2024 11:33 8 of 14

Thus the condition x ≤ a is equivalent to u ≤ 1− α and the value of the copula Ca,t in this case
is Ca,t(u, v) = uv

I Second case: If a < x ≤ y

v = P(Xt ≤ y) ⇐⇒ v = 1− Φt(−y)

α
⇐⇒ y = Φ−1

t (1− α+ αv)

The condition a ≤ x ≤ y becomes 1− α ≤ u ≤ 1− 2α+ 2αv The joint distribution function in
this case is

H(x, y) = P(Xt ≤ y)− P(Mt > x)P(Xt ≤ y/Mt > x)

= P(Xt ≤ y)− P(Mt > x)P(Wt ≤ y/Mt > x)

= P(Xt ≤ y)− P(Mt > x)P(Wt > 2x− y/Mt > x)

= P(Xt ≤ y)− (1− Φt(−y))

= P(Xt ≤ y)− P(Mt > x)
(

1− Φt(−y)
αx

)
Then

Ca,t(u, v) = u+ (1− α)v − 1 + α

I Third case: If a ≤ y ≤ x This condition is equivalent to 1− α ≤ 1− 2α+ 2αv ≤ u since a ≤ y.
The joint distribution function in this case become

H(x, y) = P(Xt ≤ y)− P(Mt > x)P(Wt ≤ y/Mt > x)

= P(Xt ≤ y)− P(Mt > x)Fx,t(y)

= P(Xt ≤ y)− P(Mt > x)
(

Φt(y−2x)
αx

)
= P(Xt ≤ y)− Φt(y − 2x)

Then

Ca,t(u, v) = v − Φt

(
Φ−1
t (1− α+ αv)− 2Φ−1

t (
1 + u

2
)

)
and using the relationship between Φt and Φ we can write

Ca,t(u, v) = v − Φ

(
Φ−1(1− α+ αv)− 2Φ−1

(
1 + u

2

))
I Fourth case: If y ≤ a ≤ x

We have
v = P(Xt ≤ y) ⇐⇒ v =

Φt(y − 2a)

α
⇐⇒ y = Φ−1

t (αv) + 2a

Then the condition y ≤ a ≤ x is equivalent to 2a + Φ−1
t (αv) ≤ a ≤ Φ−1

t (1+u
2 ) and finally to

v ≤ 1
2 and u ≥ 1− α.
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For this condition

H(x, y) = P(Xt ≤ y)− P(Mt > x)P(Wt ≤ y/Mt > x)

= P(Xt ≤ y)− P(Mt > x)Fx,t(y)

= P(Xt ≤ y)− Φt(y − 2x)

Then Ca,t(u, v) = v − Φt

(
2a+ Φ−1

t (αv)− 2Φ−1
t (1+u

2 )
)

Finally the copula Ca,t may be written as

Ca,t(u, v) =



uv if u ≤ 1− α

u+ (1− α)v − 1 + α if 1− α ≤ u ≤ 1− 2α+ 2αv

v − Φ
(
Φ−1(1− α+ αv)− 2Φ−1(1+u

2 )
) if 1− 2α+ 2αv ≤ u and v ≥ 1

2

v − Φ
(

2a√
t

+ Φ−1(αv)− 2Φ−1(1+u
2 )
)

elsewhere.

(4)

5.3. Some parameters of concordance. As mentioned at introduction, we give some characteristics of
the family

5.3.1. Tail dependence parameters.

λL(Ca,t) = lim
s→0+

Ca,t(s,s)
s .

= 0.

λU (Ca,t) = lim
s→0+

2− 1−Ca,t(s,s)
1−s .

= α.

= 2Φ
(
− a√

t

)
.

= αa,t.

5.3.2. β of Blomqvist. To estimate β, it is enough to remark that

β(Ca,t) = 4Ca,t
(

1
2 ,

1
2

)
− 1.

=

0 if α < 1
2

1− 4Φ
(
a√
t
− 2Φ−1

(
3
4

)) if α ≥ 1
2

.

5.4. Limit cases. We have theses limit cases when one of the two parameters a or t tends to 0 or to +∞.

lim
t→0+

Ca,t = lim
a→+∞

Ca,t = Π.

And for other cases,

lim
a→0+

Ca,t = lim
t→+∞

Ca,t(u, v) =

u if 1 + u ≤ 2v

v − Φ
(
Φ−1(v)− 2Φ−1(1+u

2 )
) elsewhere.

We give some remarks about theses limit cases:
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I First, when a tends to 0, the event (Mt > a) tends to a certain event and the process Xa,t is
tending toWt then it seems natural that the limit copula is CMt,Wt which coincides with CM1,W1

I Second, even the two processesMt andWt are depending on time, the copula joining them is
not.

5.5. The survival copula. As already done for the running maxima-process of (Wt)t, we consider the
process Yt = (Wt/mt < −a)t obtained using conditioningWt by the event (mt < −a) and denote, for
more simplicity, Zt = −Wt, nt = min

0≤s≤t
Zs and Nt = max

0≤s≤t
Zs.

One remarks that, using reflection principle of the Brownian motion, the process Zt is also a standard
Brownian motion since it is the reflected of (Wt) from 0, we can use easily the fact that we have both
the two relations: nt = −Mt and Nt = −mt. The results established above lead to:

Ya,t = Wt/mt<−a

= −
(
−Wt/−Nt < −a

)
= − (Zt/Nt>a)
d
= −Xa,t.

We conclude that E (Ya,t) = −E (Xa,t) and the two processes have same variance.
Now we search the copula linking the two processesmt and Ya,t.

P(mt ≤ x, Ya,t ≤ y) = P (−Nt ≤ x,−Zt/Nt>a ≤ y)

= P (Nt > −x, Zt/Nt>a > −y)

= 1− P (Nt ≤ −x)− P (Zt/Nt>a ≤ −y) + P (Nt ≤ −x, Zt/Nt>a ≤ −y)

= 1− (1− u)− (1− v) + Ca,t(1− u, 1− v)

= u+ v − 1 + Ca,t(1− u, 1− v)

= Ĉa,t(u, v)

With u = P(mt ≤ x) = P(Nt > −x) and v = P(Ya,t ≤ y) = P(Zt/Nt>a > −y)

The copula linkingMt and Xa,t coincides with the survival one of the copula joiningmt and Ya,t.
By recalling limit cases above, when a is tending to 0, or t is tending to +∞, the following equality
holds

Cmt,Wt = ĈMt,Wt .

Since the copula CMt,Wt is independent on time as seen above, we conclude that it is also the same for
the copula Cmt,Wt .
When a tends to +∞ or t tends to 0, the copula Cmt,Ya,t converges to the independence one.
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5.6. One parameter family. One can easily see from expression (4) that the double parameter family
(Ca,t)a>0,t>0 can be expressed only using one parameter taking into account that the underlying double
parameter family of copulas depends only on a√

t
. Therefore one has α = 2

(
1− Φ

(
a√
t

))
∈]0, 1]. Hence

the copula governing these processes becomes

Cα(u, v) =



uv if u ≤ 1− α

u+ (1− α)v − 1 + α if 1− α ≤ u ≤ 1− 2α+ 2αv

v − Φ
(
Φ−1(1− α+ αv)− 2Φ−1(1+u

2 )
) if 1− 2α+ 2αv < u and v ≥ 1

2

v − Φ
(
2Φ−1(1− α

2 ) + Φ−1(αv)− 2Φ−1(1+u
2 )
) elsewhere.

(5)

The copula Ca,t is constant along each parabolic curve given by its cartesian equation is a = c
√
t,

where c = Φ−1
(
1− α

2

)
> 0.

And for showing well this dependence on α, we construct 500 data scatterplots for each copulaCα for
some values 0, 1

2 , 3
4 , and 1 of the unified parameter α. And a simple calculation allows by discretizing

the domain I2, we obtained for example for the case α = 1
2 the asymmetry 1

4 .

Figure 1. 500 data scatterplots for copulas C0, C 1
2
, C 3

4
and C1
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6. Application

The diffusion process Xt defined in section 4 modelizes a price of an option or of a product at time t.
Our aim is to describe the dependence between its maximum Ut = Xs

0≤s≤t
and the price itself when the

maximum Ut has surely exceeded some known level a > 0.
If we denote f the function f : x 7→ X0exp

(
σx+ (µ− σ2

2 )t
)
which is strictly increasing. Since

Xt = f(Wt), we have Ut = f(Mt).
Always from the increasiness of the function f , we conclude that the mesurable set {Mt > a} is equal
to {Ut > f(a)}.
We come back to the process f (Wt/Mt > a) which equals:

f (Wt/Mt > a) = f (Wt1Mt>a)

=

f(Wt)(w) if w ∈Mt > a

f(0) elsewhere

=

Xt(w) if w ∈ Ut > f(a)

f(0) elsewhere
= Xt/Ut > f(a)

One can easily conclude that the copula joining the processes Ut and Xt/Ut > f(a) is the copula
Ca,t seen above since theses processes Ut and Xt/Ut > f(a) can be written as Ut = f(Mt) and Xt/Ut >

f(a) = f (Wt/Mt > a).
The price Xt knowing that it has exceeded a fixed level a > at a time before t and its maxima Ut have
the dependence Cf(a),t.

7. Conclusion

Even if the algebraic expression of the copula Cα seems complicated, mainly on the white area
in figure 1, its implementation is not difficult and applications, as expected, in many fields is surely
promising. We are content with this one exposed above.
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