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AssTrACT. Originated from a well-known Farey sequence, the generalized Farey graph G,,: where m > 1
and ¢ > 1 has been studied in both on network and combinatorial aspects. In this work, we show that the
diameter of G ¢ is t. Furthermore, the rainbow connection number of graph G1; is equal to its diameter
which is the smallest possible among the graphs with the same diameter. We also show that the rainbow
connection number of Gy,,c ist + 1 form > land ¢ > 1.
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1. INTRODUCTION

A generalized Farey graph is characterized as a small-world network graph, and its properties have
been extensively studied. In this work, we improve upon an existing result on a generalized Farey graph
by obtaining the exact value of its diameter. Furthermore, we find its rainbow connection number
whose definition and relation to diameter are described in this section.

Let G = (V, E) be a graph with an edge-coloring c. A subgraph H of G is rainbow if c(e1) # c(e2)
for each pair of distinct e1,ea € E(H). A path is rainbow if none of its edges have the same color. A
graph G is rainbow connected if a rainbow (u, v)-path exists for each pair of distinct u,v € V(G). The
rainbow connection number of a graph G, denoted by rc(G), is the minimum number required for G to
be rainbow connected. The notion of rainbow coloring is introduced by Chartrand et al. [1]. Its bound
diam(G) < rc(G) < |E(G)| is obvious.

In 2013, Li et al. [2] illustrated an application in a security network in which the rainbow connection

number represents the minimum codes required to secure the network. Subsequently, they raised an
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Ficure 1. Drawings of G ¢

interesting problem of characterizing a graph G with rc(G) = diam(G). It is known that computing
rc(G) is NP-Hard and even deciding whether rc(G) = 2 is NP-Complete [3]. This may be a reason why
not many results appeared for a graph with rc(G) = diam(G). Unit interval graphs [4] and certain
maximal outer-planar graphs constructed by Deng et al. [5] were shown to have rc¢(G) = diam(G) and
arbitrarily large diameters.

A small-world Farey graph F(t) [6] is constructed recursively from a path of length one as the initial
graph F(0). For F(t) where ¢t > 1, we add a vertex w and two edges vw and vw to F(t — 1) for each
edge wv that first appears in F(t — 1). For m,t € N, a generalized Farey graph G, ; [7] is defined with a
recursive construction similar to F(¢) with the initial condition G,, ;1 = K3 where K3 is a triangle. For
G, where t > 2, we add m new vertices and 2m edges connecting those new vertices with u and v for
each edge uv that first appears in G, 1 (see examples in Figure 1). Both graphs are characterized as
small-world network graphs and their network properties have been investigated in many aspects [6,5].

Various coloring properties of the two graphs were obtained as follows. A small-world Farey graph
F(t) has its chromatic number equal to 3 when ¢ > 1 [6], and its §-chromatic number is 2! when
t > 2 [9]. Zhang and Comellas [6] showed that diam(F(¢)) = ¢t when ¢t > 1. Jiang et. al. [10] gave a
shortest path (also called geodesic path) between each pair of vertices in each of these two graphs. It
should be noted that a geodesic path is not necessarily a rainbow path resulting from edge-coloring. In
2018, Jiang et. al. [7] obtained the bound diam(G,,, +) < 2t + 3.

In 2022, the rainbow vertex-connection number, the minimum number of colors required for each pair of
vertices to be connected by a path with internal vertices of distinct colors, of F(t) is diam(F(t)) =t —1
[11] which is the lowest possible among the graphs with the same diameter. So, a similar problem
arises for the rainbow connection number of F(¢). In Theorem 5, we improve the aforementioned
result on diam(G,, ;) by showing that diam(G,,;) = diam(G(t)) = diam(F;) = ¢t form > 1. We

also give unique geodesic paths in G,,; for m > 1 and ¢ > 1. Finally, we show that, for ¢t > 1,
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Ficure 2. Vertex labelings of G(1), G(2) and G(3)

rc(F(t)) = re(Gh) = diam(G1) = tand, form > land t > 1, re(Gp¢) = diam(Gp, ) =t + 1. Asa
consequence, the rainbow connection numbers of G ; and F(t) are the lowest among the graphs with

the same diameter.

2. GENERALIZED FAREY GRAPH AND ITS PROPERTIES

Recall that, for m,t € N, a generalized Farey graph G, ; [7] is defined with a recursive construction
similar to F(t) with the initial condition G,, 1 = K3 where K3 is a triangle. Let 79, 71, 72 be the label of
such K3 (See Figure 2(A)). For the purpose of comparison with the recursive step in a small-world
Farey graph, our initial condition starts with ¢t = 1 while that of in the definition given by Jiang et al. [7]
started with ¢t = 0. We use notation G(t) = G14.

Next, we establish notations and terminologies that will be used in this work. If a vertex u € V(G 1)
first appears in step 4, then the level of u, denoted by I(u), is i for i = 1,...,t. Similarly, if an edge e first
appears in step i, then the level of e, denoted by [(e), is i. We note that the level of the vertices in G, +
begins with level one. In case m = 1, a symmetric drawing and vertex labeling of G(t) = G in this
paper are as in Figure 2. We can draw a graph so that w lies between its bases. The method of vertex
labeling is explained explicitly in the next section.

For each pair of adjacent vertices =,y € V (G, ) and a vertex u € V (G, +) such that [(u) > 2, if u is
added to G, + correspondingly to the edge xy, then u is a direct descendant of x and y. If u is a direct
descendant of x and y, then = and y are bases of u. We define a descendant recursively as follows. We say
v is a descendent of u if v is a direct descendent of u or there is z such that v is a descendent of z and z is
a descendant of u. We note that for each edge zy in Gy, with [(zy) < t, there are m direct descendants
of x and y. For an edge xy, an (z, y)-bundle B, ,) is the induced subgraph of G, ; consists of =,y and
all of their descendants. We say that {x, y} is the origin of B, . We note that B, ,y = B, ). We also
note that if x is a base of u, then [(z) < I(u). Furthermore, for a vertex u with I(u) > 2, there are two

bases of v and their levels are distinct in which exactly one of them has level [(u) — 1. The other base of
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FiGure 3. Symmetric drawing and vertex labeling of G(5)

u has level less than /(u) — 1. In 2018, Jiang et. al. [/] stated that diam (G, ;) < 2t + 1. We improve
such a statement in case m = 1 in Theorem 5.
In Lemma 1, we show that, for each vertex, the levels of the vertices in its geodesic paths to its origins

are decreasing.

Lemma 1. Let u,u',x,y € V(G ) be such that [(x) > 2, u € B,y and v’ € {z,y}. If P = uy...uy
is a geodesic (u,u')-path where u; = w and w, = v’ is the only vertex in {x,y}, then l(u;) > l(uit1) for

i=1,...,n—L

Proof. Suppose to the contrary that there exists a path P with a smallest i such that [(u;,) < I(uiy+1)-
Since distinct vertices of the same level are not adjacent when their level is at least two, it follows that
l(uiy) < l(uwig+1). SO w4, is a base of u;,+1. Let i; be the maximum number such that [(u;) < I(ui41) for
alli =dg,...,41 — 1. If i1 = 79 + 1, then w;; 41 = u;y42 is a base of w;; and u;y4+2 # u;,. Thus, deleting

a vertex u; 41 form P and adding an edge u;,u;,+2 giving a (u,v)-path with a shorter distance. If

i1 > 1o + 2, then w42 & B(uio,uio .,); otherwise, the path uy Pu,, must go through u;, or u;,+1 twice.
Similarly, we can conclude that u; 2 & By, 4, ) foralli =i, ..., i1 — 2. Let w be a base of u;, 1 where
w # u;,. We have that w is also a base of u; for i =iy, ..., ;. Since l(u;, ) > [(u;,4+1) and w;, 41 7# w4y, it

follows that w = u;,+1. Hence, deleting w;,41Pu;, from P and adding an edge u;,u;, +1 give a shorter

(u, v)-path. This completes the proof. O
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Remark 2. Let u,u',z,y € V(Gpy) be such that [(z) > 2,u € B,y and v’ € {z,y}. If P =wu1...uy isa
geodesic (u,u’)-path where uy = w and u,, = v’ is the only vertex in {x,y}, then u, is a descendant of u; for

i=2,...,n,and u; is a descendant of u,, for j =1,...,n — 1.

Remark 3. Let u,v,z,y € V(Gm) be such B, is the minimal bundle containing u and v. If P is a geodesic

(u,v)-path, then P C By

The property appears in Lemma 4 is needed to find the diameter of G, ; in Theorem 5.

Lemma 4. Let u € V(Gmy) be such that l(u) > 2. If u € By, 7, for i # j, then d(u,u’) < L for all

u e {m, 1}

Proof. Suppose there exists 7, 7 7j, and ug € B(y, -,y such that d(uo, uy) > % for some ufy € {7, 7, }-
y and B( y) and

u’l € {Til,le} where d(ul,u'l) = d(uo,u6) > % Since V(B(TiO’Tjo)) N V(B(Tilv"—h)) - {TQ,T1,7'2}, it

Since B(%,% 7i,,m;,) Ar€ isomorphic for {ig, jo} # {i1, 71}, there exists u; € V(B(Til,le

follows that d(ug, u1) > t. Since {io, jo} # {41, j1}, there exists a subgraph H = F(t) of Gy, ; containing

ug, ug, ut, uy. Thus dg,, , (uo, u1) < dg(uo, u1) < t contradiction. O
Theorem 5. For m > land t > 1, diam(G,, ) = t.

Proof. The result can be easily verified when ¢t < 2. Suppose t > 2. Let u,v € V(G,,) and let
z,y € V(Gpm,t) be such that B, ) is the minimal bundle containing u and v. If x,y € {79, 71}, then
By, = F(t). Let P be a geodesic (u, v)-path. By Remark 3, the path P C B, ,). Thus diam (G, +) >
diam(F(t)) = t. In addition dg,, , (u,v) < dF)(u,v) <t in this case.

We may now assume that I(z) > 2 and [(u) > 3. Let P be a geodesic (u, v)-path. If v and v have
the same bases, then such bases are x and y. The only geodesic (u, v)-path are uzv and uyv. Consider
the case that the bases of u and v are different. If there exists a direct descendant z of 2 and y where
u and v are both descendants of z, then P contains x, y or z; otherwise, P contains x or y. In order
to contain a vertex in V(G 1)\V (B, )), the path P must exit B(, , at z or y and then enter back to
the bundle again which adding a non-necessary length to the path; hence P contains no vertex in
V(Gm,t)\V(B(xvy)). Let P, and P, be subpaths of P where P = P1Ps, P| = uj ... up,, Po = vy, ... 01
such that u,, and vy, are the only vertices in {z,y} (or {z,y, 2} if such z exists). We note that it is
possible that u,, = v,,. We construct subgraphs H; and H of B, , where u € V(Hy) and v € V(H3)
by choosing the vertices in 1 and H> via the same recursive construction of a small-world Farey graph
with initial condition xy. We note that all the descendants of = and y that lead to u are in H1, and
those that lead to v are in Hs. Since x & {7y, 71, 72}, it follows that H; = F(s;) forsome s; = 1,...,t — 1
where i = 1,2. We note that the origins of H; and H» are x and y. By the construction of H;, H»

and Remark 2, we have that P, C H; and P, C Hs. If there exists a direct descendant z of z and y
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such that both u and v are descendants of z, then H; and H can be chosen so that H; = Hs. Thus
dg,, . (u,v) = dg, (u,v) < max{si, sz} <t If there isno such z, then H; # Hyand 1 < s; <t —1and
1 <s9 <t—1. Hencedg,,,(u,v) < du, (u, un, ) +dm, (v, vn,) +1 < diam(F(s1)) +diam(F(s2)) +1 < ¢
by Lemma 4. Therefore diam (G, ) = t. O

3. PROPERTY OF G, ¢

In the first part of this section, we give a vertex labeling and some properties of G(¢). We then extend
the results on G(t) to G, + later in this section. Several types of vertex labeling of a small-world Farey
graph and a generalized Farey graph appear in [10,12,13]. In this work, we label each vertex with a
concatenation of a special character with a string in {0, 1}*, possibly empty. The label used here can be
associated with a binary representation of the label of a small-world Farey graph that appeared in [10].

We first label the vertices in G(t) = G and then consider each vertex of G, ; as a copy of a vertex
in G(t). A word is a label of a vertex in G(t). Recall that we label the vertices in G(1) by 79, 71, 7. Let
¥ = {0,1} and X* be the set of strings of finite length of elements in 3 including an empty string. For a
string s € ¥*, the length of s is denoted by |s|. We label the vertices in V' (G(t)) withlevel g for2 < ¢ <t

by the words in
Lo={agp:peX |p|=¢—2and k=0,1,2}.

Hence, the set of labels of the vertices in V(G(t)) with level at least two is
L=Aagp:pe¥f |pl=q—2for2<g<tand k=0,1,2}.

For a word w € £, we denote the length of w by |w|. Hence |w| = I(w) — 1 for all w € L. Suppose
w =171 ...M)|- We denote a subword wli, j] = 7;...n; and we write w[i] = w[i,i] for 1 <i < j < |w|.
A block 3; in w is the i-th maximal subword of consecutive identical elements. If w consists of p blocks,
then we write w = f3; ... 3,. We use notation wg[i, j| = ;... 3; and wgli] = wgli,i] for 1 <i < j <p,
and let |w|3 be the number of blocks in w. For example, if w = 0010, then |w| = 5, |w|g = 4, f1 = v,
Bo =00, f3 =1and B4 = 0.

Next, we assign an explicit label to a vertex in G(¢). In level two, we label a direct descendant of 7
and 71 by oy, a direct descendant of 71 and 7 by a4, and a direct descendant of 7y and 7 by as. We
then recursively label the vertices in G(t). For a vertex v € V(G(t)) where I(u) > 3 and its bases are

and y such that I(x) > I(y), we label u by w = n1 ... my)—1 € Ly Where n; = z[j] for j < I(u) — 1 and

0 if uis on the counter-clockwise side of z,
Mu)—1 =
1 if u is on the clockwise side of x.

An example of vertex labeling appears in Figure 4. For each € € {0,1}, we denote € = 1 — 0, and

W ="m7N3 - M|
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u = 101100 u = 101101
y = o101 xr = a10110 x = 10110 y =011
(a) u is on the counter-clockwise side of = () w is on the clockwise side of x

Ficure 4. Direct descendant labeling examples when I(z) > I(y) and I(x) > 2 in G(t)

From here on, we may use the labels to represent the vertices. For a vertex u with I(u) > 2, the base
of u with level I(u) — 1 is u[l,l(u) — 2] = w1, |u| — 1]. For each pair of adjacent vertices u, v where
w ¢ E(G(1)) and 1 < (v) < l(u) < t, the direct descendent of v and v in G(t) is uniquely determined.
We define u & v = w to be the direct descendant of v and v. Thus w = wll,|w| — 1] ® v for some
v e V(G(t)) with [(v) < I(w) — 1. Moreover, for each vertex u with I(u) > 2, there is exactly one direct
descendant on the clockwise and counter-clockwise of u in G(t). It implies that a vertex with level at
least three has exactly one base on each side. Let A, A; and A3 be a (79, 71)-bundle, a (71, 72)-bundle
and a (79, 72)-bundle respectively. We note that o, € V(Ay) for k = 0,1, 2. For t > 2, let Go = G2(t) be
the induced subgraph of G(t) such that V(G2) = {1, 71, 72, a0, @1, a2}, i.e., the subgraph generated in
the second step of G(t).

Now, we consider labeling in G, ; where m > 1. For a subgraph H of G,,,; where H = G(t), we
inherit the label of G(t) to H with a superscript H to indicate the subgraph that such vertex is contained.
For example, a vertex w € V(H) which is a copy of vertex ag01 € V(G(t)) is labeled w = (a01)". We
note that 79, 71, 72 are in all subgraph that is isomorphic to G(t) of Gy, . Thus we omit superscript for
T, T1, T2, and let G'1 be a triangle 7971 72. Let G’g be an induced subgraph of G, ; such that its vertex set
consists of 79, 71, T2 and their direct descendants in H, i.e., V(GL) = {r, 1,72, !, odl | ol .

The following lemma compute explicit bases of each vertex in G/(t).

Lemma 6. [10]In G(t), let w € V(Ag) be such that l(w) = n > 3, and let ¢ = | B}, | for k € {0,1,2}. Ifv
is a base of w with I(v) < [(w) — 1, then
Tj ifw=oare" 2and j=k+e (mod 3) for some e € {0,1},
vV =
wll,n—q—2] if|lw|g>3.

Remark 7. In G(t), for a vertex w = ouyeq . .. €, wheren > 1,if €,1 # €y, then w = w[l,n—1]Sw(l,n—2].

For a path P and distinct vertices u, v € V(P), we let uPv be a subpath of P from u to v.
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In 2018, Jiang et. al. [10] gave a shortest path between each pair of vertices in a generalized Farey

graph. Lemmas 8, 9 and 11 show that each pair of vertices in these lemmas has a unique geodesic path.

Lemma 8. In G(t), for a fixed k € {0,1,2}, let w € Ay, be such that [(w) = n where n is an even number that

2<n<t Ifw= ak(eé)%? where € € {0,1}, then d(w, o) = “52. Moreover, there is a unique geodesic path
which is wywy—a . . . Wy where w; = ak(eé)% for a positive even number i < n.

1—2 i—

Proof. Let w; = ay(€€) 2 and u; = ay(€€) T ¢ for a positive even number i < n. It is obvious that
d(ws, ar) = 0, d(wy, ;) = 1 and there is a unique geodesic (w4, a)-path wsws. By Lemma 6, we have
w; = u; G wi_g fori = 4,...,n. Suppose that d(w;, ax) = % with a unique geodesic (w;, ay)-path
wiw;—o ... wofori =2,4,...,n—2.

Suppose that there exists a (wy, oy )-path P with length less than d(w;,—2, ;) + 1. Then u, €
V(P), wp—2 & V(P) and d(un, ar) < d(wp—2, o). Hence wy,_ou, Pay, is a (wp—2, ax)-path of length
d(wy—2, o) contrary to the uniqueness of the geodesic (wy,—2, ay)-path. Thus d(wy,, ax) > d(wp—2, ag)+
1= ”T_Q Since wy, and wy,_ are adjacent, it follows that d(w,, ay) = "T_z

Next we show that the geodesic (w,, a;)-path is unique. Let Q be a path w,w,—2 ... w2. Suppose
there exists a geodesic (wy,, ay)-path Q' # Q. We have u,, € V(Q'), wp—2 € V(Q') and |E(u, Q' ax)| =
d(up, o) = d(wp—2,01) = |E(wp—2Qay)|. By Lemma 6, we have u; = w;_2 ® u;—2 fori =4,6...,n.
Since w,—o € V(Q’), it follows that u,u,—2 € E(Q’).

Let iy = max{i : w; € V(Q')}. We note that iy > 2.

Claim d(’Um, uiOJrQ) = %0_2
It is obvious that d(w;,+4, ui,4+2) = 1. Suppose that d(u;, ui,+2) = # fori =6,...,n—2. We have

d(Un, Uig+2) < d(un—2, Uig+2) + d(Un, Un—2) = % +1= %0_2 If there exists a (uy,, uj,+2)-path
P of length less than “=%=2 then u,,_» ¢ V(P). Hence w,_» € V(P) and |E(w,_2Pujy42)| < 2=2=5.
Since u,,—2 and w,,_ are adjacent, it follows that |E(u,—2wp—2Pui,+2)| = % < d(up—2,ujy+2), a
contradiction. Therefore d(u,, ui,+2) = %0_2 as claimed.

By claim, we have [E(Q')] = [unQ'uiy 2] + d(wiq, ) + [ Bty raw,)| = 22552 4 i0z2 41 = 222 4
contradiction. Therefore the geodesic (wy,, oy )-path is unique and it is wy,wy,—2 . . . wy with d(wy,, o) =

n—2
n2, 0

Lemma 9. In G(t), for a fixed k € {0,1,2}, let w € Ay, be such that [(w) = n where n is odd and 3 < n < t.
Ifw= ak(eé)%gﬁ, then d(w,7;) = “5* when j = k + ¢ (mod 3). Moreover, there is a unique geodesic path

1—3
which is wpwy—s . .. wsT; where w; = oy,(€€) 2 € for a positive odd number i = 3,5,...,n.
Proof. Similar to Proposition 8. 0

Lemma10. In G(t), for k € {0,1,2}, let w € Ay, be such that w = ak(eE)nTigefor some odd n where 3 < n < t.
If j1 =k + € (mod 3) and jy # jo, then d(w, ;) + 1 = d(w, 7j,) when j; = k + € (mod 3) and j1 # jo.
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Proof. Since w(1,2] = e, the vertex w is contained in bundle B, -, ). Let P be a geodesic (w, 7, )-path.

Since 7j, & Blay,r;,), t0 exit B ), the path P must contain oy, or 7;,. Suppose to the contrary that

QA>T
d(w, ;) > d(w, 1j,). We have 75, ¢ V(P). Hence oy, € V(P) and d(w, 75,) > d(w, 75,) = 1 + d(w, ag).
Combining paths wPay, and «y;, yields a geodesic (w, 7, )-path that is different from the one obtained
by Proposition 9. This contradicts the uniqueness of the geodesic (w, 7;,)-path. Hence d(w, 7j,) <

d(w, 1j,). Since 7j, and 7;, are adjacent, it follows that d(w, 7j,) + 1 = d(w, 75,). O

Lemma 11. In G(t), for a fixed k € {0,1,2}, let w € Ay, be such that [(w) = n where n is odd and 3 < n < t.
If there exists an odd number iy < n such that w = w1, io](eé)%rl, then d(w, w(1,4]) = “=2=1 and the

(w, w(1,1])-geodesic path is unique.
Proof. The proof is similar to Proposition 8. O

Lemma 12. Form > landt > 1, let H = G(t) be a subgraph of Gy, +. Let u,v € V(H). If P is a unique
geodesic (u,v)-path in H, then P is a unique geodesic (u, v)-path in G, +.

Proof. Let z,y € V(H) be such that Bg ;) is the minimal bundle in H containing both u and v. By

Remark 3, we have P C Bg ) Let us recall that Bg ) contains all the vertices having v or v as
their descendant in G, ; with level at least max{l(z),(y)}. Suppose that there is a geodesic (u, v)-path
Q =uy...upinGy, s whereu; = u, u, = vand P # (. Thus, there exists amaximum g € {2,...,n—1}
such that u;, ¢ V(H). We have that u;,+1 is a base of w;,, and u;,+1 € V(H). Let w # w;,+1 be another
base of u;,. We note that v and v are not descendants of u;,. In order to reach u and v, the path @
has to go back to a vertex in H which means () has to go through w. Since w and w;,+1 are adjacent
and | E(wQujy+1)| > 2, replace the wQu;,+1 path in @ with an edge wu;,1 yields a shorter (u, v)-path,

contradiction. Therefore, if P is a geodesic (u, v)-path in H, then it is also a geodesic path in G,,, ;. O

By Lemma 12, the paths given in Lemmas 8-11 are geodesic in G, .

4. RAINBOW CONNECTION NUMBER ON A GENERALIZED SMALL-WORLD FAREY GRAPH

We investigate the rainbow connection number of G(t) for ¢t > 1, and later extend to G, ; for m > 1
at the end of this section. In G(t), we give an ordering to the edges in the same level through the
ordering of vertices in Ay. Let 79 < oy < 71. The other vertices are ordered by the following process.
In this ordering, we relabel a vertex labeled by w as we, and let 0 < € < 1. Then we order vertices by
lexicographical ordering on the new labeling. For example, ap0e < ape < agle, aple < aglle < agpe.
Outside this ordering, we still use the original labeling in the remaining of the paper. By this ordering,
for any z,y,z € V(G(t)) where z is a direct descendant of y and z such that y < z, we have that
y < x < z. Let uj,us,vi,v2 € V(Ap). For each pair of edges ujv; and upv that appear in the same

level, where u; < v; for i = 1,2, we say that ujv; < ugvs if and only if u; < us.
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b2 1

a2

(a) event

b2 3

a2

(8) odd ¢

Ficure 5. The coloring of Ga-subgraph of G (t)

In G(t), we define isomorphism functions f1 : B ) = B(rm), f2 ¢ Blagn) = Blas,m) and

fs: B(alﬂ'l) - B(az,Tz) by

1

and

W

ifu=rm,
ifu=m

if u = apw € By, 7 for w € {0,1}%,

ifu:Tl

if u = apw € By, ) for w € {0,1}%,

ifu=mn

if u = ayw € By, ) forw € {0,1}*.

For wv € E(G(t)) and i = 1,2,3, let f;(uv) = fi(u)fi(v) where applicable. We note that f; also

preserves the level of the vertices and edges for i = 1,2, 3. We order the edges in level i > 2 in A as an

. . s oi—1_ .
increasing sequence {e; 5:0 ! The following statements are true:

° 66 = (’7’0,04001'72),

e forj =0,...,2""2 — 1,if an endpoint of e§- is in {79, 71 }, such endpoint is 7o,

o forj =272 ..

,2'~1 — 1, if an endpoint of ¢} is in {70, 71 }, such endpoint is 7;.

We color G»(t) according to the parity of ¢ as in Figures 5a and 5b.
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Let by : E(G(t)) — {b1,...,b:} be an edge-coloring such that h|q, is the coloring appeared in 5a

and 5b. Now, we color the edges in A that are not contained in G by
bi—1 wherej=0,3 (mod 4),
b; where j = 1,2 (mod 4).

Next, we color the edges in A;. For any e € E(A;)\E(G2), we define

() he(fit(e)) + 1 if hy(f; ' (e)) and ¢ have different parities,
t\€) =
he(fit(e)) =1 if hy(f; ' (e)) and t have the same parity.

Next, we color e € E(Az)\E(G2) by

hi(f3'(e)  fore € Biay ).

ht(fg)_l(e)) fore € B(Oéz,‘@)'

ht(e) =

By the definition of i, for ¢ > 3 and ¢ > 3, the first edge in level i is (7o, @00"~2). We color the edges
in Ag periodically by colors b;_1, b;, b; and b;_; starting at (79, @00"=2). Then, we use the isomorphism
functions to color the edges in A; and Ay. We say that an edge e is odd if h;(e) = b; for some odd number
i, and e is even if i is even. For an edge e with level at least three, if e € E(Ay), then the parities of the
indices of the colors h;(e) and h(f1(e)) are different. If e € E(B(4, 7)) U E(B(q, 7)), then the parity
of hi(e) and h.(f;(e)) is the same for j = 2, 3. For any distinct u,v € V(G(t)), we say that a (u, v)-path
up ... uy, where u; = wand u,, = v is an odd-colored path if its edges are all odd and [(u;) > l(u;+1) for
i <n — 1. Similarly, a (u,v)-path u; ... u, where u; = v and u,, = v is an even-colored path if its edges

are all even and (u;) > (u;41) fori <mn — 1.

Lemma 13. In (G(t), hy), let z,y € V(Ap) where l(x) > 3, l(y) > 2 and y is a base of x. Then l(z) = l(y) + 1
if and only if hy(zy) = by(z)-

Proof. Let w, z € V(Ay) be the bases of y where w < z, and let w’ and 2’ be the direct descendants
of w,y and y, z respectively. It follows that w < v’ < y < 2’ < z. The edges in level I(y) + 1 with
both endpoints in {y, z, w, 2/, w'} consists of ww', w'y, yz', 2’z ordered increasingly. Since y is a base
of x and I(z) = l(y) + 1, it follows that zy € {w'y, 2'y}. If w'w is the first edge of level I(y) + 1, then
hi(w'w) = by = hy(2'2) and hy(w'y) = by 41 = he(w'z). Since each vertex in A with level I(y) gives
four corresponding edges in level [(y) + 1 in such ordering. The lemma is true by the periodicity of the

coloring h; in Ay. O

Lemma 14 and 15 gives an existence of a rainbow path of the same parity of a vertex to one of its

origins which later use to construct a rainbow path in G(t) in Theorem 16.
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Lemma 14. Let x,y,z € V(G(t)) with an edge-coloring h; be such that x = y & z. There exists a rainbow
(u, u')-path with all edges of the same parity where u' is the only vertex in {x,y, 2z} for all u € By, ).

Proof. Consider Ay. It can be easily verified when u € V(G2). Suppose u & V(G2). By the definition of
hi, each u € V(Ap)\V (G2) is incident to one odd and one even edge connecting u to its bases. Hence,
we are able to construct a path by consecutively choosing either odd or even edges to a base of a new
vertex in the current path until it reaches z,y or z. Let P = uy ... u, be the constructed path. By the
construction, we have I(u;) > I(u;+1) for i < n. Thus, the path P is either an odd-colored path or an
even-colored path where u,, = v’ is the only vertex in {z, y, z}. We note that P does not contain any
edge in G.

Next, we show that P is a rainbow path. For a fixed ig < n—2, we have h(u ui+1) € {bl(uio) , bl(uz‘o)*l}
and hy(wig+1uig+2) € {bl(u¢0+1)v bl(ul'oﬂ)fl}- If Ry (wipwig+1) # hi(wig4+1uig+2), then we are done. Suppose
to the contrary that hy(ui uio+1) = he(tigr1tio+2). We have by (uiguig+1) = he(uig+1uig+2) = by, )1 =
bi(usy +1)- Since hy(uigUig+1) = by(u;,)-1, it follows that I(ui11) < I(ui,) — 1 by Lemma 13. Hence
bl(uio ) F bl(uio),l, a contradiction. Therefore P is a rainbow path.

We note that h¢| 4, = h¢ o fi]a, switches the parity of the pre-image edge in Ay and its image in A;.

Moreover f|p, = hi o fa|B,, ., preserves the parity of the pre-image edge in A¢ and its image in

az,70)
As, while h| B(a:,; = hy o f3] B(a, -, PTESETVES the parity of the pre-image edge in A; and its image in
Ao,

Ifz,y,2 € V(A1), then fi ' (u), fi ' (2), fi (), fi ' (2) € V(Ag) where f ' (z) = fi ' (y) @ f; ' (2) and
fit(u) e B Fo () Hence, there exists an odd-colored or even-colored rainbow (f;*(u), v)-path
Py where v is the only vertex contained in {f; " (z), f; 1(v), f; ' (2)}. Thus hy(f1(Py)) is an odd-colored
or even-colored rainbow (u, u’)-path where v’ = f1(v) is the only vertex in {x,y, z}. Similarly, we have

an even-colored or odd-colored rainbow (u, u’)-path for u € V(A3) by considering the preimages of f>

and f3. a

Lemma 15 is a direct result of Lemma 14.

Lemma 15. Let y,z € V(G(t)) with an edge-coloring hy be such that their direct descendant is not in Ga.
There exists a rainbow (u, u')-path with all edges of the same parity where v’ is the only vertex in {y, z} for all

u < B(y,z)-

For any u € V(4;)\V(G2) and v € V(4;)\V(G2), by Lemma 14, there exist an odd-colored rainbow
(u,u')-path and an even-colored rainbow (v, v’)-path where v’ and v’ are the only vertices in V(G3).
Table 1 presents a rainbow (u,v)-path for all non-adjacent u,v € V(G3). These paths are used to
connect rainbow paths between A; and A; for i # j. We note that any pair of u,v € V(G2) that is not

presented in Table 1 is adjacent and we are able to use an edge uv to connect paths between A4; and A;.
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TaBLE 1. List of a rainbow path in Go

o | v | (u,v')-path | list of colors when | list of colors when
t is even tis odd
ap | aq apTI b1bo babs3
ap | ag QT2 b1bo b1bo
ap | T2 QT T2 b1bo bab1
ag | az Q1 Ta0 bab1 b103
ay | To Q1T1TO baby b3by
ag | o asTH b2 b2
Q2T2TH b1bo b3b1

TabLE 2. Parity of the chosen same-parity path when ¢ is even

TaBLE 3. Parity of the chosen same-parity path when ¢ is odd

Theorem 16. For a positive integer t, a graph (G(t), hy) is rainbow connected, and rc(G(t)) = t.

(1%t-bundle, parity of Py) | (2"?-bundle, parity of P;)
(Ap, odd) (Ay, even)
(Ap, odd) (Asg, even)
(A1, even) (A2, odd)

(1%'-bundle, parity of Pp)

(2"d-bundle, parity of P)

(Ao, even) (A1, 0dd)

(Ap, odd) (B(as,r), €ven)
(Ap, even) (B(ag,r), 0dd)
(A1, 0dd) (B(as,m), €ven)
(Ay, even) (B(ag,r), 0dd)

Proof. By Theorem 5, we have rc(G(t)) > t. Next, we show that a graph G(t) with coloring h; is rainbow

connected. This can easily be verified when ¢t = 1,2. Suppose t > 3. Let u and v be vertices in V(G(t)).

Casel. u € V(A;)and v € V(A;) where 0 <i < j < 2.

If v and v are non-adjacent vertices in V' (G3), then we use the rainbow path in Table 1. Consider

u e V(A4)\V(Ge) and v € V(A;)\V(G2) for some 0 < i < j < 2. By Lemma 14, there exist a same-

parity-colored rainbow (u,u')-path Py and a same-parity-colored rainbow (v, v)-path P; when v/, v’

are the only vertices in Gi9. The parities of P and P, depend on the bundles A; and A; as appeared in
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TaBLE 4. Minimum even color b;, and odd color b;, that can appear in an even-colored

(u, v)-path or an odd-colored (u, v)-path where v is the only vertex in V(G2(t))

v | (bundle, b;,, bj,) | (bundle, b;,, bj,)

when t is even when t is odd
Qg (Ap, ba, b3) (Ag, ba, b3)
aq (A1, by, b3) (A1, bo,bs)

a2 (B(a2770)7 b47 b3) (B(Ozg,To)a b47 b3)
(B(a27T2)7b47b3) (B(a2772)7b27b5)

T0 (Ao, ba, b3) (Ao, ba, b3)
(Asg, b2, b3) (Asg, ba, b3)
1 (Ao, b2, b3) (Ao, b2, b3)
(A1, bs,b1) (A1, b2,b3)
2 (A1,b4,01) (A1, b2,03)
(Ag,b4,01) (Ag, ba, b3)

Tables 2 and 3. We note that the parity of colors of P and P are different. Tables 4 gives the smallest
color that possibly appears in Py and P;. Since there exists a path in Table 1 with colors less than those
appear in Fy and P, by combining the results in Tables 1 and 4, we are able to connect Py and P, via the
path in Table 1 if v’ and v’ are not adjacent. The combined path is a rainbow path. If either u € V(G2)
or v € V((G2), then we use the same argument in which either P, or P is trivial.

Case 2. u,v € V(4;) forsome i = 0,1, 2.

Let z,y € V(G(t)) be such that B, ;) C A; is the minimal bundle containing v and v and let z be the
direct descendant of x and y.

Case 2.1. B, ) # A; forall0 <3 < 2.

If {x,y} # {7, 7;} forsome 0 < i < j < 2, then there exists an odd-colored rainbow (u,u’)-path
Py and an even-colored rainbow (v, v')-path P; by Lemma 15. We note that changing the color of zy
does not affect the result in Lemma 15. If I} and P; intersect, says at w, then uPywP7v is a rainbow
(u,v)-path. Now, we suppose that Py and P; do not intersect. Hence v/, v’ € {z,y} and v’ # v'. Let
Po=uj...upand P, = vy ...vs where u; = u,u, = u',v; = v, v, = v and «/,v" are the only vertices
in {z,y}. Suppose v’ = z and v = y. If hy(u'v') & h(Fp) U hy(P1), then we are done. Suppose to
the contrary that h;(u'v") € hi(FPy) U ht(P1). The only possible edge with color hi(zy) = hi(u'v') in
E(B(y,))\{zy} is either zz or yz. Without loss of generality, we suppose that h;(zy) = hi(v2) and
xz € E(P). It follows that v/ = z. Since Py and P; do not intersect, the vertex z is not in P; and

v' =y. Hence v € V(By.)) and u € V(B(,,)). Let Py and P be an even-colored (u, u”)-path and an
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odd-colored (v, v")-path where u” and v" are the only vertices in {z,y}. If Pj and P} intersect, then we
also have a rainbow (u, v)-path. Suppose that Pj and P; do not intersect. So v” # v". If ' = v" and
v' = 4", then Pj and P] contain z which is not possible. Thus «” = v’ and v" = ¢'. Since the parity of
the colors in P} and P} are different, we have that zz ¢ E(P}). Hence PP is a rainbow (u, v)-path.
Case 2.2. B, ) = 4; for some 0 < ¢ < 2.
If B(, ) = Ai, then there exists an odd-colored rainbow (u,u')-path Py and an even-colored rainbow
(v,v")-path P, by where v/, v’ are the only vertices in {z,y, z} by Lemma 14. The similar argument

A;. Thus, there is a rainbow

in the case B, ) # A; also leads a rainbow (u, v)-path in case B, ;) =
(u,v)-path.
Therefore (G(t), h;) is rainbow connected and hence rc(G(t)) = t. O

Corollary 17. For a positive integer t, we have rc(F(t)) = diam(F) = t.

Next, we give a coloring that leads to a rainbow connected G,,, ;. Let (H, h¢) be a subgraph of G, ;
where H = G(t). For each e € E(Gp+), let e be the copy of e in H. We define an edge-coloring
Ct . E(Gm7t) — {bl, cey bt+1} by

by ife=7;7; forsome 0 <i < j <2,

bo if el = ()™ and t is even,
ci(e) = by if el = (7)™ and t is even,

by if el = (agm)" and t is odd,

hi(ef)  otherwise,

\

for each e € E(Gpy). For a subgraph H' = G(t) of Gy, 1, we note that ci|p/(e) = c|u(e?) for all
e € E(H') where l(e) > 3.

By Theorem 16, we have rc(G1 ;) =t for t > 1. Since G, 1 is a triangle, it follows that rc(G, 1) =
diam(Gy,,1) = 1. In Theorem 18, we show that rc(G, ;) =t + 1form > landt > 1.

Theorem 18. For m > 1and t > 1, we have rc(Gp¢) =t + 1.

Proof. Consider G, + with the coloring ¢;. Let u,v € V(G ¢). If t = 2, then let %(1) and a§2) be distinct
direct descendants of 7; and 7, for some i, j, k € {0, 1,2}. If {u, v} # {agl), 0‘1(2)}/ then a rainbow path
between each pair of non-adjacent vertices appears in Table 5. If {u,v} = {ozl(l), 0‘52)}’ then we consider
(2) (1)

U = az(.l) and v = o;”’. Finding an (o, ,a?))—path is equivalent to finding a rainbow cycle in G2

containing «;. Since the color of the triangle 79773 is b;11 and hy(a;7;j) # hi(ouTy) for j # k, a triangle
)

o;T;Ty, is a rainbow cycle. Thus there exists a rainbow (o a§2) )-path. It can be easily verified that there

is no coloring of 2 colors giving a rainbow connected G, ». Hence rc(G,, 2) = diam(G,2) + 1 = 3.
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(a) event () odd ¢

Ficure 6. The coloring of G5 2)-subgraph of G, )

Suppose that t > 2. Let H; and H; be subgraphs of G, ; containing v and v, respectively, where
H, = G(t) =2 Hy (Hy = Hy if possible). If H; = Hj, then there exists a rainbow (u, v)-path by the same
argument in Theorem 16 with an adjusted path in G&'* in Table 5. Now, we suppose that there is no
Hy, H, where Hy = H,. Thus, there exist i1, i3 such that u,v € V(B(nl,nz)) where 0 < i; < iy < 2. By
Lemma 15, there exist an odd-colored rainbow (u, u’)-path P; and an even-colored rainbow (v, v’)-path
P> where v’ and v’ are the only vertices in V(G4") and V(G4?), respectively. If P; and P, intersect,
says at z, then the uPyzPv is a rainbow (u, v)-path. Suppose Py and P, are disjoint. We have that
u € {1, Ty, afgfl} and v' € {7;,, TiQ,agQ} where agl and agb are the direct descendants of 7;, and 7;,
in Hy and Hy, respectively. If v/, v" € {79, 71, 72}, then connecting P, and P, by u/v’ gives a rainbow
(u,v)-path as the color of the triangle 797172 is b;+1. Consider case v’ = agl and v' = 7; for some
i = i1,12. Without loss of generality, we suppose that v = 7;,. If ct(agl Tiy) & c(P1) U ¢i(P2), then
connecting P; and P, by agl 7;, gives a rainbow (u,v)-path. If ct(agl Tiy) € ¢i(P1) U ¢ (P2), then we

H,y
7

connect P, and P, by oag "7;,7i; which gives a rainbow (u, v)-path by Table 4 and Figure 6. If u' = «;;

v = af? and ag £ af?, then we connect P; and P, by ag Y Tiy Tig 0452. Thus G, + is rainbow-connected
and t <rc(Gpt) <t+1.

Next, we show thatrc(G,, +) # t. Let ¢ be an edge-coloring giving a rainbow connected G, . Suppose
|c(Gim.t)] = t. Consider an even t. Let Hs, Hy C Gy, be such that H3 = G(t) = H4 and ang + akH“ for
all k =0,1,2. So V(H3) N V(Hy) = {79, 71,72} Letx = ao(Ol)% and y = al(lo)%. By Lemmas 8
and 12, there are a unique geodesic (2, a/")-path P/ and a unique geodesic (y%, a}"")-path P,"
in Gy, for i = 3,4. Since By, ., is the minimal bundle containing both "3 and x4, a geodesic
(213, zH1)-path must contain 7y or 71, and d(z'%3, z14) = ¢ by Lemmas 8 and 12. Since P{*® and P/ are
the unique geodesic paths of length £ — 1, the rainbow (23, z/4)-path is P/ o Py, or Pz it

for some i = 0, 1. Hence c(P/™*) N ¢(P/™) = (. Thus, we need ¢ — 2 colors to color P"* and P{™*. Now,
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TaBLE 5. List of a rainbow path in G(t) where 0 <i < j <2

u' | v | (u,v')-path | list of colors | lists of colors
when t is even | when ¢ is odd
ap | ai apTIOn bab1 babs3
ag | oo QapTo2 b1bo b1b2
(7)) T2 o772 blbt+1 blbt+1
aogT1T2 b2bt+1
ay | oo Q1Ta0 baby
Q1T2ToO2 b1bs 102
Q1T 200 b3bs 101
ap | To Q1T1To b1bii1 b3bii1
a9 | To (o X bQ b2
Q2T2T) b1by1 b1bit1
ap | T QpTOT1 b1bt11 b1bt41
ag | T QaToT] b1bi11 b1bi11
Q27T b2bii1 babi i1
Ti | Tj TiT; ber1 b1

we consider a rainbow (x%li, y#1)-path for i = 3,4. By Lemmas 8 and 12, a path PlHian * is a unique
geodesic (¢, y!1)-path for i = 3,4 with length t. Hence, we need at least ¢ — 1 colors to color {37,
and P17, and c(m P*) N (e(P*71) U ¢(Pf!*m)) = 0. For t > 2, it follows that |c¢(; P{4)| > 2. Thus
|c(Gm,t)| > t + 1, a contradiction. By using a similar argument along with Lemmas 9, 10 and 12, we

have that rc(G,,, +) # t when t is odd. Therefore rc(G,, ) =t+1form > land ¢ > 1. O

5. ConcLusioN

In this work, we give a rainbow connection number of a generalized Farey graph G, ; for all m > 1
and ¢t > 1. In case m = 1, the rainbow connection number of G, ; achieves the lowest possible value
among the graph with the same diameter. We also show that diam(G,,;) = ¢t form > 1land ¢ > 1.

Several unique geodesic paths in G, ; are also given.
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