RAINBOW CONNECTION NUMBER ON GENERALIZED FAREY GRAPH

CHAYAPA DARAYON ${ }^{1}$, KITTIKORN NAKPRASIT 2, WIPAWEE TANGJAI ${ }^{3, *}$
${ }^{1}$ Department of Mathematics, Faculty of Education, Dhonburi Rajabhat University, Bangkok, 10600, Thailand
${ }^{2}$ Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
${ }^{3}$ Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
*Corresponding author: wipawee.t@msu.ac.th

Received Jan. 12, 2024

Abstract

Originated from a well-known Farey sequence, the generalized Farey graph $G_{m, t}$ where $m \geq 1$ and $t \geq 1$ has been studied in both on network and combinatorial aspects. In this work, we show that the diameter of $G_{m, t}$ is t. Furthermore, the rainbow connection number of graph $G_{1, t}$ is equal to its diameter which is the smallest possible among the graphs with the same diameter. We also show that the rainbow connection number of $G_{m, t}$ is $t+1$ for $m>1$ and $t>1$.

2020 Mathematics Subject Classification. 05C15; 05C82.
Key words and phrases. generalized Farey graph; rainbow coloring; rainbow connection number

1. Introduction

A generalized Farey graph is characterized as a small-world network graph, and its properties have been extensively studied. In this work, we improve upon an existing result on a generalized Farey graph by obtaining the exact value of its diameter. Furthermore, we find its rainbow connection number whose definition and relation to diameter are described in this section.

Let $G=(V, E)$ be a graph with an edge-coloring c. A subgraph H of G is rainbow if $c\left(e_{1}\right) \neq c\left(e_{2}\right)$ for each pair of distinct $e_{1}, e_{2} \in E(H)$. A path is rainbow if none of its edges have the same color. A graph G is rainbow connected if a rainbow (u, v)-path exists for each pair of distinct $u, v \in V(G)$. The rainbow connection number of a graph G, denoted by $\operatorname{rc}(G)$, is the minimum number required for G to be rainbow connected. The notion of rainbow coloring is introduced by Chartrand et al. [1]. Its bound $\operatorname{diam}(G) \leq \operatorname{rc}(G) \leq|E(G)|$ is obvious.

In 2013, Li et al. [2] illustrated an application in a security network in which the rainbow connection number represents the minimum codes required to secure the network. Subsequently, they raised an

DOI: 10.28924/APJM/11-39

Figure 1. Drawings of $G_{2, t}$
interesting problem of characterizing a graph G with $\operatorname{rc}(G)=\operatorname{diam}(G)$. It is known that computing $\operatorname{rc}(G)$ is NP-Hard and even deciding whether $\operatorname{rc}(G)=2$ is NP-Complete [3]. This may be a reason why not many results appeared for a graph with $\operatorname{rc}(G)=\operatorname{diam}(G)$. Unit interval graphs [4] and certain maximal outer-planar graphs constructed by Deng et al. [5] were shown to have $\operatorname{rc}(G)=\operatorname{diam}(G)$ and arbitrarily large diameters.

A small-world Farey graph $\mathcal{F}(t)$ [6] is constructed recursively from a path of length one as the initial graph $\mathcal{F}(0)$. For $\mathcal{F}(t)$ where $t \geq 1$, we add a vertex w and two edges $u w$ and $v w$ to $\mathcal{F}(t-1)$ for each edge $u v$ that first appears in $\mathcal{F}(t-1)$. For $m, t \in \mathbb{N}$, a generalized Farey graph $G_{m, t}[7]$ is defined with a recursive construction similar to $\mathcal{F}(t)$ with the initial condition $G_{m, 1}=K_{3}$ where K_{3} is a triangle. For $G_{m, t}$ where $t \geq 2$, we add m new vertices and $2 m$ edges connecting those new vertices with u and v for each edge $u v$ that first appears in $G_{m, t-1}$ (see examples in Figure 1). Both graphs are characterized as small-world network graphs and their network properties have been investigated in many aspects $[6,8]$.

Various coloring properties of the two graphs were obtained as follows. A small-world Farey graph $\mathcal{F}(t)$ has its chromatic number equal to 3 when $t \geq 1$ [6], and its δ-chromatic number is 2^{t} when $t>2$ [9]. Zhang and Comellas [6] showed that $\operatorname{diam}(\mathcal{F}(t))=t$ when $t \geq 1$. Jiang et. al. [10] gave a shortest path (also called geodesic path) between each pair of vertices in each of these two graphs. It should be noted that a geodesic path is not necessarily a rainbow path resulting from edge-coloring. In 2018, Jiang et. al. [7] obtained the bound diam $\left(G_{m, t}\right) \leq 2 t+3$.

In 2022, the rainbow vertex-connection number, the minimum number of colors required for each pair of vertices to be connected by a path with internal vertices of distinct colors, of $\mathcal{F}(t)$ is $\operatorname{diam}(\mathcal{F}(t))=t-1$ [11] which is the lowest possible among the graphs with the same diameter. So, a similar problem arises for the rainbow connection number of $\mathcal{F}(t)$. In Theorem 5, we improve the aforementioned result on $\operatorname{diam}\left(G_{m, t}\right)$ by showing that $\operatorname{diam}\left(G_{m, t}\right)=\operatorname{diam}(G(t))=\operatorname{diam}\left(\mathcal{F}_{t}\right)=t$ for $m \geq 1$. We also give unique geodesic paths in $G_{m, t}$ for $m \geq 1$ and $t \geq 1$. Finally, we show that, for $t \geq 1$,

(A) $G(1)$ labeling

(в) $G(2)$ labeling

(c) $G(3)$ labeling

Figure 2. Vertex labelings of $G(1), G(2)$ and $G(3)$
$\operatorname{rc}(\mathcal{F}(t))=\operatorname{rc}\left(G_{1, t}\right)=\operatorname{diam}\left(G_{1, t}\right)=t$ and, for $m>1$ and $t>1, \operatorname{rc}\left(G_{m, t}\right)=\operatorname{diam}\left(G_{m, t}\right)=t+1$. As a consequence, the rainbow connection numbers of $G_{1, t}$ and $\mathcal{F}(t)$ are the lowest among the graphs with the same diameter.

2. Generalized Farey graph and its properties

Recall that, for $m, t \in \mathbb{N}$, a generalized Farey graph $G_{m, t}[7]$ is defined with a recursive construction similar to $\mathcal{F}(t)$ with the initial condition $G_{m, 1}=K_{3}$ where K_{3} is a triangle. Let $\tau_{0}, \tau_{1}, \tau_{2}$ be the label of such K_{3} (See Figure 2(A)). For the purpose of comparison with the recursive step in a small-world Farey graph, our initial condition starts with $t=1$ while that of in the definition given by Jiang et al. [7] started with $t=0$. We use notation $G(t)=G_{1, t}$.

Next, we establish notations and terminologies that will be used in this work. If a vertex $u \in V\left(G_{m, t}\right)$ first appears in step i, then the level of u, denoted by $l(u)$, is i for $i=1, \ldots, t$. Similarly, if an edge e first appears in step i, then the level of e, denoted by $l(e)$, is i. We note that the level of the vertices in $G_{m, t}$ begins with level one. In case $m=1$, a symmetric drawing and vertex labeling of $G(t)=G_{1, t}$ in this paper are as in Figure 2. We can draw a graph so that w lies between its bases. The method of vertex labeling is explained explicitly in the next section.

For each pair of adjacent vertices $x, y \in V\left(G_{m, t}\right)$ and a vertex $u \in V\left(G_{m, t}\right)$ such that $l(u) \geq 2$, if u is added to $G_{m, t}$ correspondingly to the edge $x y$, then u is a direct descendant of x and y. If u is a direct descendant of x and y, then x and y are bases of u. We define a descendant recursively as follows. We say v is a descendent of u if v is a direct descendent of u or there is z such that v is a descendent of z and z is a descendant of u. We note that for each edge $x y$ in $G_{m, t}$ with $l(x y)<t$, there are m direct descendants of x and y. For an edge $x y$, an (x, y)-bundle $B_{(x, y)}$ is the induced subgraph of $G_{m, t}$ consists of x, y and all of their descendants. We say that $\{x, y\}$ is the origin of $B_{(x, y)}$. We note that $B_{(x, y)}=B_{(y, x)}$. We also note that if x is a base of u, then $l(x)<l(u)$. Furthermore, for a vertex u with $l(u)>2$, there are two bases of u and their levels are distinct in which exactly one of them has level $l(u)-1$. The other base of

Figure 3. Symmetric drawing and vertex labeling of $G(5)$
u has level less than $l(u)-1$. In 2018, Jiang et. al. [7] stated that diam $\left(G_{m, t}\right) \leq 2 t+1$. We improve such a statement in case $m=1$ in Theorem 5 .

In Lemma 1, we show that, for each vertex, the levels of the vertices in its geodesic paths to its origins are decreasing.

Lemma 1. Let $u, u^{\prime}, x, y \in V\left(G_{m, t}\right)$ be such that $l(x) \geq 2, u \in B_{(x, y)}$ and $u^{\prime} \in\{x, y\}$. If $P=u_{1} \ldots u_{n}$ is a geodesic $\left(u, u^{\prime}\right)$-path where $u_{1}=u$ and $u_{n}=u^{\prime}$ is the only vertex in $\{x, y\}$, then $l\left(u_{i}\right)>l\left(u_{i+1}\right)$ for $i=1, \ldots, n-1$.

Proof. Suppose to the contrary that there exists a path P with a smallest i_{0} such that $l\left(u_{i_{0}}\right) \leq l\left(u_{i_{0}+1}\right)$. Since distinct vertices of the same level are not adjacent when their level is at least two, it follows that $l\left(u_{i_{0}}\right)<l\left(u_{i_{0}+1}\right)$. So $u_{i_{0}}$ is a base of $u_{i_{0}+1}$. Let i_{1} be the maximum number such that $l\left(u_{i}\right)<l\left(u_{i+1}\right)$ for all $i=i_{0}, \ldots, i_{1}-1$. If $i_{1}=i_{0}+1$, then $u_{i_{1}+1}=u_{i_{0}+2}$ is a base of $u_{i_{1}}$ and $u_{i_{0}+2} \neq u_{i_{0}}$. Thus, deleting a vertex $u_{i_{0}+1}$ form P and adding an edge $u_{i_{0}} u_{i_{0}+2}$ giving a (u, v)-path with a shorter distance. If $i_{1} \geq i_{0}+2$, then $u_{i_{0}+2} \notin B_{\left(u_{i_{0}}, u_{i_{0}+1}\right)}$; otherwise, the path $u_{1} P u_{n_{1}}$ must go through $u_{i_{0}}$ or $u_{i_{0}+1}$ twice. Similarly, we can conclude that $u_{i+2} \notin B_{\left(u_{i}, u_{i+1}\right)}$ for all $i=i_{0}, \ldots, i_{1}-2$. Let w be a base of $u_{i_{0}+1}$ where $w \neq u_{i_{0}}$. We have that w is also a base of u_{i} for $i=i_{0}, \ldots, i_{1}$. Since $l\left(u_{i_{1}}\right)>l\left(u_{i_{1}+1}\right)$ and $u_{i_{1}+1} \neq u_{i_{0}}$, it follows that $w=u_{i_{1}+1}$. Hence, deleting $u_{i_{0}+1} P u_{i_{1}}$ from P and adding an edge $u_{i_{0}} u_{i_{1}+1}$ give a shorter (u, v)-path. This completes the proof.

Remark 2. Let $u, u^{\prime}, x, y \in V\left(G_{m, t}\right)$ be such that $l(x) \geq 2, u \in B_{(x, y)}$ and $u^{\prime} \in\{x, y\}$. If $P=u_{1} \ldots u_{n}$ is a geodesic $\left(u, u^{\prime}\right)$-path where $u_{1}=u$ and $u_{n}=u^{\prime}$ is the only vertex in $\{x, y\}$, then u_{1} is a descendant of u_{i} for $i=2, \ldots, n$, and u_{j} is a descendant of u_{n} for $j=1, \ldots, n-1$.

Remark 3. Let $u, v, x, y \in V\left(G_{m, t}\right)$ be such $B_{(x, y)}$ is the minimal bundle containing u and v. If P is a geodesic (u, v)-path, then $P \subseteq B_{(x, y)}$.

The property appears in Lemma 4 is needed to find the diameter of $G_{m, t}$ in Theorem 5.
Lemma 4. Let $u \in V\left(G_{m, t}\right)$ be such that $l(u) \geq 2$. If $u \in B_{\left(\tau_{i}, \tau_{j}\right)}$ for $i \neq j$, then $d\left(u, u^{\prime}\right) \leq \frac{t}{2}$ for all $u^{\prime} \in\left\{\tau_{i}, \tau_{j}\right\}$.

Proof. Suppose there exists $\tau_{i_{0}} \neq \tau_{j_{0}}$ and $u_{0} \in B_{\left(\tau_{0}, \tau_{j}\right)}$ such that $d\left(u_{0}, u_{0}^{\prime}\right)>\frac{t}{2}$ for some $u_{0}^{\prime} \in\left\{\tau_{i_{0}}, \tau_{j_{0}}\right\}$. Since $B_{\left(\tau_{i_{0}}, \tau_{j_{0}}\right)}$ and $B_{\left(\tau_{i_{1}}, \tau_{j_{1}}\right)}$ are isomorphic for $\left\{i_{0}, j_{0}\right\} \neq\left\{i_{1}, j_{1}\right\}$, there exists $u_{1} \in V\left(B_{\left(\tau_{i_{1}}, \tau_{j_{1}}\right)}\right)$ and $u_{1}^{\prime} \in\left\{\tau_{i_{1}}, \tau_{j_{1}}\right\}$ where $d\left(u_{1}, u_{1}^{\prime}\right)=d\left(u_{0}, u_{0}^{\prime}\right)>\frac{t}{2}$. Since $V\left(B_{\left(\tau_{i_{0}}, \tau_{j_{0}}\right)}\right) \cap V\left(B_{\left(\tau_{i_{1}}, \tau_{j_{1}}\right)}\right) \subseteq\left\{\tau_{0}, \tau_{1}, \tau_{2}\right\}$, it follows that $d\left(u_{0}, u_{1}\right)>t$. Since $\left\{i_{0}, j_{0}\right\} \neq\left\{i_{1}, j_{1}\right\}$, there exists a subgraph $H \cong \mathcal{F}(t)$ of $G_{m, t}$ containing $u_{0}, u_{0}^{\prime}, u_{1}, u_{1}^{\prime}$. Thus $d_{G_{m, t}}\left(u_{0}, u_{1}\right) \leq d_{H}\left(u_{0}, u_{1}\right) \leq t$ contradiction.

Theorem 5. For $m \geq 1$ and $t \geq 1, \operatorname{diam}\left(G_{m, t}\right)=t$.
Proof. The result can be easily verified when $t \leq 2$. Suppose $t>2$. Let $u, v \in V\left(G_{m, t}\right)$ and let $x, y \in V\left(G_{m, t}\right)$ be such that $B_{(x, y)}$ is the minimal bundle containing u and v. If $x, y \in\left\{\tau_{0}, \tau_{1}\right\}$, then $B_{(x, y)} \cong \mathcal{F}(t)$. Let P be a geodesic (u,v)-path. By Remark 3, the path $P \subseteq B_{(x, y)}$. Thus diam $\left(G_{m, t}\right) \geq$ $\operatorname{diam}(\mathcal{F}(t))=t$. In addition $d_{G_{m, t}}(u, v) \leq d_{\mathcal{F}(t)}(u, v) \leq t$ in this case.

We may now assume that $l(x) \geq 2$ and $l(u) \geq 3$. Let P be a geodesic (u, v)-path. If u and v have the same bases, then such bases are x and y. The only geodesic (u, v)-path are $u x v$ and $u y v$. Consider the case that the bases of u and v are different. If there exists a direct descendant z of x and y where u and v are both descendants of z, then P contains x, y or z; otherwise, P contains x or y. In order to contain a vertex in $V\left(G_{m, t}\right) \backslash V\left(B_{(x, y)}\right)$, the path P must exit $B_{(x, y)}$ at x or y and then enter back to the bundle again which adding a non-necessary length to the path; hence P contains no vertex in $V\left(G_{m, t}\right) \backslash V\left(B_{(x, y)}\right)$. Let P_{1} and P_{2} be subpaths of P where $P=P_{1} P_{2}, P_{1}=u_{1} \ldots u_{n_{1}}, P_{2}=v_{n_{2}} \ldots v_{1}$ such that $u_{n_{1}}$ and $v_{n_{2}}$ are the only vertices in $\{x, y\}$ (or $\{x, y, z\}$ if such z exists). We note that it is possible that $u_{n_{1}}=v_{n_{2}}$. We construct subgraphs H_{1} and H_{2} of $B_{(x, y)}$ where $u \in V\left(H_{1}\right)$ and $v \in V\left(H_{2}\right)$ by choosing the vertices in H_{1} and H_{2} via the same recursive construction of a small-world Farey graph with initial condition $x y$. We note that all the descendants of x and y that lead to u are in H_{1}, and those that lead to v are in H_{2}. Since $x \notin\left\{\tau_{0}, \tau_{1}, \tau_{2}\right\}$, it follows that $H_{i} \cong \mathcal{F}\left(s_{i}\right)$ for some $s_{i}=1, \ldots, t-1$ where $i=1,2$. We note that the origins of H_{1} and H_{2} are x and y. By the construction of H_{1}, H_{2} and Remark 2, we have that $P_{1} \subseteq H_{1}$ and $P_{2} \subseteq H_{2}$. If there exists a direct descendant z of x and y
such that both u and v are descendants of z, then H_{1} and H_{2} can be chosen so that $H_{1}=H_{2}$. Thus $d_{G_{m, t}}(u, v)=d_{H_{1}}(u, v) \leq \max \left\{s_{1}, s_{2}\right\} \leq t$. If there is no such z, then $H_{1} \neq H_{2}$ and $1 \leq s_{1} \leq t-1$ and $1 \leq s_{2} \leq t-1$. Hence $d_{G_{m, t}}(u, v) \leq d_{H_{1}}\left(u, u_{n_{1}}\right)+d_{H_{2}}\left(v, v_{n_{2}}\right)+1 \leq \operatorname{diam}\left(\mathcal{F}\left(s_{1}\right)\right)+\operatorname{diam}\left(\mathcal{F}\left(s_{2}\right)\right)+1 \leq t$ by Lemma 4 . Therefore $\operatorname{diam}\left(G_{m, t}\right)=t$.

3. Property of $G_{m, t}$

In the first part of this section, we give a vertex labeling and some properties of $G(t)$. We then extend the results on $G(t)$ to $G_{m, t}$ later in this section. Several types of vertex labeling of a small-world Farey graph and a generalized Farey graph appear in $[10,12,13]$. In this work, we label each vertex with a concatenation of a special character with a string in $\{0,1\}^{*}$, possibly empty. The label used here can be associated with a binary representation of the label of a small-world Farey graph that appeared in [10].

We first label the vertices in $G(t)=G_{1, t}$ and then consider each vertex of $G_{m, t}$ as a copy of a vertex in $G(t)$. A word is a label of a vertex in $G(t)$. Recall that we label the vertices in $G(1)$ by $\tau_{0}, \tau_{1}, \tau_{2}$. Let $\Sigma=\{0,1\}$ and Σ^{*} be the set of strings of finite length of elements in Σ including an empty string. For a string $s \in \Sigma^{*}$, the length of s is denoted by $|s|$. We label the vertices in $V(G(t))$ with level q for $2 \leq q \leq t$ by the words in

$$
\mathcal{L}_{q}=\left\{\alpha_{k} \rho: \rho \in \Sigma^{*},|\rho|=q-2 \text { and } k=0,1,2\right\} .
$$

Hence, the set of labels of the vertices in $V(G(t))$ with level at least two is

$$
\mathcal{L}=\left\{\alpha_{k} \rho: \rho \in \Sigma^{*},|\rho|=q-2 \text { for } 2 \leq q \leq t \text { and } k=0,1,2\right\} .
$$

For a word $w \in \mathcal{L}$, we denote the length of w by $|w|$. Hence $|w|=l(w)-1$ for all $w \in \mathcal{L}$. Suppose $w=\eta_{1} \ldots \eta_{|w|}$. We denote a subword $w[i, j]=\eta_{i} \ldots \eta_{j}$ and we write $w[i]=w[i, i]$ for $1 \leq i \leq j \leq|w|$. A block β_{i} in w is the i-th maximal subword of consecutive identical elements. If w consists of p blocks, then we write $w=\beta_{1} \ldots \beta_{p}$. We use notation $w_{\beta}[i, j]=\beta_{i} \ldots \beta_{j}$ and $w_{\beta}[i]=w_{\beta}[i, i]$ for $1 \leq i \leq j \leq p$, and let $|w|_{\beta}$ be the number of blocks in w. For example, if $w=\alpha_{0} 0010$, then $|w|=5,|w|_{\beta}=4, \beta_{1}=\alpha_{0}$, $\beta_{2}=00, \beta_{3}=1$ and $\beta_{4}=0$.

Next, we assign an explicit label to a vertex in $G(t)$. In level two, we label a direct descendant of τ_{0} and τ_{1} by α_{0}, a direct descendant of τ_{1} and τ_{2} by α_{1}, and a direct descendant of τ_{0} and τ_{2} by α_{2}. We then recursively label the vertices in $G(t)$. For a vertex $u \in V(G(t))$ where $l(u) \geq 3$ and its bases are x and y such that $l(x)>l(y)$, we label u by $w=\eta_{1} \ldots \eta_{l(u)-1} \in \mathcal{L}_{l(u)}$ where $\eta_{j}=x[j]$ for $j<l(u)-1$ and

$$
\eta_{l(u)-1}= \begin{cases}0 & \text { if } u \text { is on the counter-clockwise side of } x, \\ 1 & \text { if } u \text { is on the clockwise side of } x\end{cases}
$$

An example of vertex labeling appears in Figure 4. For each $\epsilon \in\{0,1\}$, we denote $\bar{\epsilon}=1-0$, and $\bar{w}=\eta_{1} \bar{\eta}_{2} \ldots \bar{\eta}_{|w|}$.

(A) u is on the counter-clockwise side of x

(в) u is on the clockwise side of x

Figure 4. Direct descendant labeling examples when $l(x)>l(y)$ and $l(x) \geq 2$ in $G(t)$
From here on, we may use the labels to represent the vertices. For a vertex u with $l(u)>2$, the base of u with level $l(u)-1$ is $u[1, l(u)-2]=u[1,|u|-1]$. For each pair of adjacent vertices u, v where $u v \notin E(G(1))$ and $1 \leq l(v)<l(u)<t$, the direct descendent of u and v in $G(t)$ is uniquely determined. We define $u \oplus v=w$ to be the direct descendant of u and v. Thus $w=w[1,|w|-1] \oplus v$ for some $v \in V(G(t))$ with $l(v)<l(w)-1$. Moreover, for each vertex u with $l(u) \geq 2$, there is exactly one direct descendant on the clockwise and counter-clockwise of u in $G(t)$. It implies that a vertex with level at least three has exactly one base on each side. Let A_{0}, A_{1} and A_{2} be a $\left(\tau_{0}, \tau_{1}\right)$-bundle, a $\left(\tau_{1}, \tau_{2}\right)$-bundle and a $\left(\tau_{0}, \tau_{2}\right)$-bundle respectively. We note that $\alpha_{k} \in V\left(A_{k}\right)$ for $k=0,1,2$. For $t \geq 2$, let $G_{2}=G_{2}(t)$ be the induced subgraph of $G(t)$ such that $V\left(G_{2}\right)=\left\{\tau_{0}, \tau_{1}, \tau_{2}, \alpha_{0}, \alpha_{1}, \alpha_{2}\right\}$, i.e., the subgraph generated in the second step of $G(t)$.

Now, we consider labeling in $G_{m, t}$ where $m>1$. For a subgraph H of $G_{m, t}$ where $H \cong G(t)$, we inherit the label of $G(t)$ to H with a superscript H to indicate the subgraph that such vertex is contained. For example, a vertex $w \in V(H)$ which is a copy of vertex $\alpha_{0} 01 \in V(G(t))$ is labeled $w=\left(\alpha_{0} 01\right)^{H}$. We note that $\tau_{0}, \tau_{1}, \tau_{2}$ are in all subgraph that is isomorphic to $G(t)$ of $G_{m, t}$. Thus we omit superscript for $\tau_{0}, \tau_{1}, \tau_{2}$, and let G_{1} be a triangle $\tau_{0} \tau_{1} \tau_{2}$. Let G_{2}^{H} be an induced subgraph of $G_{m, t}$ such that its vertex set consists of $\tau_{0}, \tau_{1}, \tau_{2}$ and their direct descendants in H, i.e., $V\left(G_{2}^{H}\right)=\left\{\tau_{0}, \tau_{1}, \tau_{2}, \alpha_{0}^{H}, \alpha_{1}^{H}, \alpha_{2}^{H}\right\}$.

The following lemma compute explicit bases of each vertex in $G(t)$.
Lemma 6. [10] In $G(t)$, let $w \in V\left(A_{k}\right)$ be such that $l(w)=n \geq 3$, and let $q=\left|\beta_{|w|_{\beta}}\right|$ for $k \in\{0,1,2\}$. If v is a base of w with $l(v)<l(w)-1$, then

$$
v= \begin{cases}\tau_{j} & \text { if } w=\alpha_{k} \epsilon^{n-2} \text { and } j \equiv k+\epsilon \quad(\bmod 3) \text { for some } \epsilon \in\{0,1\}, \\ w[1, n-q-2] & \text { if }|w|_{\beta} \geq 3 .\end{cases}
$$

Remark 7. In $G(t)$, for a vertex $w=\alpha_{k} \epsilon_{1} \ldots \epsilon_{n}$ where $n>1$, if $\epsilon_{n-1} \neq \epsilon_{n}$, then $w=w[1, n-1] \oplus w[1, n-2]$.
For a path P and distinct vertices $u, v \in V(P)$, we let $u P v$ be a subpath of P from u to v.

In 2018, Jiang et. al. [10] gave a shortest path between each pair of vertices in a generalized Farey graph. Lemmas 8, 9 and 11 show that each pair of vertices in these lemmas has a unique geodesic path.

Lemma 8. In $G(t)$, for a fixed $k \in\{0,1,2\}$, let $w \in A_{k}$ be such that $l(w)=n$ where n is an even number that $2 \leq n \leq t$. If $w=\alpha_{k}(\epsilon \bar{\epsilon})^{\frac{n-2}{2}}$ where $\epsilon \in\{0,1\}$, then $d\left(w, \alpha_{k}\right)=\frac{n-2}{2}$. Moreover, there is a unique geodesic path which is $w_{n} w_{n-2} \ldots w_{2}$ where $w_{i}=\alpha_{k}(\epsilon \bar{\epsilon})^{\frac{i-2}{2}}$ for a positive even number $i \leq n$.

Proof. Let $w_{i}=\alpha_{k}(\epsilon \bar{\epsilon})^{\frac{i-2}{2}}$ and $u_{i}=\alpha_{k}(\epsilon \bar{\epsilon})^{\frac{i-4}{2}} \epsilon$ for a positive even number $i \leq n$. It is obvious that $d\left(w_{2}, \alpha_{k}\right)=0, d\left(w_{4}, \alpha_{k}\right)=1$ and there is a unique geodesic $\left(w_{4}, \alpha_{k}\right)$-path $w_{4} w_{2}$. By Lemma 6 , we have $w_{i}=u_{i} \oplus w_{i-2}$ for $i=4, \ldots, n$. Suppose that $d\left(w_{i}, \alpha_{k}\right)=\frac{i-2}{2}$ with a unique geodesic $\left(w_{i}, \alpha_{k}\right)$-path $w_{i} w_{i-2} \ldots w_{2}$ for $i=2,4, \ldots, n-2$.

Suppose that there exists a (w_{n}, α_{k})-path P with length less than $d\left(w_{n-2}, \alpha_{k}\right)+1$. Then $u_{n} \in$ $V(P), w_{n-2} \notin V(P)$ and $d\left(u_{n}, \alpha_{k}\right)<d\left(w_{n-2}, \alpha_{k}\right)$. Hence $w_{n-2} u_{n} P \alpha_{k}$ is a $\left(w_{n-2}, \alpha_{k}\right)$-path of length $d\left(w_{n-2}, \alpha_{k}\right)$ contrary to the uniqueness of the geodesic $\left(w_{n-2}, \alpha_{k}\right)$-path. Thus $d\left(w_{n}, \alpha_{k}\right) \geq d\left(w_{n-2}, \alpha_{k}\right)+$ $1=\frac{n-2}{2}$. Since w_{n} and w_{n-2} are adjacent, it follows that $d\left(w_{n}, \alpha_{k}\right)=\frac{n-2}{2}$.

Next we show that the geodesic $\left(w_{n}, \alpha_{k}\right)$-path is unique. Let Q be a path $w_{n} w_{n-2} \ldots w_{2}$. Suppose there exists a geodesic $\left(w_{n}, \alpha_{k}\right)$-path $Q^{\prime} \neq Q$. We have $u_{n} \in V\left(Q^{\prime}\right), w_{n-2} \notin V\left(Q^{\prime}\right)$ and $\left|E\left(u_{n} Q^{\prime} \alpha_{k}\right)\right|=$ $d\left(u_{n}, \alpha_{k}\right)=d\left(w_{n-2}, \alpha_{k}\right)=\left|E\left(w_{n-2} Q \alpha_{k}\right)\right|$. By Lemma 6, we have $u_{i}=w_{i-2} \oplus u_{i-2}$ for $i=4,6 \ldots, n$. Since $w_{n-2} \notin V\left(Q^{\prime}\right)$, it follows that $u_{n} u_{n-2} \in E\left(Q^{\prime}\right)$.

Let $i_{0}=\max \left\{i: w_{i} \in V\left(Q^{\prime}\right)\right\}$. We note that $i_{0} \geq 2$.
Claim $d\left(u_{n}, u_{i_{0}+2}\right)=\frac{n-i_{0}-2}{2}$.
It is obvious that $d\left(u_{i_{0}+4}, u_{i_{0}+2}\right)=1$. Suppose that $d\left(u_{i}, u_{i_{0}+2}\right)=\frac{i-i_{0}-2}{2}$ for $i=6, \ldots, n-2$. We have $d\left(u_{n}, u_{i_{0}+2}\right) \leq d\left(u_{n-2}, u_{i_{0}+2}\right)+d\left(u_{n}, u_{n-2}\right)=\frac{n-2-i_{0}-2}{2}+1=\frac{n-i_{0}-2}{2}$. If there exists a $\left(u_{n}, u_{i_{0}+2}\right)$-path P of length less than $\frac{n-i_{0}-2}{2}$, then $u_{n-2} \notin V(P)$. Hence $w_{n-2} \in V(P)$ and $\left|E\left(w_{n-2} P u_{i_{0}+2}\right)\right| \leq \frac{n-i_{0}-6}{2}$. Since u_{n-2} and w_{n-2} are adjacent, it follows that $\left|E\left(u_{n-2} w_{n-2} P u_{i_{0}+2}\right)\right|=\frac{n-i_{0}-4}{2}<d\left(u_{n-2}, u_{i_{0}+2}\right)$, a contradiction. Therefore $d\left(u_{n}, u_{i_{0}+2}\right)=\frac{n-i_{0}-2}{2}$ as claimed.

By claim, we have $\left|E\left(Q^{\prime}\right)\right| \geq\left|u_{n} Q^{\prime} u_{i_{0}+2}\right|+d\left(w_{i_{0}}, \alpha_{k}\right)+\left|E\left(u_{i_{0}+2} w_{i_{0}}\right)\right| \geq \frac{n-i_{0}+2}{2}+\frac{i_{0}-2}{2}+1=\frac{n+2}{2}$, a contradiction. Therefore the geodesic $\left(w_{n}, \alpha_{k}\right)$-path is unique and it is $w_{n} w_{n-2} \ldots w_{2}$ with $d\left(w_{n}, \alpha_{k}\right)=$ $\frac{n-2}{2}$.

Lemma 9. In $G(t)$, for a fixed $k \in\{0,1,2\}$, let $w \in A_{k}$ be such that $l(w)=n$ where n is odd and $3 \leq n \leq t$. If $w=\alpha_{k}(\epsilon \bar{\epsilon})^{\frac{n-3}{2}} \epsilon$, then $d\left(w, \tau_{j}\right)=\frac{n-1}{2}$ when $j \equiv k+\epsilon(\bmod 3)$. Moreover, there is a unique geodesic path which is $w_{n} w_{n-2} \ldots w_{3} \tau_{j}$ where $w_{i}=\alpha_{k}(\epsilon \bar{\epsilon})^{\frac{i-3}{2}} \epsilon$ for a positive odd number $i=3,5, \ldots, n$.

Proof. Similar to Proposition 8.

Lemma 10. In $G(t)$, for $k \in\{0,1,2\}$, let $w \in A_{k}$ be such that $w=\alpha_{k}(\epsilon \bar{\epsilon})^{\frac{n-3}{2}} \epsilon$ for some odd n where $3 \leq n \leq t$. If $j_{1} \equiv k+\epsilon(\bmod 3)$ and $j_{1} \neq j_{2}$, then $d\left(w, \tau_{j_{1}}\right)+1=d\left(w, \tau_{j_{2}}\right)$ when $j_{1} \equiv k+\epsilon(\bmod 3)$ and $j_{1} \neq j_{2}$.

Proof. Since $w[1,2]=\alpha_{k} \epsilon$, the vertex w is contained in bundle $B_{\left(\alpha_{k}, \tau_{j_{1}}\right)}$. Let P be a geodesic $\left(w, \tau_{j_{2}}\right)$-path. Since $\tau_{j_{2}} \notin B_{\left(\alpha_{k}, \tau_{j_{1}}\right)}$, to exit $B_{\left(\alpha_{k}, \tau_{j_{1}}\right)}$, the path P must contain α_{k} or $\tau_{j_{1}}$. Suppose to the contrary that $d\left(w, \tau_{j_{1}}\right) \geq d\left(w, \tau_{j_{2}}\right)$. We have $\tau_{j_{1}} \notin V(P)$. Hence $\alpha_{k} \in V(P)$ and $d\left(w, \tau_{j_{1}}\right) \geq d\left(w, \tau_{j_{2}}\right)=1+d\left(w, \alpha_{k}\right)$. Combining paths $w P \alpha_{k}$ and $\alpha_{k} \tau_{j_{1}}$ yields a geodesic $\left(w, \tau_{j_{1}}\right)$-path that is different from the one obtained by Proposition 9. This contradicts the uniqueness of the geodesic $\left(w, \tau_{j_{1}}\right)$-path. Hence $d\left(w, \tau_{j_{1}}\right)<$ $d\left(w, \tau_{j_{2}}\right)$. Since $\tau_{j_{1}}$ and $\tau_{j_{2}}$ are adjacent, it follows that $d\left(w, \tau_{j_{1}}\right)+1=d\left(w, \tau_{j_{2}}\right)$.

Lemma 11. In $G(t)$, for a fixed $k \in\{0,1,2\}$, let $w \in A_{k}$ be such that $l(w)=n$ where n is odd and $3 \leq n \leq t$. If there exists an odd number $i_{0} \leq n$ such that $w=w\left[1, i_{0}\right](\epsilon \bar{\epsilon})^{\frac{n-i_{0}-1}{2}}$, then $d\left(w, w\left[1, i_{0}\right]\right)=\frac{n-i_{0}-1}{2}$ and the $\left(w, w\left[1, i_{0}\right]\right)$-geodesic path is unique.

Proof. The proof is similar to Proposition 8.
Lemma 12. For $m>1$ and $t \geq 1$, let $H \cong G(t)$ be a subgraph of $G_{m, t}$. Let $u, v \in V(H)$. If P is a unique geodesic (u, v)-path in H, then P is a unique geodesic (u, v)-path in $G_{m, t}$.

Proof. Let $x, y \in V(H)$ be such that $B_{(x, y)}^{H}$ is the minimal bundle in H containing both u and v. By Remark 3, we have $P \subset B_{(x, y)}^{H}$. Let us recall that $B_{(x, y)}^{H}$ contains all the vertices having u or v as their descendant in $G_{m, t}$ with level at least $\max \{l(x), l(y)\}$. Suppose that there is a geodesic (u, v)-path $Q=u_{1} \ldots u_{n}$ in $G_{m, t}$ where $u_{1}=u, u_{n}=v$ and $P \neq Q$. Thus, there exists a maximum $i_{0} \in\{2, \ldots, n-1\}$ such that $u_{i_{0}} \notin V(H)$. We have that $u_{i_{0}+1}$ is a base of $u_{i_{0}}$, and $u_{i_{0}+1} \in V(H)$. Let $w \neq u_{i_{0}+1}$ be another base of $u_{i_{0}}$. We note that u and v are not descendants of $u_{i_{0}}$. In order to reach u and v, the path Q has to go back to a vertex in H which means Q has to go through w. Since w and $u_{i_{0}+1}$ are adjacent and $\left|E\left(w Q u_{i_{0}+1}\right)\right| \geq 2$, replace the $w Q u_{i_{0}+1}$ path in Q with an edge $w u_{i_{0}+1}$ yields a shorter (u, v)-path, contradiction. Therefore, if P is a geodesic (u, v)-path in H, then it is also a geodesic path in $G_{m, t}$.

By Lemma 12, the paths given in Lemmas 8-11 are geodesic in $G_{m, t}$.

4. Rainbow connection number on a generalized small-world Farey graph

We investigate the rainbow connection number of $G(t)$ for $t \geq 1$, and later extend to $G_{m, t}$ for $m \geq 1$ at the end of this section. In $G(t)$, we give an ordering to the edges in the same level through the ordering of vertices in A_{0}. Let $\tau_{0}<\alpha_{0}<\tau_{1}$. The other vertices are ordered by the following process. In this ordering, we relabel a vertex labeled by w as $w \epsilon$, and let $0<\epsilon<1$. Then we order vertices by lexicographical ordering on the new labeling. For example, $\alpha_{0} 0 \epsilon<\alpha_{0} \epsilon<\alpha_{0} 1 \epsilon, \alpha_{0} 0 \epsilon<\alpha_{0} 01 \epsilon<\alpha_{0} \epsilon$. Outside this ordering, we still use the original labeling in the remaining of the paper. By this ordering, for any $x, y, z \in V(G(t))$ where x is a direct descendant of y and z such that $y<z$, we have that $y<x<z$. Let $u_{1}, u_{2}, v_{1}, v_{2} \in V\left(A_{0}\right)$. For each pair of edges $u_{1} v_{1}$ and $u_{2} v_{2}$ that appear in the same level, where $u_{i}<v_{i}$ for $i=1,2$, we say that $u_{1} v_{1} \prec u_{2} v_{2}$ if and only if $u_{1}<u_{2}$.

(a) even t

(в) odd t

Figure 5. The coloring of G_{2}-subgraph of $G_{2}(t)$

In $G(t)$, we define isomorphism functions $f_{1}: B_{\left(\tau_{0}, \tau_{1}\right)} \rightarrow B_{\left(\tau_{1}, \tau_{2}\right)}, f_{2}: B_{\left(\alpha_{0}, \tau_{1}\right)} \rightarrow B_{\left(\alpha_{2}, \tau_{0}\right)}$ and $f_{3}: B_{\left(\alpha_{1}, \tau_{1}\right)} \rightarrow B_{\left(\alpha_{2}, \tau_{2}\right)}$ by

$$
\begin{aligned}
& f_{1}(u)= \begin{cases}\tau_{1} & \text { if } u=\tau_{1}, \\
\tau_{2} & \text { if } u=\tau_{0} \\
\alpha_{1} \bar{w} & \text { if } u=\alpha_{0} w \in B_{\left(\tau_{0}, \tau_{1}\right)} \text { for } w \in\{0,1\}^{*},\end{cases} \\
& f_{2}(u)= \begin{cases}\tau_{0} & \text { if } u=\tau_{1} \\
\alpha_{2} w & \text { if } u=\alpha_{0} w \in B_{\left(\alpha_{0}, \tau_{1}\right)} \text { for } w \in\{0,1\}^{*},\end{cases}
\end{aligned}
$$

and

$$
f_{3}(u)= \begin{cases}\tau_{2} & \text { if } u=\tau_{1} \\ \alpha_{2} w & \text { if } u=\alpha_{1} w \in B_{\left(\alpha_{1}, \tau_{1}\right)} \text { for } w \in\{0,1\}^{*}\end{cases}
$$

For $u v \in E(G(t))$ and $i=1,2,3$, let $f_{i}(u v)=f_{i}(u) f_{i}(v)$ where applicable. We note that f_{i} also preserves the level of the vertices and edges for $i=1,2,3$. We order the edges in level $i \geq 2$ in A_{0} as an increasing sequence $\left\{e_{j}^{i}\right\}_{j=0}^{i-1}-1$. The following statements are true:

- $e_{0}^{i}=\left(\tau_{0}, \alpha_{0} 0^{i-2}\right)$,
- for $j=0, \ldots, 2^{i-2}-1$, if an endpoint of e_{j}^{i} is in $\left\{\tau_{0}, \tau_{1}\right\}$, such endpoint is τ_{0},
- for $j=2^{i-2}, \ldots, 2^{i-1}-1$, if an endpoint of e_{j}^{i} is in $\left\{\tau_{0}, \tau_{1}\right\}$, such endpoint is τ_{1}.

We color $G_{2}(t)$ according to the parity of t as in Figures 5a and 5b.

Let $h_{t}: E(G(t)) \rightarrow\left\{b_{1}, \ldots, b_{t}\right\}$ be an edge-coloring such that $\left.h_{t}\right|_{G_{2}}$ is the coloring appeared in 5 a and 5b. Now, we color the edges in A_{0} that are not contained in G_{2} by

$$
h_{t}\left(e_{j}^{i}\right)= \begin{cases}b_{i-1} & \text { where } j \equiv 0,3 \quad(\bmod 4) \\ b_{i} & \text { where } j \equiv 1,2 \quad(\bmod 4)\end{cases}
$$

Next, we color the edges in A_{1}. For any $e \in E\left(A_{1}\right) \backslash E\left(G_{2}\right)$, we define

$$
h_{t}(e)= \begin{cases}h_{t}\left(f_{1}^{-1}(e)\right)+1 & \text { if } h_{t}\left(f_{1}^{-1}(e)\right) \text { and } t \text { have different parities } \\ h_{t}\left(f_{1}^{-1}(e)\right)-1 & \text { if } h_{t}\left(f_{1}^{-1}(e)\right) \text { and } t \text { have the same parity }\end{cases}
$$

Next, we color $e \in E\left(A_{2}\right) \backslash E\left(G_{2}\right)$ by

$$
h_{t}(e)= \begin{cases}h_{t}\left(f_{2}^{-1}(e)\right) & \text { for } e \in B_{\left(\alpha_{2}, \tau_{0}\right)} \\ h_{t}\left(f_{3}^{-1}(e)\right) & \text { for } e \in B_{\left(\alpha_{2}, \tau_{2}\right)}\end{cases}
$$

By the definition of h_{t}, for $t \geq 3$ and $i \geq 3$, the first edge in level i is $\left(\tau_{0}, \alpha_{0} 0^{i-2}\right)$. We color the edges in A_{0} periodically by colors b_{i-1}, b_{i}, b_{i} and b_{i-1} starting at ($\tau_{0}, \alpha_{0} 0^{i-2}$). Then, we use the isomorphism functions to color the edges in A_{1} and A_{2}. We say that an edge e is odd if $h_{t}(e)=b_{i}$ for some odd number i, and e is even if i is even. For an edge e with level at least three, if $e \in E\left(A_{0}\right)$, then the parities of the indices of the colors $h_{t}(e)$ and $h_{t}\left(f_{1}(e)\right)$ are different. If $e \in E\left(B_{\left(\alpha_{0}, \tau_{1}\right)}\right) \cup E\left(B_{\left(\alpha_{1}, \tau_{1}\right)}\right)$, then the parity of $h_{t}(e)$ and $h_{t}\left(f_{j}(e)\right)$ is the same for $j=2,3$. For any distinct $u, v \in V(G(t))$, we say that a (u, v)-path $u_{1} \ldots u_{n}$ where $u_{1}=u$ and $u_{n}=v$ is an odd-colored path if its edges are all odd and $l\left(u_{i}\right)>l\left(u_{i+1}\right)$ for $i \leq n-1$. Similarly, a (u, v)-path $u_{1} \ldots u_{n}$ where $u_{1}=u$ and $u_{n}=v$ is an even-colored path if its edges are all even and $l\left(u_{i}\right)>l\left(u_{i+1}\right)$ for $i \leq n-1$.

Lemma 13. In $\left(G(t), h_{t}\right)$, let $x, y \in V\left(A_{0}\right)$ where $l(x) \geq 3, l(y) \geq 2$ and y is a base of x. Then $l(x)=l(y)+1$ if and only if $h_{t}(x y)=b_{l(x)}$.

Proof. Let $w, z \in V\left(A_{0}\right)$ be the bases of y where $w<z$, and let w^{\prime} and z^{\prime} be the direct descendants of w, y and y, z respectively. It follows that $w<w^{\prime}<y<z^{\prime}<z$. The edges in level $l(y)+1$ with both endpoints in $\left\{y, z, w, z^{\prime}, w^{\prime}\right\}$ consists of $w w^{\prime}, w^{\prime} y, y z^{\prime}, z^{\prime} z$ ordered increasingly. Since y is a base of x and $l(x)=l(y)+1$, it follows that $x y \in\left\{w^{\prime} y, z^{\prime} y\right\}$. If $w^{\prime} w$ is the first edge of level $l(y)+1$, then $h_{t}\left(w^{\prime} w\right)=b_{l(y)}=h_{t}\left(z^{\prime} z\right)$ and $h_{t}\left(w^{\prime} y\right)=b_{l(y)+1}=h_{t}\left(w^{\prime} z\right)$. Since each vertex in A_{0} with level $l(y)$ gives four corresponding edges in level $l(y)+1$ in such ordering. The lemma is true by the periodicity of the coloring h_{t} in A_{0}.

Lemma 14 and 15 gives an existence of a rainbow path of the same parity of a vertex to one of its origins which later use to construct a rainbow path in $G(t)$ in Theorem 16.

Lemma 14. Let $x, y, z \in V(G(t))$ with an edge-coloring h_{t} be such that $x=y \oplus z$. There exists a rainbow $\left(u, u^{\prime}\right)$-path with all edges of the same parity where u^{\prime} is the only vertex in $\{x, y, z\}$ for all $u \in B_{(y, z)}$.

Proof. Consider A_{0}. It can be easily verified when $u \in V\left(G_{2}\right)$. Suppose $u \notin V\left(G_{2}\right)$. By the definition of h_{t}, each $u \in V\left(A_{0}\right) \backslash V\left(G_{2}\right)$ is incident to one odd and one even edge connecting u to its bases. Hence, we are able to construct a path by consecutively choosing either odd or even edges to a base of a new vertex in the current path until it reaches x, y or z. Let $P=u_{1} \ldots u_{n}$ be the constructed path. By the construction, we have $l\left(u_{i}\right)>l\left(u_{i+1}\right)$ for $i<n$. Thus, the path P is either an odd-colored path or an even-colored path where $u_{n}=u^{\prime}$ is the only vertex in $\{x, y, z\}$. We note that P does not contain any edge in G_{2}.

Next, we show that P is a rainbow path. For a fixed $i_{0} \leq n-2$, we have $h_{t}\left(u_{i_{0}} u_{i_{0}+1}\right) \in\left\{b_{l\left(u_{i_{0}}\right)}, b_{l\left(u_{i_{0}}\right)-1}\right\}$ and $h_{t}\left(u_{i_{0}+1} u_{i_{0}+2}\right) \in\left\{b_{l\left(u_{i_{0}+1}\right)}, b_{l\left(u_{i_{0}+1}\right)-1}\right\}$. If $h_{t}\left(u_{i_{0}} u_{i_{0}+1}\right) \neq h_{t}\left(u_{i_{0}+1} u_{i_{0}+2}\right)$, then we are done. Suppose to the contrary that $h_{t}\left(u_{i_{0}} u_{i_{0}+1}\right)=h_{t}\left(u_{i_{0}+1} u_{i_{0}+2}\right)$. We have $h_{t}\left(u_{i_{0}} u_{i_{0}+1}\right)=h_{t}\left(u_{i_{0}+1} u_{i_{0}+2}\right)=b_{l\left(u_{i_{0}}\right)-1}=$ $b_{l\left(u_{i_{0}}+1\right)}$. Since $h_{t}\left(u_{i_{0}} u_{i_{0}+1}\right)=b_{l\left(u_{i_{0}}\right)-1}$, it follows that $l\left(u_{i_{0}+1}\right)<l\left(u_{i_{0}}\right)-1$ by Lemma 13. Hence $b_{l\left(u_{i_{0}+1}\right)} \neq b_{l\left(u_{i_{0}}\right)-1}$, a contradiction. Therefore P is a rainbow path.

We note that $\left.h_{t}\right|_{A_{1}}=\left.h_{t} \circ f_{1}\right|_{A_{0}}$ switches the parity of the pre-image edge in A_{0} and its image in A_{1}. Moreover $\left.h_{t}\right|_{B_{\left(\alpha_{2}, \tau_{0}\right)}}=\left.h_{t} \circ f_{2}\right|_{B_{\left(\alpha_{0}, \tau_{1}\right)}}$ preserves the parity of the pre-image edge in A_{0} and its image in A_{2}, while $\left.h_{t}\right|_{B_{\left(\alpha_{2}, \tau_{2}\right)}}=\left.h_{t} \circ f_{3}\right|_{B_{\left(\alpha_{1}, \tau_{1}\right)}}$ preserves the parity of the pre-image edge in A_{1} and its image in A_{2}.

If $x, y, z \in V\left(A_{1}\right)$, then $f_{1}^{-1}(u), f_{1}^{-1}(x), f_{1}^{-1}(y), f_{1}^{-1}(z) \in V\left(A_{0}\right)$ where $f_{1}^{-1}(x)=f_{1}^{-1}(y) \oplus f_{1}^{-1}(z)$ and $f_{1}^{-1}(u) \in B_{\left(f_{1}^{-1}(y), f^{-1}(z)\right)}$. Hence, there exists an odd-colored or even-colored rainbow $\left(f_{1}^{-1}(u), v\right)$-path P_{1} where v is the only vertex contained in $\left\{f_{1}^{-1}(x), f_{1}^{-1}(y), f_{1}^{-1}(z)\right\}$. Thus $h_{t}\left(f_{1}\left(P_{1}\right)\right)$ is an odd-colored or even-colored rainbow $\left(u, u^{\prime}\right)$-path where $u^{\prime}=f_{1}(v)$ is the only vertex in $\{x, y, z\}$. Similarly, we have an even-colored or odd-colored rainbow $\left(u, u^{\prime}\right)$-path for $u \in V\left(A_{2}\right)$ by considering the preimages of f_{2} and f_{3}.

Lemma 15 is a direct result of Lemma 14.

Lemma 15. Let $y, z \in V(G(t))$ with an edge-coloring h_{t} be such that their direct descendant is not in G_{2}. There exists a rainbow $\left(u, u^{\prime}\right)$-path with all edges of the same parity where u^{\prime} is the only vertex in $\{y, z\}$ for all $u \in B_{(y, z)}$.

For any $u \in V\left(A_{i}\right) \backslash V\left(G_{2}\right)$ and $v \in V\left(A_{j}\right) \backslash V\left(G_{2}\right)$, by Lemma 14, there exist an odd-colored rainbow $\left(u, u^{\prime}\right)$-path and an even-colored rainbow $\left(v, v^{\prime}\right)$-path where u^{\prime} and v^{\prime} are the only vertices in $V\left(G_{2}\right)$. Table 1 presents a rainbow (u, v)-path for all non-adjacent $u, v \in V\left(G_{2}\right)$. These paths are used to connect rainbow paths between A_{i} and A_{j} for $i \neq j$. We note that any pair of $u, v \in V\left(G_{2}\right)$ that is not presented in Table 1 is adjacent and we are able to use an edge $u v$ to connect paths between A_{i} and A_{j}.

Table 1. List of a rainbow path in G_{2}

u^{\prime}	v^{\prime}	$\left(u^{\prime}, v^{\prime}\right)$-path	list of colors when t is even	list of colors when t is odd
α_{0}	α_{1}	$\alpha_{0} \tau_{1} \alpha_{1}$	$b_{1} b_{2}$	$b_{2} b_{3}$
α_{0}	α_{2}	$\alpha_{0} \tau_{0} \alpha_{2}$	$b_{1} b_{2}$	$b_{1} b_{2}$
α_{0}	τ_{2}	$\alpha_{0} \tau_{1} \tau_{2}$	$b_{1} b_{2}$	$b_{2} b_{1}$
α_{1}	α_{2}	$\alpha_{1} \tau_{2} \alpha_{2}$	$b_{2} b_{1}$	$b_{1} b_{3}$
α_{1}	τ_{0}	$\alpha_{1} \tau_{1} \tau_{0}$	$b_{2} b_{1}$	$b_{3} b_{1}$
α_{2}	τ_{0}	$\alpha_{2} \tau_{0}$	b_{2}	b_{2}
		$\alpha_{2} \tau_{2} \tau_{0}$	$b_{1} b_{2}$	$b_{3} b_{1}$

Table 2. Parity of the chosen same-parity path when t is even

$\left(1^{\text {st }}\right.$-bundle, parity of $\left.P_{0}\right)$	$\left(2^{\text {nd }}\right.$-bundle, parity of $\left.P_{1}\right)$
$\left(A_{0}\right.$, odd $)$	$\left(A_{1}\right.$, even $)$
$\left(A_{0}\right.$, odd $)$	$\left(A_{2}\right.$, even $)$
$\left(A_{1}\right.$, even $)$	$\left(A_{2}\right.$, odd $)$

Table 3. Parity of the chosen same-parity path when t is odd

$\left(1^{\text {st }}\right.$-bundle, parity of $\left.P_{0}\right)$	$\left(2^{\text {nd }}\right.$-bundle, parity of $\left.P_{1}\right)$
$\left(A_{0}\right.$, even $)$	$\left(A_{1}\right.$, odd $)$
$\left(A_{0}\right.$, odd $)$	$\left(B_{\left(\alpha_{2}, \tau_{0}\right)}\right.$, even $)$
$\left(A_{0}\right.$, even $)$	$\left(B_{\left(\alpha_{2}, \tau_{2}\right)}\right.$, odd $)$
$\left(A_{1}\right.$, odd $)$	$\left(B_{\left(\alpha_{2}, \tau_{0}\right)}\right.$, even $)$
$\left(A_{1}\right.$, even $)$	$\left(B_{\left(\alpha_{2}, \tau_{2}\right)}\right.$, odd $)$

Theorem 16. For a positive integer t, a graph $\left(G(t), h_{t}\right)$ is rainbow connected, and $\operatorname{rc}(G(t))=t$.
Proof. By Theorem 5, we have $\operatorname{rc}(G(t)) \geq t$. Next, we show that a graph $G(t)$ with coloring h_{t} is rainbow connected. This can easily be verified when $t=1,2$. Suppose $t \geq 3$. Let u and v be vertices in $V(G(t))$.

Case 1. $u \in V\left(A_{i}\right)$ and $v \in V\left(A_{j}\right)$ where $0 \leq i<j \leq 2$.
If u and v are non-adjacent vertices in $V\left(G_{2}\right)$, then we use the rainbow path in Table 1. Consider $u \in V\left(A_{i}\right) \backslash V\left(G_{2}\right)$ and $v \in V\left(A_{j}\right) \backslash V\left(G_{2}\right)$ for some $0<i<j \leq 2$. By Lemma 14, there exist a same-parity-colored rainbow $\left(u, u^{\prime}\right)$-path P_{0} and a same-parity-colored rainbow $\left(v, v^{\prime}\right)$-path P_{1} when u^{\prime}, v^{\prime} are the only vertices in G_{2}. The parities of P_{0} and P_{1} depend on the bundles A_{j} and A_{j} as appeared in

Table 4. Minimum even color $b_{i_{0}}$ and odd color $b_{j_{0}}$ that can appear in an even-colored (u, v)-path or an odd-colored (u, v)-path where v is the only vertex in $V\left(G_{2}(t)\right)$

v	$\left(\right.$ bundle, $\left.b_{i_{0}}, b_{j_{0}}\right)$ when t is even	(bundle, $\left.b_{i_{0}}, b_{j_{0}}\right)$ when t is odd
α_{0}	$\left(A_{0}, b_{4}, b_{3}\right)$	$\left(A_{0}, b_{4}, b_{3}\right)$
α_{1}	$\left(A_{1}, b_{4}, b_{3}\right)$	$\left(A_{1}, b_{2}, b_{5}\right)$
α_{2}	$\left(B_{\left(\alpha_{2}, \tau_{0}\right)}, b_{4}, b_{3}\right)$ $\left(B_{\left(\alpha_{2}, \tau_{2}\right)}, b_{4}, b_{3}\right)$	$\left(B_{\left(\alpha_{2}, \tau_{0}\right)}, b_{4}, b_{3}\right)$ $\left(B_{\left(\alpha_{2}, \tau_{2}\right)}, b_{2}, b_{5}\right)$
τ_{0}	$\left(A_{0}, b_{2}, b_{3}\right)$	$\left(A_{0}, b_{2}, b_{3}\right)$
	$\left(A_{2}, b_{2}, b_{3}\right)$	$\left(A_{2}, b_{2}, b_{3}\right)$
τ_{1}	$\left(A_{0}, b_{2}, b_{3}\right)$	$\left(A_{0}, b_{2}, b_{3}\right)$
	$\left(A_{1}, b_{4}, b_{1}\right)$	$\left(A_{1}, b_{2}, b_{3}\right)$
τ_{2}	$\left(A_{1}, b_{4}, b_{1}\right)$	$\left(A_{1}, b_{2}, b_{3}\right)$
	$\left(A_{2}, b_{4}, b_{1}\right)$	$\left(A_{2}, b_{2}, b_{3}\right)$

Tables 2 and 3. We note that the parity of colors of P_{0} and P_{1} are different. Tables 4 gives the smallest color that possibly appears in P_{0} and P_{1}. Since there exists a path in Table 1 with colors less than those appear in P_{0} and P_{1}, by combining the results in Tables 1 and 4 , we are able to connect P_{0} and $\overline{P_{1}}$ via the path in Table 1 if u^{\prime} and v^{\prime} are not adjacent. The combined path is a rainbow path. If either $u \in V\left(G_{2}\right)$ or $v \in V\left(G_{2}\right)$, then we use the same argument in which either P_{0} or P_{1} is trivial.

Case 2. $u, v \in V\left(A_{i}\right)$ for some $i=0,1,2$.
Let $x, y \in V(G(t))$ be such that $B_{(x, y)} \subseteq A_{i}$ is the minimal bundle containing u and v and let z be the direct descendant of x and y.

Case 2.1. $B_{(x, y)} \neq A_{i}$ for all $0 \leq i \leq 2$.
If $\{x, y\} \neq\left\{\tau_{i}, \tau_{j}\right\}$ for some $0 \leq i<j \leq 2$, then there exists an odd-colored rainbow $\left(u, u^{\prime}\right)$-path P_{0} and an even-colored rainbow $\left(v, v^{\prime}\right)$-path P_{1} by Lemma 15. We note that changing the color of $x y$ does not affect the result in Lemma 15. If P_{0} and P_{1} intersect, says at w, then $u P_{0} w \bar{P}_{1} v$ is a rainbow (u, v)-path. Now, we suppose that P_{0} and P_{1} do not intersect. Hence $u^{\prime}, v^{\prime} \in\{x, y\}$ and $u^{\prime} \neq v^{\prime}$. Let $P_{0}=u_{1} \ldots u_{n}$ and $P_{1}=v_{1} \ldots v_{s}$ where $u_{1}=u, u_{n}=u^{\prime}, v_{1}=v, v_{s}=v^{\prime}$ and u^{\prime}, v^{\prime} are the only vertices in $\{x, y\}$. Suppose $u^{\prime}=x$ and $v^{\prime}=y$. If $h_{t}\left(u^{\prime} v^{\prime}\right) \notin h_{t}\left(P_{0}\right) \cup h_{t}\left(P_{1}\right)$, then we are done. Suppose to the contrary that $h_{t}\left(u^{\prime} v^{\prime}\right) \in h_{t}\left(P_{0}\right) \cup h_{t}\left(P_{1}\right)$. The only possible edge with color $h_{t}(x y)=h_{t}\left(u^{\prime} v^{\prime}\right)$ in $E\left(B_{(x, y)}\right) \backslash\{x y\}$ is either $x z$ or $y z$. Without loss of generality, we suppose that $h_{t}(x y)=h_{t}(x z)$ and $x z \in E\left(P_{0}\right)$. It follows that $u^{\prime}=x$. Since P_{0} and P_{1} do not intersect, the vertex z is not in P_{1} and $v^{\prime}=y$. Hence $v \in V\left(B_{(y, z)}\right)$ and $u \in V\left(B_{(x, z)}\right)$. Let P_{0}^{\prime} and P_{1}^{\prime} be an even-colored $\left(u, u^{\prime \prime}\right)$-path and an
odd-colored $\left(v, v^{\prime \prime}\right)$-path where $u^{\prime \prime}$ and $v^{\prime \prime}$ are the only vertices in $\{x, y\}$. If P_{0}^{\prime} and P_{1}^{\prime} intersect, then we also have a rainbow (u, v)-path. Suppose that P_{0}^{\prime} and P_{1}^{\prime} do not intersect. So $u^{\prime \prime} \neq v^{\prime \prime}$. If $u^{\prime}=v^{\prime \prime}$ and $v^{\prime}=u^{\prime \prime}$, then P_{0}^{\prime} and P_{1}^{\prime} contain z which is not possible. Thus $u^{\prime \prime}=u^{\prime}$ and $v^{\prime \prime}=v^{\prime}$. Since the parity of the colors in P_{0}^{\prime} and P_{1}^{\prime} are different, we have that $x z \notin E\left(P_{0}^{\prime}\right)$. Hence $P_{0}^{\prime} \bar{P}_{1}^{\prime}$ is a rainbow (u, v)-path.

Case 2.2. $B_{(x, y)}=A_{i}$ for some $0 \leq i \leq 2$.
If $B_{(x, y)}=A_{i}$, then there exists an odd-colored rainbow $\left(u, u^{\prime}\right)$-path P_{0} and an even-colored rainbow $\left(v, v^{\prime}\right)$-path P_{1} by where u^{\prime}, v^{\prime} are the only vertices in $\{x, y, z\}$ by Lemma 14. The similar argument in the case $B_{(x, y)} \neq A_{i}$ also leads a rainbow (u, v)-path in case $B_{(x, y)}=A_{i}$. Thus, there is a rainbow (u, v)-path.

Therefore $\left(G(t), h_{t}\right)$ is rainbow connected and hence $\operatorname{rc}(G(t))=t$.
Corollary 17. For a positive integer t, we have $\operatorname{rc}(\mathcal{F}(t))=\operatorname{diam}(\mathcal{F})=t$.
Next, we give a coloring that leads to a rainbow connected $G_{m, t}$. Let $\left(H, h_{t}\right)$ be a subgraph of $G_{m, t}$ where $H \cong G(t)$. For each $e \in E\left(G_{m, t}\right)$, let e^{H} be the copy of e in H. We define an edge-coloring $c_{t}: E\left(G_{m, t}\right) \rightarrow\left\{b_{1}, \ldots, b_{t+1}\right\}$ by

$$
c_{t}(e)= \begin{cases}b_{t+1} & \text { if } e=\tau_{i} \tau_{j} \text { for some } 0 \leq i<j \leq 2, \\ b_{2} & \text { if } e^{H}=\left(\alpha_{0} \tau_{1}\right)^{H} \text { and } t \text { is even, } \\ b_{1} & \text { if } e^{H}=\left(\alpha_{1} \tau_{1}\right)^{H} \text { and } t \text { is even, } \\ b_{1} & \text { if } e^{H}=\left(\alpha_{2} \tau_{2}\right)^{H} \text { and } t \text { is odd, } \\ h_{t}\left(e^{H}\right) & \text { otherwise, }\end{cases}
$$

for each $e \in E\left(G_{m, t}\right)$. For a subgraph $H^{\prime} \cong G(t)$ of $G_{m, t}$, we note that $\left.c_{t}\right|_{H^{\prime}}(e)=\left.c_{t}\right|_{H}\left(e^{H}\right)$ for all $e \in E\left(H^{\prime}\right)$ where $l(e) \geq 3$.

By Theorem 16, we have $\operatorname{rc}\left(G_{1, t}\right)=t$ for $t \geq 1$. Since $G_{m, 1}$ is a triangle, it follows that $\operatorname{rc}\left(G_{m, 1}\right)=$ $\operatorname{diam}\left(G_{m, 1}\right)=1$. In Theorem 18, we show that $\operatorname{rc}\left(G_{m, t}\right)=t+1$ for $m>1$ and $t>1$.

Theorem 18. For $m>1$ and $t>1$, we have $\mathrm{rc}\left(G_{m, t}\right)=t+1$.
Proof. Consider $G_{m, t}$ with the coloring c_{t}. Let $u, v \in V\left(G_{m, t}\right)$. If $t=2$, then let $\alpha_{i}^{(1)}$ and $\alpha_{i}^{(2)}$ be distinct direct descendants of τ_{j} and τ_{k} for some $i, j, k \in\{0,1,2\}$. If $\{u, v\} \neq\left\{\alpha_{i}^{(1)}, \alpha_{i}^{(2)}\right\}$, then a rainbow path between each pair of non-adjacent vertices appears in Table 5. If $\{u, v\}=\left\{\alpha_{i}^{(1)}, \alpha_{i}^{(2)}\right\}$, then we consider $u=\alpha_{i}^{(1)}$ and $v=\alpha_{i}^{(2)}$. Finding an $\left(\alpha_{i}^{(1)}, \alpha_{i}^{(2)}\right)$-path is equivalent to finding a rainbow cycle in $G_{1,2}$ containing α_{i}. Since the color of the triangle $\tau_{0} \tau_{1} \tau_{2}$ is b_{t+1} and $h_{t}\left(\alpha_{i} \tau_{j}\right) \neq h_{t}\left(\alpha_{i} \tau_{k}\right)$ for $j \neq k$, a triangle $\alpha_{i} \tau_{j} \tau_{k}$ is a rainbow cycle. Thus there exists a rainbow $\left(\alpha_{i}^{(1)}, \alpha_{i}^{(2)}\right)$-path. It can be easily verified that there is no coloring of 2 colors giving a rainbow connected $G_{m, 2}$. Hence $\operatorname{rc}\left(G_{m, 2}\right)=\operatorname{diam}\left(G_{m, 2}\right)+1=3$.

Figure 6. The coloring of $G_{(2,2)}$-subgraph of $G_{(2, t)}$

Suppose that $t>2$. Let H_{1} and H_{2} be subgraphs of $G_{m, t}$ containing u and v, respectively, where $H_{1} \cong G(t) \cong H_{2}$ ($H_{1}=H_{2}$ if possible). If $H_{1}=H_{2}$, then there exists a rainbow (u, v)-path by the same argument in Theorem 16 with an adjusted path in $G_{2}^{H_{1}}$ in Table 5. Now, we suppose that there is no H_{1}, H_{2} where $H_{1}=H_{2}$. Thus, there exist i_{1}, i_{2} such that $u, v \in V\left(B_{\left(\tau_{i_{1}}, \tau_{i_{2}}\right)}\right)$ where $0 \leq i_{1}<i_{2} \leq 2$. By Lemma 15, there exist an odd-colored rainbow $\left(u, u^{\prime}\right)$-path P_{1} and an even-colored rainbow $\left(v, v^{\prime}\right)$-path P_{2} where u^{\prime} and v^{\prime} are the only vertices in $V\left(G_{2}^{H_{1}}\right)$ and $V\left(G_{2}^{H_{2}}\right)$, respectively. If P_{1} and P_{2} intersect, says at x, then the $u P_{1} x \overline{P_{2}} v$ is a rainbow (u, v)-path. Suppose P_{1} and P_{2} are disjoint. We have that $u^{\prime} \in\left\{\tau_{i_{1}}, \tau_{i_{2}}, \alpha_{i_{3}}^{H_{1}}\right\}$ and $v^{\prime} \in\left\{\tau_{i_{1}}, \tau_{i_{2}}, \alpha_{i_{3}}^{H_{2}}\right\}$ where $\alpha_{i_{3}}^{H_{1}}$ and $\alpha_{i_{3}}^{H_{2}}$ are the direct descendants of $\tau_{i_{1}}$ and $\tau_{i_{2}}$ in H_{1} and H_{2}, respectively. If $u^{\prime}, v^{\prime} \in\left\{\tau_{0}, \tau_{1}, \tau_{2}\right\}$, then connecting P_{1} and P_{2} by $u^{\prime} v^{\prime}$ gives a rainbow (u, v)-path as the color of the triangle $\tau_{0} \tau_{1} \tau_{2}$ is b_{t+1}. Consider case $u^{\prime}=\alpha_{i_{3}}^{H_{1}}$ and $v^{\prime}=\tau_{i}$ for some $i=i_{1}, i_{2}$. Without loss of generality, we suppose that $v^{\prime}=\tau_{i_{1}}$. If $c_{t}\left(\alpha_{i_{3}}^{H_{1}} \tau_{i_{1}}\right) \notin c_{t}\left(P_{1}\right) \cup c_{t}\left(P_{2}\right)$, then connecting P_{1} and P_{2} by $\alpha_{i_{3}}^{H_{1}} \tau_{i_{1}}$ gives a rainbow (u, v)-path. If $c_{t}\left(\alpha_{i_{3}}^{H_{1}} \tau_{i_{1}}\right) \in c_{t}\left(P_{1}\right) \cup c_{t}\left(P_{2}\right)$, then we connect P_{1} and P_{2} by $\alpha_{i_{3}}^{H_{1}} \tau_{i_{2}} \tau_{i_{1}}$ which gives a rainbow (u, v)-path by Table 4 and Figure 6. If $u^{\prime}=\alpha_{i_{3}}^{H_{1}}$, $v^{\prime}=\alpha_{i_{3}}^{H_{2}}$ and $\alpha_{i_{3}}^{H_{1}} \neq \alpha_{i_{3}}^{H_{2}}$, then we connect P_{1} and P_{2} by $\alpha_{i_{3}}^{H_{1}} \tau_{i_{1}} \tau_{i_{2}} \alpha_{i_{3}}^{H_{2}}$. Thus $G_{m, t}$ is rainbow-connected and $t \leq \operatorname{rc}\left(G_{m, t}\right) \leq t+1$.

Next, we show that $\operatorname{rc}\left(G_{m, t}\right) \neq t$. Let c be an edge-coloring giving a rainbow connected $G_{m, t}$. Suppose $\left|c\left(G_{m, t}\right)\right|=t$. Consider an even t. Let $H_{3}, H_{4} \subset G_{m, t}$ be such that $H_{3} \cong G(t) \cong H_{4}$ and $\alpha_{k}^{H_{3}} \neq \alpha_{k}^{H_{4}}$ for all $k=0,1,2$. So $V\left(H_{3}\right) \cap V\left(H_{4}\right)=\left\{\tau_{0}, \tau_{1}, \tau_{2}\right\}$. Let $x=\alpha_{0}(01)^{\frac{t-2}{2}}$ and $y=\alpha_{1}(10)^{\frac{t-2}{2}}$. By Lemmas 8 and 12, there are a unique geodesic $\left(x^{H_{i}}, \alpha_{0}^{H_{i}}\right)$-path $P_{1}^{H_{i}}$ and a unique geodesic $\left(y^{H_{i}}, \alpha_{1}^{H_{i}}\right)$-path $P_{2}^{H_{i}}$ in $G_{m, t}$ for $i=3,4$. Since $B_{\left(\tau_{0}, \tau_{1}\right)}$ is the minimal bundle containing both $x^{H_{3}}$ and $x^{H_{4}}$, a geodesic $\left(x^{H_{3}}, x^{H_{4}}\right)$-path must contain τ_{0} or τ_{1}, and $d\left(x^{H_{3}}, x^{H_{4}}\right)=t$ by Lemmas 8 and 12 . Since $P_{1}^{H_{3}}$ and $P_{1}^{H_{4}}$ are the unique geodesic paths of length $\frac{t}{2}-1$, the rainbow $\left(x^{H_{3}}, x^{H_{4}}\right)$-path is $P_{1}^{H_{3}} \tau_{0} \tau_{1} \bar{P}_{1}^{H_{4}}$, or $P_{1}^{H_{3}} \tau_{i} \bar{P}_{1}^{H_{4}}$ for some $i=0,1$. Hence $c\left(P_{1}^{H_{3}}\right) \cap c\left(P_{1}^{H_{4}}\right)=\emptyset$. Thus, we need $t-2$ colors to color $P_{1}^{H_{3}}$ and $P_{1}^{H_{4}}$. Now,

Table 5. List of a rainbow path in $G_{2}(t)$ where $0 \leq i<j \leq 2$

u^{\prime}	v^{\prime}	$\left(u^{\prime}, v^{\prime}\right)$-path	list of colors when t is even	lists of colors when t is odd
α_{0}	α_{1}	$\alpha_{0} \tau_{1} \alpha_{1}$	$b_{2} b_{1}$	$b_{2} b_{3}$
α_{0}	α_{2}	$\alpha_{0} \tau_{0} \alpha_{2}$	$b_{1} b_{2}$	$b_{1} b_{2}$
α_{0}	τ_{2}	$\alpha_{0} \tau_{0} \tau_{2}$	$b_{1} b_{t+1}$	$b_{1} b_{t+1}$
$b_{2} b_{t+1}$				
$\alpha_{1} \tau_{1} \tau_{2}$	α_{2}	$\alpha_{1} \tau_{2} \alpha_{2}$ $\alpha_{1} \tau_{2} \tau_{0} \alpha_{2}$ $\alpha_{1} \tau_{1} \tau_{2} \alpha_{2}$	$b_{2} b_{1}$	
α_{1}	τ_{0}	$\alpha_{1} \tau_{1} \tau_{0}$	$b_{1} b_{t+1}$	$b_{1} b_{t+1} b_{2}$
$b_{3} b_{t+1} b_{1}$				
α_{2}	τ_{0}	$\alpha_{2} \tau_{0}$	b_{2}	$b_{3} b_{t+1}$
α_{0}	τ_{1}	$\alpha_{2} \tau_{2} \tau_{0} \tau_{1}$	$b_{1} b_{t+1}$	$b_{1} b_{t+1}$
α_{2}	τ_{1}	$\alpha_{2} \tau_{2} \tau_{1}$	$b_{1} b_{t+1}$	$b_{1} b_{t+1}$
τ_{i}	τ_{j}	$\alpha_{2} \tau_{0} \tau_{1}$	$b_{2} b_{t+1}$	$b_{1} b_{t+1}$

we consider a rainbow $\left(x^{H_{i}}, y^{H_{4}}\right)$-path for $i=3,4$. By Lemmas 8 and 12 , a path $P_{1}^{H_{i}} \tau_{1} \bar{P}_{2}^{H_{4}}$ is a unique geodesic $\left(x^{H_{i}}, y^{H_{4}}\right)$-path for $i=3,4$ with length t. Hence, we need at least $t-1$ colors to color $P_{1}^{H_{3}} \tau_{1}$ and $P_{1}^{H_{4}} \tau_{1}$, and $c\left(\tau_{1} P_{2}^{H_{4}}\right) \cap\left(c\left(P_{1}^{H_{3}} \tau_{1}\right) \cup c\left(P_{1}^{H_{4}} \tau_{1}\right)\right)=\emptyset$. For $t>2$, it follows that $\left|c\left(\tau_{1} P_{2}^{H_{4}}\right)\right| \geq 2$. Thus $\left|c\left(G_{m, t}\right)\right| \geq t+1$, a contradiction. By using a similar argument along with Lemmas 9,10 and 12 , we have that $\operatorname{rc}\left(G_{m, t}\right) \neq t$ when t is odd. Therefore $\operatorname{rc}\left(G_{m, t}\right)=t+1$ for $m>1$ and $t>1$.

5. Conclusion

In this work, we give a rainbow connection number of a generalized Farey graph $G_{m, t}$ for all $m \geq 1$ and $t \geq 1$. In case $m=1$, the rainbow connection number of $G_{m, t}$ achieves the lowest possible value among the graph with the same diameter. We also show that $\operatorname{diam}\left(G_{m, t}\right)=t$ for $m \geq 1$ and $t \geq 1$. Several unique geodesic paths in $G_{m, t}$ are also given.

Acknowledgement

This research has received funding support from the NSRF via the Program Management Unit for Human Resources \& Institutional Development, Research and Innovation under Grant [B05F640188].

Authors' Contributions

All authors have read and approved the final version of the manuscript.
The authors contributed to this work in the following ways:

- C. Darayon: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing - Original Draft, Visualization
- K. Nakprasit: Conceptualization, Methodology, Formal analysis, Investigation, Writing - Original Draft, Supervision
- W. Tangjai: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing - Original Draft, Supervision, Project administration, Funding acquisition

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008), 85-98. https://doi.org/10.21136/mb.2008.133947.
[2] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: a survey, Graphs Comb. 29 (2012), 1-38. https://doi.org/10. 1007/s00373-012-1243-2.
[3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21 (2009), 330-347. https://doi.org/10.1007/s10878-009-9250-9.
[4] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory. 71 (2011), 206-218. https://doi.org/10.1002/jgt. 20643.
[5] X. Deng, H. Li, G. Yan, Algorithm on rainbow connection for maximal outerplanar graphs, Theor. Comp. Sci. 651 (2016), 76-86. https://doi.org/10.1016/j.tcs.2016.08.020.
[6] Z. Zhang, F. Comellas, Farey graphs as models for complex networks, Theor. Comp. Sci. 412 (2011), 865-875. https : //doi.org/10.1016/j.tcs.2010.11.036.
[7] W. Jiang, Y. Zhai, P. Martin, Z. Zhao, Structure properties of generalized farey graphs based on dynamical systems for networks, Sci. Rep. 8 (2018), 12194. https://doi.org/10.1038/s41598-018-30712-2.
[8] Z. Zhang, B. Wu, Y. Lin, Counting spanning trees in a small-world Farey graph, Physica A: Stat. Mech. Appl. 391 (2012), 3342-3349. https://doi.org/10.1016/j.physa.2012.01.039.
[9] P. Vichitkunakorn, R. Maungchang, W. Tangjai, On Nordhaus-Gaddum type relations of δ-complement graphs, Heliyon. 9 (2023), e16630. https://doi.org/10.1016/j.heliyon.2023.e16630.
[10] W. Jiang, Y. Zhai, Z. Zhuang, P. Martin, Z. Zhao, J.B. Liu, Vertex labeling and routing for farey-type symmetricallystructured graphs, Symmetry. 10 (2018), 407. https://doi .org/10.3390/sym10090407.
[11] C. Darayon, W. Tangjai, Rainbow vertex-connection number on a small-world Farey graph, AKCE Int. J. Graphs Comb. 19 (2022), 54-60. https://doi.org/10.1080/09728600.2022.2057827.
[12] C.J. Colbourn, Farey series and maximal outerplanar graphs, SIAM. J. Algebraic Discr. Meth. 3 (1982), 187-189. https://doi.org/10.1137/0603018.
[13] Y. Zhai, Y. Wang, Label-based routing for a family of small-world Farey graphs, Sci. Rep. 6 (2016), 25621. https : //doi.org/10.1038/srep25621.

