

RAINBOW CONNECTION NUMBER ON GENERALIZED FAREY GRAPH

CHAYAPA DARAYON¹, KITTIKORN NAKPRASIT², WIPAWEE TANGJAI^{3,*}

¹Department of Mathematics, Faculty of Education, Dhonburi Rajabhat University, Bangkok, 10600, Thailand ²Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand ³Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand *Corresponding author: wipawee.t@msu.ac.th

Received Jan. 12, 2024

ABSTRACT. Originated from a well-known Farey sequence, the generalized Farey graph $G_{m,t}$ where $m \ge 1$ and $t \ge 1$ has been studied in both on network and combinatorial aspects. In this work, we show that the diameter of $G_{m,t}$ is t. Furthermore, the rainbow connection number of graph $G_{1,t}$ is equal to its diameter which is the smallest possible among the graphs with the same diameter. We also show that the rainbow connection number of $G_{m,t}$ is t + 1 for m > 1 and t > 1.

2020 Mathematics Subject Classification. 05C15; 05C82.

Key words and phrases. generalized Farey graph; rainbow coloring; rainbow connection number

1. INTRODUCTION

A generalized Farey graph is characterized as a small-world network graph, and its properties have been extensively studied. In this work, we improve upon an existing result on a generalized Farey graph by obtaining the exact value of its diameter. Furthermore, we find its rainbow connection number whose definition and relation to diameter are described in this section.

Let G = (V, E) be a graph with an edge-coloring c. A subgraph H of G is *rainbow* if $c(e_1) \neq c(e_2)$ for each pair of distinct $e_1, e_2 \in E(H)$. A path is *rainbow* if none of its edges have the same color. A graph G is *rainbow connected* if a rainbow (u, v)-path exists for each pair of distinct $u, v \in V(G)$. The *rainbow connection number* of a graph G, denoted by rc(G), is the minimum number required for G to be rainbow connected. The notion of rainbow coloring is introduced by Chartrand et al. [1]. Its bound $diam(G) \leq rc(G) \leq |E(G)|$ is obvious.

In 2013, Li et al. [2] illustrated an application in a security network in which the rainbow connection number represents the minimum codes required to secure the network. Subsequently, they raised an

DOI: 10.28924/APJM/11-39

FIGURE 1. Drawings of $G_{2,t}$

interesting problem of characterizing a graph G with rc(G) = diam(G). It is known that computing rc(G) is NP-Hard and even deciding whether rc(G) = 2 is NP-Complete [3]. This may be a reason why not many results appeared for a graph with rc(G) = diam(G). Unit interval graphs [4] and certain maximal outer-planar graphs constructed by Deng et al. [5] were shown to have rc(G) = diam(G) and arbitrarily large diameters.

A small-world Farey graph $\mathcal{F}(t)$ [6] is constructed recursively from a path of length one as the initial graph $\mathcal{F}(0)$. For $\mathcal{F}(t)$ where $t \ge 1$, we add a vertex w and two edges uw and vw to $\mathcal{F}(t-1)$ for each edge uv that first appears in $\mathcal{F}(t-1)$. For $m, t \in \mathbb{N}$, a generalized Farey graph $G_{m,t}$ [7] is defined with a recursive construction similar to $\mathcal{F}(t)$ with the initial condition $G_{m,1} = K_3$ where K_3 is a triangle. For $G_{m,t}$ where $t \ge 2$, we add m new vertices and 2m edges connecting those new vertices with u and v for each edge uv that first appears in $G_{m,t-1}$ (see examples in Figure 1). Both graphs are characterized as small-world network graphs and their network properties have been investigated in many aspects [6,8].

Various coloring properties of the two graphs were obtained as follows. A small-world Farey graph $\mathcal{F}(t)$ has its chromatic number equal to 3 when $t \ge 1$ [6], and its δ -chromatic number is 2^t when t > 2 [9]. Zhang and Comellas [6] showed that diam $(\mathcal{F}(t)) = t$ when $t \ge 1$. Jiang et. al. [10] gave a shortest path (also called *geodesic path*) between each pair of vertices in each of these two graphs. It should be noted that a geodesic path is not necessarily a rainbow path resulting from edge-coloring. In 2018, Jiang et. al. [7] obtained the bound diam $(G_{m,t}) \le 2t + 3$.

In 2022, the *rainbow vertex-connection number*, the minimum number of colors required for each pair of vertices to be connected by a path with internal vertices of distinct colors, of $\mathcal{F}(t)$ is diam $(\mathcal{F}(t)) = t - 1$ [11] which is the lowest possible among the graphs with the same diameter. So, a similar problem arises for the rainbow connection number of $\mathcal{F}(t)$. In Theorem 5, we improve the aforementioned result on diam $(G_{m,t})$ by showing that diam $(G_{m,t}) = \text{diam}(\mathcal{G}(t)) = \text{diam}(\mathcal{F}_t) = t$ for $m \ge 1$. We also give unique geodesic paths in $G_{m,t}$ for $m \ge 1$ and $t \ge 1$. Finally, we show that, for $t \ge 1$,

FIGURE 2. Vertex labelings of G(1), G(2) and G(3)

 $\operatorname{rc}(\mathcal{F}(t)) = \operatorname{rc}(G_{1,t}) = \operatorname{diam}(G_{1,t}) = t$ and, for m > 1 and t > 1, $\operatorname{rc}(G_{m,t}) = \operatorname{diam}(G_{m,t}) = t + 1$. As a consequence, the rainbow connection numbers of $G_{1,t}$ and $\mathcal{F}(t)$ are the lowest among the graphs with the same diameter.

2. Generalized Farey graph and its properties

Recall that, for $m, t \in \mathbb{N}$, a generalized Farey graph $G_{m,t}$ [7] is defined with a recursive construction similar to $\mathcal{F}(t)$ with the initial condition $G_{m,1} = K_3$ where K_3 is a triangle. Let τ_0, τ_1, τ_2 be the label of such K_3 (See Figure 2(A)). For the purpose of comparison with the recursive step in a small-world Farey graph, our initial condition starts with t = 1 while that of in the definition given by Jiang et al. [7] started with t = 0. We use notation $G(t) = G_{1,t}$.

Next, we establish notations and terminologies that will be used in this work. If a vertex $u \in V(G_{m,t})$ first appears in step *i*, then the *level* of *u*, denoted by l(u), is *i* for i = 1, ..., t. Similarly, if an edge *e* first appears in step *i*, then the *level* of *e*, denoted by l(e), is *i*. We note that the level of the vertices in $G_{m,t}$ begins with level one. In case m = 1, a symmetric drawing and vertex labeling of $G(t) = G_{1,t}$ in this paper are as in Figure 2. We can draw a graph so that *w* lies between its bases. The method of vertex labeling is explained explicitly in the next section.

For each pair of adjacent vertices $x, y \in V(G_{m,t})$ and a vertex $u \in V(G_{m,t})$ such that $l(u) \ge 2$, if u is added to $G_{m,t}$ correspondingly to the edge xy, then u is a *direct descendant* of x and y. If u is a direct descendant of x and y, then x and y are *bases* of u. We define a *descendant* recursively as follows. We say v is a descendent of u if v is a direct descendent of u or there is z such that v is a descendent of z and z is a descendant of u. We note that for each edge xy in $G_{m,t}$ with l(xy) < t, there are m direct descendants of x and y. For an edge xy, an (x, y)-bundle $B_{(x,y)}$ is the induced subgraph of $G_{m,t}$ consists of x, y and all of their descendants. We say that $\{x, y\}$ is the *origin* of $B_{(x,y)}$. We note that $B_{(x,y)} = B_{(y,x)}$. We also note that if x is a base of u, then l(x) < l(u). Furthermore, for a vertex u with l(u) > 2, there are two bases of u and their levels are distinct in which exactly one of them has level l(u) - 1. The other base of

4 of 19

FIGURE 3. Symmetric drawing and vertex labeling of G(5)

u has level less than l(u) - 1. In 2018, Jiang et. al. [7] stated that $diam(G_{m,t}) \le 2t + 1$. We improve such a statement in case m = 1 in Theorem 5.

In Lemma 1, we show that, for each vertex, the levels of the vertices in its geodesic paths to its origins are decreasing.

Lemma 1. Let $u, u', x, y \in V(G_{m,t})$ be such that $l(x) \ge 2$, $u \in B_{(x,y)}$ and $u' \in \{x, y\}$. If $P = u_1 \dots u_n$ is a geodesic (u, u')-path where $u_1 = u$ and $u_n = u'$ is the only vertex in $\{x, y\}$, then $l(u_i) > l(u_{i+1})$ for $i = 1, \dots, n-1$.

Proof. Suppose to the contrary that there exists a path P with a smallest i_0 such that $l(u_{i_0}) \leq l(u_{i_0+1})$. Since distinct vertices of the same level are not adjacent when their level is at least two, it follows that $l(u_{i_0}) < l(u_{i_0+1})$. So u_{i_0} is a base of u_{i_0+1} . Let i_1 be the maximum number such that $l(u_i) < l(u_{i+1})$ for all $i = i_0, \ldots, i_1 - 1$. If $i_1 = i_0 + 1$, then $u_{i_1+1} = u_{i_0+2}$ is a base of u_{i_1} and $u_{i_0+2} \neq u_{i_0}$. Thus, deleting a vertex u_{i_0+1} form P and adding an edge $u_{i_0}u_{i_0+2}$ giving a (u, v)-path with a shorter distance. If $i_1 \geq i_0 + 2$, then $u_{i_0+2} \notin B_{(u_{i_0}, u_{i_0+1})}$; otherwise, the path $u_1Pu_{n_1}$ must go through u_{i_0} or u_{i_0+1} twice. Similarly, we can conclude that $u_{i+2} \notin B_{(u_i, u_{i+1})}$ for all $i = i_0, \ldots, i_1 - 2$. Let w be a base of u_{i_0+1} where $w \neq u_{i_0}$. We have that w is also a base of u_i for $i = i_0, \ldots, i_1$. Since $l(u_{i_1}) > l(u_{i_1+1})$ and $u_{i_1+1} \neq u_{i_0}$, it follows that $w = u_{i_1+1}$. Hence, deleting $u_{i_0+1}Pu_{i_1}$ from P and adding an edge $u_{i_0}u_{i_1+1}$ give a shorter (u, v)-path. This completes the proof. **Remark 2.** Let $u, u', x, y \in V(G_{m,t})$ be such that $l(x) \ge 2$, $u \in B_{(x,y)}$ and $u' \in \{x, y\}$. If $P = u_1 \dots u_n$ is a geodesic (u, u')-path where $u_1 = u$ and $u_n = u'$ is the only vertex in $\{x, y\}$, then u_1 is a descendant of u_i for $i = 2, \dots, n$, and u_j is a descendant of u_n for $j = 1, \dots, n - 1$.

Remark 3. Let $u, v, x, y \in V(G_{m,t})$ be such $B_{(x,y)}$ is the minimal bundle containing u and v. If P is a geodesic (u, v)-path, then $P \subseteq B_{(x,y)}$.

The property appears in Lemma 4 is needed to find the diameter of $G_{m,t}$ in Theorem 5.

Lemma 4. Let $u \in V(G_{m,t})$ be such that $l(u) \geq 2$. If $u \in B_{(\tau_i,\tau_j)}$ for $i \neq j$, then $d(u,u') \leq \frac{t}{2}$ for all $u' \in \{\tau_i, \tau_j\}$.

Proof. Suppose there exists $\tau_{i_0} \neq \tau_{j_0}$ and $u_0 \in B_{(\tau_0,\tau_j)}$ such that $d(u_0, u'_0) > \frac{t}{2}$ for some $u'_0 \in \{\tau_{i_0}, \tau_{j_0}\}$. Since $B_{(\tau_{i_0}, \tau_{j_0})}$ and $B_{(\tau_{i_1}, \tau_{j_1})}$ are isomorphic for $\{i_0, j_0\} \neq \{i_1, j_1\}$, there exists $u_1 \in V(B_{(\tau_{i_1}, \tau_{j_1})})$ and $u'_1 \in \{\tau_{i_1}, \tau_{j_1}\}$ where $d(u_1, u'_1) = d(u_0, u'_0) > \frac{t}{2}$. Since $V(B_{(\tau_{i_0}, \tau_{j_0})}) \cap V(B_{(\tau_{i_1}, \tau_{j_1})}) \subseteq \{\tau_0, \tau_1, \tau_2\}$, it follows that $d(u_0, u_1) > t$. Since $\{i_0, j_0\} \neq \{i_1, j_1\}$, there exists a subgraph $H \cong \mathcal{F}(t)$ of $G_{m,t}$ containing u_0, u'_0, u_1, u'_1 . Thus $d_{G_{m,t}}(u_0, u_1) \leq d_H(u_0, u_1) \leq t$ contradiction. \Box

Theorem 5. For $m \ge 1$ and $t \ge 1$, diam $(G_{m,t}) = t$.

Proof. The result can be easily verified when $t \leq 2$. Suppose t > 2. Let $u, v \in V(G_{m,t})$ and let $x, y \in V(G_{m,t})$ be such that $B_{(x,y)}$ is the minimal bundle containing u and v. If $x, y \in \{\tau_0, \tau_1\}$, then $B_{(x,y)} \cong \mathcal{F}(t)$. Let P be a geodesic (u, v)-path. By Remark 3, the path $P \subseteq B_{(x,y)}$. Thus diam $(G_{m,t}) \geq \text{diam}(\mathcal{F}(t)) = t$. In addition $d_{G_{m,t}}(u, v) \leq d_{\mathcal{F}(t)}(u, v) \leq t$ in this case.

We may now assume that $l(x) \ge 2$ and $l(u) \ge 3$. Let P be a geodesic (u, v)-path. If u and v have the same bases, then such bases are x and y. The only geodesic (u, v)-path are uxv and uyv. Consider the case that the bases of u and v are different. If there exists a direct descendant z of x and y where u and v are both descendants of z, then P contains x, y or z; otherwise, P contains x or y. In order to contain a vertex in $V(G_{m,t}) \setminus V(B_{(x,y)})$, the path P must exit $B_{(x,y)}$ at x or y and then enter back to the bundle again which adding a non-necessary length to the path; hence P contains no vertex in $V(G_{m,t}) \setminus V(B_{(x,y)})$. Let P_1 and P_2 be subpaths of P where $P = P_1P_2$, $P_1 = u_1 \dots u_{n_1}$, $P_2 = v_{n_2} \dots v_1$ such that u_{n_1} and v_{n_2} are the only vertices in $\{x, y\}$ (or $\{x, y, z\}$ if such z exists). We note that it is possible that $u_{n_1} = v_{n_2}$. We construct subgraphs H_1 and H_2 of $B_{(x,y)}$ where $u \in V(H_1)$ and $v \in V(H_2)$ by choosing the vertices in H_1 and H_2 via the same recursive construction of a small-world Farey graph with initial condition xy. We note that all the descendants of x and y that lead to u are in H_1 , and those that lead to v are in H_2 . Since $x \notin \{\tau_0, \tau_1, \tau_2\}$, it follows that $H_i \cong \mathcal{F}(s_i)$ for some $s_i = 1, \dots, t - 1$ where i = 1, 2. We note that the origins of H_1 and H_2 are x and y. By the construction of H_1, H_2 and Remark 2, we have that $P_1 \subseteq H_1$ and $P_2 \subseteq H_2$. If there exists a direct descendant z of x and y such that both u and v are descendants of z, then H_1 and H_2 can be chosen so that $H_1 = H_2$. Thus $d_{G_{m,t}}(u,v) = d_{H_1}(u,v) \le \max\{s_1, s_2\} \le t$. If there is no such z, then $H_1 \ne H_2$ and $1 \le s_1 \le t - 1$ and $1 \le s_2 \le t - 1$. Hence $d_{G_{m,t}}(u,v) \le d_{H_1}(u,u_{n_1}) + d_{H_2}(v,v_{n_2}) + 1 \le \operatorname{diam}(\mathcal{F}(s_1)) + \operatorname{diam}(\mathcal{F}(s_2)) + 1 \le t$ by Lemma 4. Therefore $\operatorname{diam}(G_{m,t}) = t$.

3. Property of $G_{m,t}$

In the first part of this section, we give a vertex labeling and some properties of G(t). We then extend the results on G(t) to $G_{m,t}$ later in this section. Several types of vertex labeling of a small-world Farey graph and a generalized Farey graph appear in [10, 12, 13]. In this work, we label each vertex with a concatenation of a special character with a string in $\{0, 1\}^*$, possibly empty. The label used here can be associated with a binary representation of the label of a small-world Farey graph that appeared in [10].

We first label the vertices in $G(t) = G_{1,t}$ and then consider each vertex of $G_{m,t}$ as a copy of a vertex in G(t). A *word* is a label of a vertex in G(t). Recall that we label the vertices in G(1) by τ_0, τ_1, τ_2 . Let $\Sigma = \{0, 1\}$ and Σ^* be the set of strings of finite length of elements in Σ including an empty string. For a string $s \in \Sigma^*$, the length of s is denoted by |s|. We label the vertices in V(G(t)) with level q for $2 \le q \le t$ by the words in

$$\mathcal{L}_q = \{ \alpha_k \rho : \rho \in \Sigma^*, |\rho| = q - 2 \text{ and } k = 0, 1, 2 \}.$$

Hence, the set of labels of the vertices in V(G(t)) with level at least two is

$$\mathcal{L} = \{ \alpha_k \rho : \rho \in \Sigma^*, |\rho| = q - 2 \text{ for } 2 \le q \le t \text{ and } k = 0, 1, 2 \}.$$

For a word $w \in \mathcal{L}$, we denote the length of w by |w|. Hence |w| = l(w) - 1 for all $w \in \mathcal{L}$. Suppose $w = \eta_1 \dots \eta_{|w|}$. We denote a subword $w[i, j] = \eta_i \dots \eta_j$ and we write w[i] = w[i, i] for $1 \le i \le j \le |w|$. A *block* β_i in w is the *i*-th maximal subword of consecutive identical elements. If w consists of p blocks, then we write $w = \beta_1 \dots \beta_p$. We use notation $w_\beta[i, j] = \beta_i \dots \beta_j$ and $w_\beta[i] = w_\beta[i, i]$ for $1 \le i \le j \le p$, and let $|w|_\beta$ be the number of blocks in w. For example, if $w = \alpha_0 0010$, then |w| = 5, $|w|_\beta = 4$, $\beta_1 = \alpha_0$, $\beta_2 = 00$, $\beta_3 = 1$ and $\beta_4 = 0$.

Next, we assign an explicit label to a vertex in G(t). In level two, we label a direct descendant of τ_0 and τ_1 by α_0 , a direct descendant of τ_1 and τ_2 by α_1 , and a direct descendant of τ_0 and τ_2 by α_2 . We then recursively label the vertices in G(t). For a vertex $u \in V(G(t))$ where $l(u) \ge 3$ and its bases are xand y such that l(x) > l(y), we label u by $w = \eta_1 \dots \eta_{l(u)-1} \in \mathcal{L}_{l(u)}$ where $\eta_j = x[j]$ for j < l(u) - 1 and

$$\eta_{l(u)-1} = \begin{cases} 0 & \text{ if } u \text{ is on the counter-clockwise side of } x, \\ 1 & \text{ if } u \text{ is on the clockwise side of } x. \end{cases}$$

An example of vertex labeling appears in Figure 4. For each $\epsilon \in \{0, 1\}$, we denote $\overline{\epsilon} = 1 - 0$, and $\overline{w} = \eta_1 \overline{\eta}_2 \dots \overline{\eta}_{|w|}$.

FIGURE 4. Direct descendant labeling examples when l(x) > l(y) and $l(x) \ge 2$ in G(t)

From here on, we may use the labels to represent the vertices. For a vertex u with l(u) > 2, the base of u with level l(u) - 1 is u[1, l(u) - 2] = u[1, |u| - 1]. For each pair of adjacent vertices u, v where $uv \notin E(G(1))$ and $1 \leq l(v) < l(u) < t$, the direct descendent of u and v in G(t) is uniquely determined. We define $u \oplus v = w$ to be the direct descendant of u and v. Thus $w = w[1, |w| - 1] \oplus v$ for some $v \in V(G(t))$ with l(v) < l(w) - 1. Moreover, for each vertex u with $l(u) \geq 2$, there is exactly one direct descendant on the clockwise and counter-clockwise of u in G(t). It implies that a vertex with level at least three has exactly one base on each side. Let A_0, A_1 and A_2 be a (τ_0, τ_1) -bundle, a (τ_1, τ_2) -bundle and a (τ_0, τ_2) -bundle respectively. We note that $\alpha_k \in V(A_k)$ for k = 0, 1, 2. For $t \geq 2$, let $G_2 = G_2(t)$ be the induced subgraph of G(t) such that $V(G_2) = \{\tau_0, \tau_1, \tau_2, \alpha_0, \alpha_1, \alpha_2\}$, i.e., the subgraph generated in the second step of G(t).

Now, we consider labeling in $G_{m,t}$ where m > 1. For a subgraph H of $G_{m,t}$ where $H \cong G(t)$, we inherit the label of G(t) to H with a superscript H to indicate the subgraph that such vertex is contained. For example, a vertex $w \in V(H)$ which is a copy of vertex $\alpha_0 01 \in V(G(t))$ is labeled $w = (\alpha_0 01)^H$. We note that τ_0, τ_1, τ_2 are in all subgraph that is isomorphic to G(t) of $G_{m,t}$. Thus we omit superscript for τ_0, τ_1, τ_2 , and let G_1 be a triangle $\tau_0 \tau_1 \tau_2$. Let G_2^H be an induced subgraph of $G_{m,t}$ such that its vertex set consists of τ_0, τ_1, τ_2 and their direct descendants in H, i.e., $V(G_2^H) = \{\tau_0, \tau_1, \tau_2, \alpha_0^H, \alpha_1^H, \alpha_2^H\}$.

The following lemma compute explicit bases of each vertex in G(t).

Lemma 6. [10] In G(t), let $w \in V(A_k)$ be such that $l(w) = n \ge 3$, and let $q = |\beta_{|w|_{\beta}}|$ for $k \in \{0, 1, 2\}$. If v is a base of w with l(v) < l(w) - 1, then

$$v = \begin{cases} \tau_j & \text{if } w = \alpha_k \epsilon^{n-2} \text{ and } j \equiv k+\epsilon \pmod{3} \text{ for some } \epsilon \in \{0,1\}, \\ w \left[1, n-q-2\right] & \text{if } |w|_\beta \ge 3. \end{cases}$$

Remark 7. In G(t), for a vertex $w = \alpha_k \epsilon_1 \dots \epsilon_n$ where n > 1, if $\epsilon_{n-1} \neq \epsilon_n$, then $w = w[1, n-1] \oplus w[1, n-2]$.

For a path *P* and distinct vertices $u, v \in V(P)$, we let uPv be a subpath of *P* from *u* to *v*.

In 2018, Jiang et. al. [10] gave a shortest path between each pair of vertices in a generalized Farey graph. Lemmas 8, 9 and 11 show that each pair of vertices in these lemmas has a unique geodesic path.

Lemma 8. In G(t), for a fixed $k \in \{0, 1, 2\}$, let $w \in A_k$ be such that l(w) = n where n is an even number that $2 \le n \le t$. If $w = \alpha_k(\epsilon \overline{\epsilon})^{\frac{n-2}{2}}$ where $\epsilon \in \{0, 1\}$, then $d(w, \alpha_k) = \frac{n-2}{2}$. Moreover, there is a unique geodesic path which is $w_n w_{n-2} \dots w_2$ where $w_i = \alpha_k(\epsilon \overline{\epsilon})^{\frac{i-2}{2}}$ for a positive even number $i \le n$.

Proof. Let $w_i = \alpha_k (\epsilon \overline{\epsilon})^{\frac{i-2}{2}}$ and $u_i = \alpha_k (\epsilon \overline{\epsilon})^{\frac{i-4}{2}} \epsilon$ for a positive even number $i \leq n$. It is obvious that $d(w_2, \alpha_k) = 0$, $d(w_4, \alpha_k) = 1$ and there is a unique geodesic (w_4, α_k) -path $w_4 w_2$. By Lemma 6, we have $w_i = u_i \oplus w_{i-2}$ for $i = 4, \ldots, n$. Suppose that $d(w_i, \alpha_k) = \frac{i-2}{2}$ with a unique geodesic (w_i, α_k) -path $w_i w_{i-2} \ldots w_2$ for $i = 2, 4, \ldots, n-2$.

Suppose that there exists a (w_n, α_k) -path P with length less than $d(w_{n-2}, \alpha_k) + 1$. Then $u_n \in V(P)$, $w_{n-2} \notin V(P)$ and $d(u_n, \alpha_k) < d(w_{n-2}, \alpha_k)$. Hence $w_{n-2}u_nP\alpha_k$ is a (w_{n-2}, α_k) -path of length $d(w_{n-2}, \alpha_k)$ contrary to the uniqueness of the geodesic (w_{n-2}, α_k) -path. Thus $d(w_n, \alpha_k) \ge d(w_{n-2}, \alpha_k) + 1 = \frac{n-2}{2}$. Since w_n and w_{n-2} are adjacent, it follows that $d(w_n, \alpha_k) = \frac{n-2}{2}$.

Next we show that the geodesic (w_n, α_k) -path is unique. Let Q be a path $w_n w_{n-2} \dots w_2$. Suppose there exists a geodesic (w_n, α_k) -path $Q' \neq Q$. We have $u_n \in V(Q')$, $w_{n-2} \notin V(Q')$ and $|E(u_n Q' \alpha_k)| =$ $d(u_n, \alpha_k) = d(w_{n-2}, \alpha_k) = |E(w_{n-2}Q\alpha_k)|$. By Lemma 6, we have $u_i = w_{i-2} \oplus u_{i-2}$ for $i = 4, 6 \dots, n$. Since $w_{n-2} \notin V(Q')$, it follows that $u_n u_{n-2} \in E(Q')$.

Let $i_0 = \max\{i : w_i \in V(Q')\}$. We note that $i_0 \ge 2$.

Claim
$$d(u_n, u_{i_0+2}) = \frac{n-i_0-2}{2}$$
.

It is obvious that $d(u_{i_0+4}, u_{i_0+2}) = 1$. Suppose that $d(u_i, u_{i_0+2}) = \frac{i-i_0-2}{2}$ for i = 6, ..., n-2. We have $d(u_n, u_{i_0+2}) \le d(u_{n-2}, u_{i_0+2}) + d(u_n, u_{n-2}) = \frac{n-2-i_0-2}{2} + 1 = \frac{n-i_0-2}{2}$. If there exists a (u_n, u_{i_0+2}) -path P of length less than $\frac{n-i_0-2}{2}$, then $u_{n-2} \notin V(P)$. Hence $w_{n-2} \in V(P)$ and $|E(w_{n-2}Pu_{i_0+2})| \le \frac{n-i_0-6}{2}$. Since u_{n-2} and w_{n-2} are adjacent, it follows that $|E(u_{n-2}w_{n-2}Pu_{i_0+2})| = \frac{n-i_0-4}{2} < d(u_{n-2}, u_{i_0+2})$, a contradiction. Therefore $d(u_n, u_{i_0+2}) = \frac{n-i_0-2}{2}$ as claimed.

By claim, we have $|E(Q')| \ge |u_n Q' u_{i_0+2}| + d(w_{i_0}, \alpha_k) + |E(u_{i_0+2}w_{i_0})| \ge \frac{n-i_0+2}{2} + \frac{i_0-2}{2} + 1 = \frac{n+2}{2}$, a contradiction. Therefore the geodesic (w_n, α_k) -path is unique and it is $w_n w_{n-2} \dots w_2$ with $d(w_n, \alpha_k) = \frac{n-2}{2}$.

Lemma 9. In G(t), for a fixed $k \in \{0, 1, 2\}$, let $w \in A_k$ be such that l(w) = n where n is odd and $3 \le n \le t$. If $w = \alpha_k(\epsilon \overline{\epsilon})^{\frac{n-3}{2}} \epsilon$, then $d(w, \tau_j) = \frac{n-1}{2}$ when $j \equiv k + \epsilon \pmod{3}$. Moreover, there is a unique geodesic path which is $w_n w_{n-2} \dots w_3 \tau_j$ where $w_i = \alpha_k(\epsilon \overline{\epsilon})^{\frac{i-3}{2}} \epsilon$ for a positive odd number $i = 3, 5, \dots, n$.

Proof. Similar to Proposition 8.

Lemma 10. In G(t), for $k \in \{0, 1, 2\}$, let $w \in A_k$ be such that $w = \alpha_k(\epsilon \overline{\epsilon})^{\frac{n-3}{2}} \epsilon$ for some odd n where $3 \le n \le t$. If $j_1 \equiv k + \epsilon \pmod{3}$ and $j_1 \ne j_2$, then $d(w, \tau_{j_1}) + 1 = d(w, \tau_{j_2})$ when $j_1 \equiv k + \epsilon \pmod{3}$ and $j_1 \ne j_2$.

Proof. Since $w[1,2] = \alpha_k \epsilon$, the vertex w is contained in bundle $B_{(\alpha_k,\tau_{j_1})}$. Let P be a geodesic (w,τ_{j_2}) -path. Since $\tau_{j_2} \notin B_{(\alpha_k,\tau_{j_1})}$, to exit $B_{(\alpha_k,\tau_{j_1})}$, the path P must contain α_k or τ_{j_1} . Suppose to the contrary that $d(w,\tau_{j_1}) \ge d(w,\tau_{j_2})$. We have $\tau_{j_1} \notin V(P)$. Hence $\alpha_k \in V(P)$ and $d(w,\tau_{j_1}) \ge d(w,\tau_{j_2}) = 1 + d(w,\alpha_k)$. Combining paths $wP\alpha_k$ and $\alpha_k\tau_{j_1}$ yields a geodesic (w,τ_{j_1}) -path that is different from the one obtained by Proposition 9. This contradicts the uniqueness of the geodesic (w,τ_{j_1}) -path. Hence $d(w,\tau_{j_1}) < d(w,\tau_{j_2})$. Since τ_{j_1} and τ_{j_2} are adjacent, it follows that $d(w,\tau_{j_1}) + 1 = d(w,\tau_{j_2})$.

Lemma 11. In G(t), for a fixed $k \in \{0, 1, 2\}$, let $w \in A_k$ be such that l(w) = n where n is odd and $3 \le n \le t$. If there exists an odd number $i_0 \le n$ such that $w = w[1, i_0](\epsilon \overline{\epsilon})^{\frac{n-i_0-1}{2}}$, then $d(w, w[1, i_0]) = \frac{n-i_0-1}{2}$ and the $(w, w[1, i_0])$ -geodesic path is unique.

Proof. The proof is similar to Proposition 8.

Lemma 12. For m > 1 and $t \ge 1$, let $H \cong G(t)$ be a subgraph of $G_{m,t}$. Let $u, v \in V(H)$. If P is a unique geodesic (u, v)-path in H, then P is a unique geodesic (u, v)-path in $G_{m,t}$.

Proof. Let $x, y \in V(H)$ be such that $B_{(x,y)}^H$ is the minimal bundle in H containing both u and v. By Remark 3, we have $P \subset B_{(x,y)}^H$. Let us recall that $B_{(x,y)}^H$ contains all the vertices having u or v as their descendant in $G_{m,t}$ with level at least $\max\{l(x), l(y)\}$. Suppose that there is a geodesic (u, v)-path $Q = u_1 \dots u_n$ in $G_{m,t}$ where $u_1 = u, u_n = v$ and $P \neq Q$. Thus, there exists a maximum $i_0 \in \{2, \dots, n-1\}$ such that $u_{i_0} \notin V(H)$. We have that u_{i_0+1} is a base of u_{i_0} , and $u_{i_0+1} \in V(H)$. Let $w \neq u_{i_0+1}$ be another base of u_{i_0} . We note that u and v are not descendants of u_{i_0} . In order to reach u and v, the path Qhas to go back to a vertex in H which means Q has to go through w. Since w and u_{i_0+1} are adjacent and $|E(wQu_{i_0+1})| \geq 2$, replace the wQu_{i_0+1} path in Q with an edge wu_{i_0+1} yields a shorter (u, v)-path, contradiction. Therefore, if P is a geodesic (u, v)-path in H, then it is also a geodesic path in $G_{m,t}$. \Box

By Lemma 12, the paths given in Lemmas 8-11 are geodesic in $G_{m,t}$.

4. RAINBOW CONNECTION NUMBER ON A GENERALIZED SMALL-WORLD FAREY GRAPH

We investigate the rainbow connection number of G(t) for $t \ge 1$, and later extend to $G_{m,t}$ for $m \ge 1$ at the end of this section. In G(t), we give an ordering to the edges in the same level through the ordering of vertices in A_0 . Let $\tau_0 < \alpha_0 < \tau_1$. The other vertices are ordered by the following process. In this ordering, we relabel a vertex labeled by w as $w\epsilon$, and let $0 < \epsilon < 1$. Then we order vertices by lexicographical ordering on the new labeling. For example, $\alpha_0 0\epsilon < \alpha_0 \epsilon < \alpha_0 1\epsilon$, $\alpha_0 0\epsilon < \alpha_0 01\epsilon < \alpha_0 \epsilon$. Outside this ordering, we still use the original labeling in the remaining of the paper. By this ordering, for any $x, y, z \in V(G(t))$ where x is a direct descendant of y and z such that y < z, we have that y < x < z. Let $u_1, u_2, v_1, v_2 \in V(A_0)$. For each pair of edges u_1v_1 and u_2v_2 that appear in the same level, where $u_i < v_i$ for i = 1, 2, we say that $u_1v_1 \prec u_2v_2$ if and only if $u_1 < u_2$.

FIGURE 5. The coloring of G_2 -subgraph of $G_2(t)$

In G(t), we define isomorphism functions $f_1 : B_{(\tau_0,\tau_1)} \to B_{(\tau_1,\tau_2)}, f_2 : B_{(\alpha_0,\tau_1)} \to B_{(\alpha_2,\tau_0)}$ and $f_3 : B_{(\alpha_1,\tau_1)} \to B_{(\alpha_2,\tau_2)}$ by

$$f_1(u) = \begin{cases} \tau_1 & \text{if } u = \tau_1, \\ \tau_2 & \text{if } u = \tau_0 \\ \alpha_1 \overline{w} & \text{if } u = \alpha_0 w \in B_{(\tau_0, \tau_1)} \text{ for } w \in \{0, 1\}^*, \end{cases}$$

$$f_{2}(u) = \begin{cases} \tau_{0} & \text{if } u = \tau_{1} \\ \alpha_{2}w & \text{if } u = \alpha_{0}w \in B_{(\alpha_{0},\tau_{1})} \text{ for } w \in \{0,1\}^{*} \end{cases}$$

and

$$f_3(u) = \begin{cases} \tau_2 & \text{if } u = \tau_1 \\ \alpha_2 w & \text{if } u = \alpha_1 w \in B_{(\alpha_1, \tau_1)} \text{ for } w \in \{0, 1\}^*. \end{cases}$$

For $uv \in E(G(t))$ and i = 1, 2, 3, let $f_i(uv) = f_i(u)f_i(v)$ where applicable. We note that f_i also preserves the level of the vertices and edges for i = 1, 2, 3. We order the edges in level $i \ge 2$ in A_0 as an increasing sequence $\{e_j^i\}_{j=0}^{2^{i-1}-1}$. The following statements are true:

- $e_0^i = (\tau_0, \alpha_0 0^{i-2})$,
- for $j = 0, ..., 2^{i-2} 1$, if an endpoint of e_j^i is in $\{\tau_0, \tau_1\}$, such endpoint is τ_0 ,
- for $j = 2^{i-2}, \ldots, 2^{i-1} 1$, if an endpoint of e_j^i is in $\{\tau_0, \tau_1\}$, such endpoint is τ_1 .

We color $G_2(t)$ according to the parity of *t* as in Figures 5a and 5b.

Let $h_t : E(G(t)) \to \{b_1, \dots, b_t\}$ be an edge-coloring such that $h_t|_{G_2}$ is the coloring appeared in 5a and 5b. Now, we color the edges in A_0 that are not contained in G_2 by

$$h_t(e_j^i) = \begin{cases} b_{i-1} & \text{where } j \equiv 0,3 \pmod{4}, \\ b_i & \text{where } j \equiv 1,2 \pmod{4}. \end{cases}$$

Next, we color the edges in A_1 . For any $e \in E(A_1) \setminus E(G_2)$, we define

$$h_t(e) = \begin{cases} h_t(f_1^{-1}(e)) + 1 & \text{if } h_t(f_1^{-1}(e)) \text{ and } t \text{ have different parities,} \\ h_t(f_1^{-1}(e)) - 1 & \text{if } h_t(f_1^{-1}(e)) \text{ and } t \text{ have the same parity.} \end{cases}$$

Next, we color $e \in E(A_2) \setminus E(G_2)$ by

$$h_t(e) = \begin{cases} h_t(f_2^{-1}(e)) & \text{ for } e \in B_{(\alpha_2, \tau_0)}, \\ h_t(f_3^{-1}(e)) & \text{ for } e \in B_{(\alpha_2, \tau_2)}. \end{cases}$$

By the definition of h_t , for $t \ge 3$ and $i \ge 3$, the first edge in level i is $(\tau_0, \alpha_0 0^{i-2})$. We color the edges in A_0 periodically by colors b_{i-1}, b_i, b_i and b_{i-1} starting at $(\tau_0, \alpha_0 0^{i-2})$. Then, we use the isomorphism functions to color the edges in A_1 and A_2 . We say that an edge e is *odd* if $h_t(e) = b_i$ for some odd number i, and e is *even* if i is even. For an edge e with level at least three, if $e \in E(A_0)$, then the parities of the indices of the colors $h_t(e)$ and $h_t(f_1(e))$ are different. If $e \in E(B_{(\alpha_0,\tau_1)}) \cup E(B_{(\alpha_1,\tau_1)})$, then the parity of $h_t(e)$ and $h_t(f_j(e))$ is the same for j = 2, 3. For any distinct $u, v \in V(G(t))$, we say that a (u, v)-path $u_1 \dots u_n$ where $u_1 = u$ and $u_n = v$ is an *odd-colored path* if its edges are all odd and $l(u_i) > l(u_{i+1})$ for $i \le n - 1$. Similarly, a (u, v)-path $u_1 \dots u_n$ where $u_1 = u$ and $u_n = v$ is an *even-colored path* if its edges are all even and $l(u_i) > l(u_{i+1})$ for $i \le n - 1$.

Lemma 13. In $(G(t), h_t)$, let $x, y \in V(A_0)$ where $l(x) \ge 3$, $l(y) \ge 2$ and y is a base of x. Then l(x) = l(y) + 1 if and only if $h_t(xy) = b_{l(x)}$.

Proof. Let $w, z \in V(A_0)$ be the bases of y where w < z, and let w' and z' be the direct descendants of w, y and y, z respectively. It follows that w < w' < y < z' < z. The edges in level l(y) + 1 with both endpoints in $\{y, z, w, z', w'\}$ consists of ww', w'y, yz', z'z ordered increasingly. Since y is a base of x and l(x) = l(y) + 1, it follows that $xy \in \{w'y, z'y\}$. If w'w is the first edge of level l(y) + 1, then $h_t(w'w) = b_{l(y)} = h_t(z'z)$ and $h_t(w'y) = b_{l(y)+1} = h_t(w'z)$. Since each vertex in A_0 with level l(y) gives four corresponding edges in level l(y) + 1 in such ordering. The lemma is true by the periodicity of the coloring h_t in A_0 .

Lemma 14 and 15 gives an existence of a rainbow path of the same parity of a vertex to one of its origins which later use to construct a rainbow path in G(t) in Theorem 16.

Lemma 14. Let $x, y, z \in V(G(t))$ with an edge-coloring h_t be such that $x = y \oplus z$. There exists a rainbow (u, u')-path with all edges of the same parity where u' is the only vertex in $\{x, y, z\}$ for all $u \in B_{(y,z)}$.

Proof. Consider A_0 . It can be easily verified when $u \in V(G_2)$. Suppose $u \notin V(G_2)$. By the definition of h_t , each $u \in V(A_0) \setminus V(G_2)$ is incident to one odd and one even edge connecting u to its bases. Hence, we are able to construct a path by consecutively choosing either odd or even edges to a base of a new vertex in the current path until it reaches x, y or z. Let $P = u_1 \dots u_n$ be the constructed path. By the construction, we have $l(u_i) > l(u_{i+1})$ for i < n. Thus, the path P is either an odd-colored path or an even-colored path where $u_n = u'$ is the only vertex in $\{x, y, z\}$. We note that P does not contain any edge in G_2 .

Next, we show that *P* is a rainbow path. For a fixed $i_0 \le n-2$, we have $h_t(u_{i_0}u_{i_0+1}) \in \{b_{l(u_{i_0})}, b_{l(u_{i_0})-1}\}$ and $h_t(u_{i_0+1}u_{i_0+2}) \in \{b_{l(u_{i_0+1})}, b_{l(u_{i_0+1})-1}\}$. If $h_t(u_{i_0}u_{i_0+1}) \ne h_t(u_{i_0+1}u_{i_0+2})$, then we are done. Suppose to the contrary that $h_t(u_{i_0}u_{i_0+1}) = h_t(u_{i_0+1}u_{i_0+2})$. We have $h_t(u_{i_0}u_{i_0+1}) = h_t(u_{i_0+1}u_{i_0+2}) = b_{l(u_{i_0})-1} =$ $b_{l(u_{i_0}+1)}$. Since $h_t(u_{i_0}u_{i_0+1}) = b_{l(u_{i_0})-1}$, it follows that $l(u_{i_0+1}) < l(u_{i_0}) - 1$ by Lemma 13. Hence $b_{l(u_{i_0+1})} \ne b_{l(u_{i_0})-1}$, a contradiction. Therefore *P* is a rainbow path.

We note that $h_t|_{A_1} = h_t \circ f_1|_{A_0}$ switches the parity of the pre-image edge in A_0 and its image in A_1 . Moreover $h_t|_{B_{(\alpha_2,\tau_0)}} = h_t \circ f_2|_{B_{(\alpha_0,\tau_1)}}$ preserves the parity of the pre-image edge in A_0 and its image in A_2 , while $h_t|_{B_{(\alpha_2,\tau_2)}} = h_t \circ f_3|_{B_{(\alpha_1,\tau_1)}}$ preserves the parity of the pre-image edge in A_1 and its image in A_2 .

If $x, y, z \in V(A_1)$, then $f_1^{-1}(u), f_1^{-1}(x), f_1^{-1}(y), f_1^{-1}(z) \in V(A_0)$ where $f_1^{-1}(x) = f_1^{-1}(y) \oplus f_1^{-1}(z)$ and $f_1^{-1}(u) \in B_{(f_1^{-1}(y), f^{-1}(z))}$. Hence, there exists an odd-colored or even-colored rainbow $(f_1^{-1}(u), v)$ -path P_1 where v is the only vertex contained in $\{f_1^{-1}(x), f_1^{-1}(y), f_1^{-1}(z)\}$. Thus $h_t(f_1(P_1))$ is an odd-colored or even-colored rainbow (u, u')-path where $u' = f_1(v)$ is the only vertex in $\{x, y, z\}$. Similarly, we have an even-colored or odd-colored rainbow (u, u')-path for $u \in V(A_2)$ by considering the preimages of f_2 and f_3 .

Lemma 15 is a direct result of Lemma 14.

Lemma 15. Let $y, z \in V(G(t))$ with an edge-coloring h_t be such that their direct descendant is not in G_2 . There exists a rainbow (u, u')-path with all edges of the same parity where u' is the only vertex in $\{y, z\}$ for all $u \in B_{(y,z)}$.

For any $u \in V(A_i) \setminus V(G_2)$ and $v \in V(A_j) \setminus V(G_2)$, by Lemma 14, there exist an odd-colored rainbow (u, u')-path and an even-colored rainbow (v, v')-path where u' and v' are the only vertices in $V(G_2)$. Table 1 presents a rainbow (u, v)-path for all non-adjacent $u, v \in V(G_2)$. These paths are used to connect rainbow paths between A_i and A_j for $i \neq j$. We note that any pair of $u, v \in V(G_2)$ that is not presented in Table 1 is adjacent and we are able to use an edge uv to connect paths between A_i and A_j .

13	of	19
----	----	----

u'	v'	(u', v')-path	list of colors when	list of colors when
			t is even	t is odd
α_0	α_1	$\alpha_0 \tau_1 \alpha_1$	b_1b_2	b_2b_3
α_0	α_2	$\alpha_0 au_0 lpha_2$	b_1b_2	b_1b_2
α_0	$ au_2$	$\alpha_0 au_1 au_2$	b_1b_2	b_2b_1
α_1	α_2	$\alpha_1 \tau_2 \alpha_2$	b_2b_1	b_1b_3
α_1	$ au_0$	$\alpha_1 \tau_1 \tau_0$	b_2b_1	b_3b_1
α_2	$ au_0$	$\alpha_2 \tau_0$	b_2	b_2
		$\alpha_2 au_2 au_0$	b_1b_2	b_3b_1

TABLE 1. List of a rainbow path in G_2

(1 ^{<i>st</i>} -bundle, parity of P_0)	$(2^{nd}$ -bundle, parity of P_1)
(A_0, odd)	$(A_1, \operatorname{even})$
(A_0, odd)	$(A_2, \operatorname{even})$
$(A_1, \operatorname{even})$	(A_2, odd)

TABLE 3. Parity of the chosen same-parity path when t is odd

(1 ^{<i>st</i>} -bundle, parity of P_0)	$(2^{nd}$ -bundle, parity of P_1)
$(A_0, \operatorname{even})$	(A_1, odd)
(A_0, odd)	$(B_{(\alpha_2, au_0)}, \operatorname{even})$
$(A_0, \operatorname{even})$	$(B_{(\alpha_2,\tau_2)}, \operatorname{odd})$
(A_1, odd)	$(B_{(\alpha_2, au_0)}, \operatorname{even})$
$(A_1, \operatorname{even})$	$(B_{(\alpha_2,\tau_2)}, \operatorname{odd})$

Theorem 16. For a positive integer t, a graph $(G(t), h_t)$ is rainbow connected, and rc(G(t)) = t.

Proof. By Theorem 5, we have $rc(G(t)) \ge t$. Next, we show that a graph G(t) with coloring h_t is rainbow connected. This can easily be verified when t = 1, 2. Suppose $t \ge 3$. Let u and v be vertices in V(G(t)).

Case 1. $u \in V(A_i)$ and $v \in V(A_j)$ where $0 \le i < j \le 2$.

If u and v are non-adjacent vertices in $V(G_2)$, then we use the rainbow path in Table 1. Consider $u \in V(A_i) \setminus V(G_2)$ and $v \in V(A_j) \setminus V(G_2)$ for some $0 < i < j \le 2$. By Lemma 14, there exist a sameparity-colored rainbow (u, u')-path P_0 and a same-parity-colored rainbow (v, v')-path P_1 when u', v'are the only vertices in G_2 . The parities of P_0 and P_1 depend on the bundles A_j and A_j as appeared in

v	(bundle, b_{i_0}, b_{j_0})	(bundle, b_{i_0}, b_{j_0})
	when t is even	when t is odd
α_0	(A_0, b_4, b_3)	(A_0, b_4, b_3)
α_1	(A_1, b_4, b_3)	(A_1, b_2, b_5)
α_2	$(B_{(\alpha_2,\tau_0)},b_4,b_3)$	$(B_{(\alpha_2,\tau_0)},b_4,b_3)$
	$(B_{(\alpha_2,\tau_2)},b_4,b_3)$	$(B_{(\alpha_2, \tau_2)}, b_2, b_5)$
$ au_0$	(A_0, b_2, b_3)	(A_0, b_2, b_3)
	(A_2, b_2, b_3)	(A_2, b_2, b_3)
$ au_1$	(A_0, b_2, b_3)	(A_0, b_2, b_3)
	(A_1, b_4, b_1)	(A_1, b_2, b_3)
$ au_2$	(A_1, b_4, b_1)	(A_1, b_2, b_3)
	(A_2, b_4, b_1)	(A_2, b_2, b_3)

TABLE 4. Minimum even color b_{i_0} and odd color b_{j_0} that can appear in an even-colored (u, v)-path or an odd-colored (u, v)-path where v is the only vertex in $V(G_2(t))$

Tables 2 and 3. We note that the parity of colors of P_0 and P_1 are different. Tables 4 gives the smallest color that possibly appears in P_0 and P_1 . Since there exists a path in Table 1 with colors less than those appear in P_0 and P_1 , by combining the results in Tables 1 and 4, we are able to connect P_0 and $\overline{P_1}$ via the path in Table 1 if u' and v' are not adjacent. The combined path is a rainbow path. If either $u \in V(G_2)$ or $v \in V(G_2)$, then we use the same argument in which either P_0 or P_1 is trivial.

Case 2. $u, v \in V(A_i)$ for some i = 0, 1, 2.

Let $x, y \in V(G(t))$ be such that $B_{(x,y)} \subseteq A_i$ is the minimal bundle containing u and v and let z be the direct descendant of x and y.

Case 2.1. $B_{(x,y)} \neq A_i$ for all $0 \le i \le 2$.

If $\{x, y\} \neq \{\tau_i, \tau_j\}$ for some $0 \le i < j \le 2$, then there exists an odd-colored rainbow (u, u')-path P_0 and an even-colored rainbow (v, v')-path P_1 by Lemma 15. We note that changing the color of xy does not affect the result in Lemma 15. If P_0 and P_1 intersect, says at w, then $uP_0w\overline{P}_1v$ is a rainbow (u, v)-path. Now, we suppose that P_0 and P_1 do not intersect. Hence $u', v' \in \{x, y\}$ and $u' \neq v'$. Let $P_0 = u_1 \dots u_n$ and $P_1 = v_1 \dots v_s$ where $u_1 = u, u_n = u', v_1 = v, v_s = v'$ and u', v' are the only vertices in $\{x, y\}$. Suppose u' = x and v' = y. If $h_t(u'v') \notin h_t(P_0) \cup h_t(P_1)$, then we are done. Suppose to the contrary that $h_t(u'v') \in h_t(P_0) \cup h_t(P_1)$. The only possible edge with color $h_t(xy) = h_t(xz)$ and $xz \in E(P_0)$. It follows that u' = x. Since P_0 and P_1 do not intersect, the vertex z is not in P_1 and v' = y. Hence $v \in V(B_{(y,z)})$ and $u \in V(B_{(x,z)})$. Let P'_0 and P'_1 be an even-colored (u, u'')-path and an

odd-colored (v, v'')-path where u'' and v'' are the only vertices in $\{x, y\}$. If P'_0 and P'_1 intersect, then we also have a rainbow (u, v)-path. Suppose that P'_0 and P'_1 do not intersect. So $u'' \neq v''$. If u' = v'' and v' = u'', then P'_0 and P'_1 contain z which is not possible. Thus u'' = u' and v'' = v'. Since the parity of the colors in P'_0 and P'_1 are different, we have that $xz \notin E(P'_0)$. Hence $P'_0\overline{P'_1}$ is a rainbow (u, v)-path.

Case 2.2. $B_{(x,y)} = A_i$ for some $0 \le i \le 2$.

If $B_{(x,y)} = A_i$, then there exists an odd-colored rainbow (u, u')-path P_0 and an even-colored rainbow (v, v')-path P_1 by where u', v' are the only vertices in $\{x, y, z\}$ by Lemma 14. The similar argument in the case $B_{(x,y)} \neq A_i$ also leads a rainbow (u, v)-path in case $B_{(x,y)} = A_i$. Thus, there is a rainbow (u, v)-path.

Therefore $(G(t), h_t)$ is rainbow connected and hence rc(G(t)) = t.

Corollary 17. For a positive integer t, we have $rc(\mathcal{F}(t)) = diam(\mathcal{F}) = t$.

Next, we give a coloring that leads to a rainbow connected $G_{m,t}$. Let (H, h_t) be a subgraph of $G_{m,t}$ where $H \cong G(t)$. For each $e \in E(G_{m,t})$, let e^H be the copy of e in H. We define an edge-coloring $c_t : E(G_{m,t}) \to \{b_1, \ldots, b_{t+1}\}$ by

$$c_t(e) = \begin{cases} b_{t+1} & \text{if } e = \tau_i \tau_j \text{ for some } 0 \le i < j \le 2\\ b_2 & \text{if } e^H = (\alpha_0 \tau_1)^H \text{ and } t \text{ is even,} \\ b_1 & \text{if } e^H = (\alpha_1 \tau_1)^H \text{ and } t \text{ is even,} \\ b_1 & \text{if } e^H = (\alpha_2 \tau_2)^H \text{ and } t \text{ is odd,} \\ h_t(e^H) & \text{otherwise,} \end{cases}$$

for each $e \in E(G_{m,t})$. For a subgraph $H' \cong G(t)$ of $G_{m,t}$, we note that $c_t|_{H'}(e) = c_t|_H(e^H)$ for all $e \in E(H')$ where $l(e) \ge 3$.

By Theorem 16, we have $rc(G_{1,t}) = t$ for $t \ge 1$. Since $G_{m,1}$ is a triangle, it follows that $rc(G_{m,1}) = diam(G_{m,1}) = 1$. In Theorem 18, we show that $rc(G_{m,t}) = t + 1$ for m > 1 and t > 1.

Theorem 18. *For* m > 1 *and* t > 1*, we have* $rc(G_{m,t}) = t + 1$ *.*

Proof. Consider $G_{m,t}$ with the coloring c_t . Let $u, v \in V(G_{m,t})$. If t = 2, then let $\alpha_i^{(1)}$ and $\alpha_i^{(2)}$ be distinct direct descendants of τ_j and τ_k for some $i, j, k \in \{0, 1, 2\}$. If $\{u, v\} \neq \{\alpha_i^{(1)}, \alpha_i^{(2)}\}$, then a rainbow path between each pair of non-adjacent vertices appears in Table 5. If $\{u, v\} = \{\alpha_i^{(1)}, \alpha_i^{(2)}\}$, then we consider $u = \alpha_i^{(1)}$ and $v = \alpha_i^{(2)}$. Finding an $(\alpha_i^{(1)}, \alpha_i^{(2)})$ -path is equivalent to finding a rainbow cycle in $G_{1,2}$ containing α_i . Since the color of the triangle $\tau_0 \tau_1 \tau_2$ is b_{t+1} and $h_t(\alpha_i \tau_j) \neq h_t(\alpha_i \tau_k)$ for $j \neq k$, a triangle $\alpha_i \tau_j \tau_k$ is a rainbow cycle. Thus there exists a rainbow $(\alpha_i^{(1)}, \alpha_i^{(2)})$ -path. It can be easily verified that there is no coloring of 2 colors giving a rainbow connected $G_{m,2}$. Hence $\operatorname{rc}(G_{m,2}) = \operatorname{diam}(G_{m,2}) + 1 = 3$.

FIGURE 6. The coloring of $G_{(2,2)}$ -subgraph of $G_{(2,t)}$

Suppose that t > 2. Let H_1 and H_2 be subgraphs of $G_{m,t}$ containing u and v, respectively, where $H_1 \cong G(t) \cong H_2$ ($H_1 = H_2$ if possible). If $H_1 = H_2$, then there exists a rainbow (u, v)-path by the same argument in Theorem 16 with an adjusted path in $G_2^{H_1}$ in Table 5. Now, we suppose that there is no H_1, H_2 where $H_1 = H_2$. Thus, there exist i_1, i_2 such that $u, v \in V(B_{(\tau_{i_1}, \tau_{i_2})})$ where $0 \le i_1 < i_2 \le 2$. By Lemma 15, there exist an odd-colored rainbow (u, u')-path P_1 and an even-colored rainbow (v, v')-path P_2 where u' and v' are the only vertices in $V(G_2^{H_1})$ and $V(G_2^{H_2})$, respectively. If P_1 and P_2 intersect, says at x, then the $uP_1x\overline{P_2}v$ is a rainbow (u, v)-path. Suppose P_1 and P_2 are disjoint. We have that $u' \in \{\tau_{i_1}, \tau_{i_2}, \alpha_{i_3}^{H_1}\}$ and $v' \in \{\tau_{i_1}, \tau_{i_2}, \alpha_{i_3}^{H_2}\}$ where $\alpha_{i_3}^{H_1}$ and $\alpha_{i_3}^{H_2}$ are the direct descendants of τ_{i_1} and τ_{i_2} in H_1 and H_2 , respectively. If $u', v' \in \{\tau_0, \tau_1, \tau_2\}$, then connecting P_1 and P_2 by u'v' gives a rainbow (u, v)-path as the color of the triangle $\tau_0\tau_1\tau_2$ is b_{t+1} . Consider case $u' = \alpha_{i_3}^{H_1}$ and $v' = \tau_i$ for some $i = i_1, i_2$. Without loss of generality, we suppose that $v' = \tau_{i_1}$. If $c_t(\alpha_{i_3}^{H_1}\tau_{i_1}) \in c_t(P_1) \cup c_t(P_2)$, then we connecting P_1 and P_2 by $\alpha_{i_3}^{H_1}\tau_{i_2}\tau_{i_1}$ which gives a rainbow (u, v)-path by Table 4 and Figure 6. If $u' = \alpha_{i_3}^{H_1}$, $v' = \alpha_{i_3}^{H_2}$ and $\alpha_{i_3}^{H_1} \neq \alpha_{i_3}^{H_2}$, then we connect P_1 and P_2 by $\alpha_{i_3}^{H_1}\tau_{i_1}\tau_{i_2}\alpha_{i_3}^{H_2}$. Thus $G_{m,t}$ is rainbow-connected and $t \le \operatorname{cr}(G_{m,t}) \le t + 1$.

Next, we show that $\operatorname{rc}(G_{m,t}) \neq t$. Let c be an edge-coloring giving a rainbow connected $G_{m,t}$. Suppose $|c(G_{m,t})| = t$. Consider an even t. Let $H_3, H_4 \subset G_{m,t}$ be such that $H_3 \cong G(t) \cong H_4$ and $\alpha_k^{H_3} \neq \alpha_k^{H_4}$ for all k = 0, 1, 2. So $V(H_3) \cap V(H_4) = \{\tau_0, \tau_1, \tau_2\}$. Let $x = \alpha_0(01)^{\frac{t-2}{2}}$ and $y = \alpha_1(10)^{\frac{t-2}{2}}$. By Lemmas 8 and 12, there are a unique geodesic $(x^{H_i}, \alpha_0^{H_i})$ -path $P_1^{H_i}$ and a unique geodesic $(y^{H_i}, \alpha_1^{H_i})$ -path $P_2^{H_i}$ in $G_{m,t}$ for i = 3, 4. Since $B_{(\tau_0, \tau_1)}$ is the minimal bundle containing both x^{H_3} and x^{H_4} , a geodesic (x^{H_3}, x^{H_4}) -path must contain τ_0 or τ_1 , and $d(x^{H_3}, x^{H_4}) = t$ by Lemmas 8 and 12. Since $P_1^{H_3}$ and $P_1^{H_4}$ are the unique geodesic paths of length $\frac{t}{2} - 1$, the rainbow (x^{H_3}, x^{H_4}) -path is $P_1^{H_3} \tau_0 \tau_1 \overline{P}_1^{H_4}$, or $P_1^{H_3} \tau_i \overline{P}_1^{H_4}$ for some i = 0, 1. Hence $c(P_1^{H_3}) \cap c(P_1^{H_4}) = \emptyset$. Thus, we need t - 2 colors to color $P_1^{H_3}$ and $P_1^{H_4}$. Now,

u'	v'	(u',v')-path	list of colors	lists of colors
			when t is even	when t is odd
α_0	α_1	$\alpha_0 \tau_1 \alpha_1$	b_2b_1	$b_{2}b_{3}$
α_0	α_2	$\alpha_0 \tau_0 \alpha_2$	b_1b_2	$b_1 b_2$
α_0	$ au_2$	$\alpha_0 \tau_0 \tau_2$	$b_1 b_{t+1}$	$b_1 b_{t+1}$
		$\alpha_0 au_1 au_2$		$b_2 b_{t+1}$
α_1	α_2	$\alpha_1 \tau_2 \alpha_2$	b_2b_1	
		$\alpha_1 \tau_2 \tau_0 \alpha_2$		$b_1b_{t+1}b_2$
		$\alpha_1 \tau_1 \tau_2 \alpha_2$		$b_3b_{t+1}b_1$
α_1	$ au_0$	$\alpha_1 au_1 au_0$	$b_1 b_{t+1}$	$b_{3}b_{t+1}$
α_2	$ au_0$	$\alpha_2 \tau_0$	b_2	b_2
		$\alpha_2 \tau_2 \tau_0$	$b_1 b_{t+1}$	$b_1 b_{t+1}$
α_0	$ au_1$	$\alpha_0 \tau_0 \tau_1$	$b_1 b_{t+1}$	$b_1 b_{t+1}$
α_2	$ au_1$	$\alpha_2 \tau_2 \tau_1$	$b_1 b_{t+1}$	$b_1 b_{t+1}$
		$\alpha_2 \tau_0 \tau_1$	$b_2 b_{t+1}$	$b_2 b_{t+1}$
$ au_i$	$ au_j$	$ au_i au_j$	b_{t+1}	b_{t+1}

TABLE 5. List of a rainbow path in $G_2(t)$ where $0 \le i < j \le 2$

we consider a rainbow (x^{H_i}, y^{H_4}) -path for i = 3, 4. By Lemmas 8 and 12, a path $P_1^{H_i}\tau_1\overline{P}_2^{H_4}$ is a unique geodesic (x^{H_i}, y^{H_4}) -path for i = 3, 4 with length t. Hence, we need at least t - 1 colors to color $P_1^{H_3}\tau_1$ and $P_1^{H_4}\tau_1$, and $c(\tau_1P_2^{H_4}) \cap (c(P_1^{H_3}\tau_1) \cup c(P_1^{H_4}\tau_1)) = \emptyset$. For t > 2, it follows that $|c(\tau_1P_2^{H_4})| \ge 2$. Thus $|c(G_{m,t})| \ge t + 1$, a contradiction. By using a similar argument along with Lemmas 9, 10 and 12, we have that $rc(G_{m,t}) \ne t$ when t is odd. Therefore $rc(G_{m,t}) = t + 1$ for m > 1 and t > 1.

5. CONCLUSION

In this work, we give a rainbow connection number of a generalized Farey graph $G_{m,t}$ for all $m \ge 1$ and $t \ge 1$. In case m = 1, the rainbow connection number of $G_{m,t}$ achieves the lowest possible value among the graph with the same diameter. We also show that $diam(G_{m,t}) = t$ for $m \ge 1$ and $t \ge 1$. Several unique geodesic paths in $G_{m,t}$ are also given.

Acknowledgement

This research has received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation under Grant [B05F640188].

AUTHORS' CONTRIBUTIONS

All authors have read and approved the final version of the manuscript.

The authors contributed to this work in the following ways:

- C. Darayon: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing - Original Draft, Visualization
- K. Nakprasit: Conceptualization, Methodology, Formal analysis, Investigation, Writing Original Draft, Supervision
- W. Tangjai: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing - Original Draft, Supervision, Project administration, Funding acquisition

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008), 85–98. https://doi.org/10.21136/mb.2008.133947.
- [2] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: a survey, Graphs Comb. 29 (2012), 1–38. https://doi.org/10. 1007/s00373-012-1243-2.
- [3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21 (2009), 330–347. https://doi.org/10.1007/s10878-009-9250-9.
- [4] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory. 71 (2011), 206–218. https://doi.org/10.1002/jgt.20643.
- [5] X. Deng, H. Li, G. Yan, Algorithm on rainbow connection for maximal outerplanar graphs, Theor. Comp. Sci. 651 (2016), 76–86. https://doi.org/10.1016/j.tcs.2016.08.020.
- [6] Z. Zhang, F. Comellas, Farey graphs as models for complex networks, Theor. Comp. Sci. 412 (2011), 865–875. https: //doi.org/10.1016/j.tcs.2010.11.036.
- [7] W. Jiang, Y. Zhai, P. Martin, Z. Zhao, Structure properties of generalized farey graphs based on dynamical systems for networks, Sci. Rep. 8 (2018), 12194. https://doi.org/10.1038/s41598-018-30712-2.
- [8] Z. Zhang, B. Wu, Y. Lin, Counting spanning trees in a small-world Farey graph, Physica A: Stat. Mech. Appl. 391 (2012), 3342–3349. https://doi.org/10.1016/j.physa.2012.01.039.
- [9] P. Vichitkunakorn, R. Maungchang, W. Tangjai, On Nordhaus-Gaddum type relations of δ-complement graphs, Heliyon.
 9 (2023), e16630. https://doi.org/10.1016/j.heliyon.2023.e16630.
- [10] W. Jiang, Y. Zhai, Z. Zhuang, P. Martin, Z. Zhao, J.B. Liu, Vertex labeling and routing for farey-type symmetricallystructured graphs, Symmetry. 10 (2018), 407. https://doi.org/10.3390/sym10090407.
- [11] C. Darayon, W. Tangjai, Rainbow vertex-connection number on a small-world Farey graph, AKCE Int. J. Graphs Comb. 19 (2022), 54–60. https://doi.org/10.1080/09728600.2022.2057827.
- [12] C.J. Colbourn, Farey series and maximal outerplanar graphs, SIAM. J. Algebraic Discr. Meth. 3 (1982), 187–189. https://doi.org/10.1137/0603018.

[13] Y. Zhai, Y. Wang, Label-based routing for a family of small-world Farey graphs, Sci. Rep. 6 (2016), 25621. https: //doi.org/10.1038/srep25621.