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Abstract. In this paper, we present a new technique for resolving the Neutrosophic Linear Fractional
Programming Problem (NLFPP) by converting it into a Neutrosophic Linear Programming Problem
(NLPP). An algorithm is proposed for the conversion. We used simplex method in neutrosophic
environment to generate the optimal solution. Numerical examples are illustrated.
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1. Introduction

Linear programming is a method for achieving the best outcome (such as maximum profit or
minimum cost) in a mathematical model represented by linear relationships. Linear fractional
programming (LFP) deals with that class of mathematical programming problems in which the
relations among the variables are linear: the constraint relations must be in linear form and the objective
function to be optimized must be a ratio of two linear functions. Nowadays linear fractional criterion
is frequently encountered in business and economics such as: debt-to-equity ratio[Min], return on
investment[Max], Risk asset to Capital[Min], Actual capital to required capital[Max] etc. So, the
importance of LFP problems is evident.

Linear Fractional Programming Problem was first introduced by Charnes and Cooper [3] and
subsequently developed by Bitrand and Navaes [2], Hasan and Acharjee [6]. Abdel-Baset, Hezam
and Smarandache [1] introduced neutrosophy which is the study of neutralities as an extension of
dialectics. Neutrosophic is the derivative of neutrosophy and it includes neutrosophic set, neutrosophic
probability, neutrosophic statistics and neutrosophic logic.
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Neutrosophic theory applied in many branches of science, in order to solve problems related
to indeterminacy. Although intuitionistic fuzzy sets can only handle incomplete information not
indeterminate, the neutrosophic set can handle both incomplete and indeterminate information.
Neutrosophic sets are characterized by three independent degrees namely truth membership degree
(T), indeterminacy-membership degree (I), and falsity membership degree (F), where T, I and F are
standard or non-standard subsets of ]0−, 1+[. The decision makers in neutrosophic set want to increase
the degree of truth-membership and decrease the degree of indeterminacy and falsity membership.

In this paper, we develop a technique to solve Neutrosophic Linear Fractional Programming Problem
by converting it into a Neutrosophic Linear Programming Problem. The rest of the paper is structured
as follows; In section 2, preliminaries are given. In section 3, standard form of NLPP and NLFPP
are given. In section 4, conversion procedure is explained in detail. In section 5, algorithm is given.
Numerical examples are included in section 6. Finally conclusion is given in section 7.

2. Preliminaries

In this section we recall some definitions and results, which are necessary for our discussion.

Definition 2.1. Single Valued Triangular Neutrosophic Number (SVTNN) In the following ali, b
m
i , c

u
i

(i = 1, 2, ..) are real numbers. A SVTNN is defined by ãn =
{(
al1, b

m
1 , c

u
1

)
; ta, ia, ωa

}
(refer figure 1)

whose three membership functions for the truth, indeterminacy, and a falsity of x are given by

Figure 1. ãn =
{(
al1, b

m
1 , c

u
1

)
; ta, ia, ωa

} SVTNN

tãn (x) =



(
x− al1

)
ta

bm1 − al1
(al1 ≤ x < bm1 )

ta (x = bm1 )

(cu1 − x) ta
cu1 − bm1

(bm1 ≤ x < cu1)

0 Otherwise,
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iãn (x) =



(bm1 − x) ia
bm1 − al1

(
al1 ≤ x < bm1

)
ia (x = bm1 )

(x− cu1) ia
cu1 − bm1

(bm1 ≤ x < cu1)

1 Otherwise,

ωãn (x) =



(bm1 − x)ωa

bm1 − al1

(
al1 ≤ x < bm1

)
ωa (x = bm1 )

(x− cu1)ωa

cu1 − bm1
(bm1 ≤ x < cu1)

1 Otherwise,

where 0 ≤ tãn (x) + iãn (x) + ωãn (x) ≤ 3, x ∈ ãn. Additionally, when al1 > 0, ãn is called a positive
SVTNN. Similarly, when al1 < 0, ãn becomes a negative SVTNN.

Definition 2.2. Let ãnand b̃n be two SVTNN’s and γ 6= 0. Here ãn =
{(
al1, b

m
1 , c

u
1

)
; ta, ia, ωa

}
and

b̃n =
{(
al2, b

m
2 , c

u
2

)
; tb, ib, ωb

}
. Then

(a) Addition

ãn + b̃n = {
(
al1 + al2, b

m
1 + bm2 , c

u
1 + cu2

)
; ta ∧ tb, ia ∨ ib, ωa ∨ ωb}

(b) Subtraction

ãn − b̃n = {
(
al1 − cu2 , bm1 − bm2 , cu1 − al2

)
; ta ∧ tb, ia ∨ ib, ωa ∨ ωb}

(c) Multiplication

ãn · b̃n

= {
(
Min

(
al1a

l
2, a

l
1c

u
2 , c

u
1a

l
2, c

u
1c

u
2

)
, bm1 b

m
2 , Max

(
al1a

l
2, a

l
1c

u
2 , c

u
1a

l
2, c

u
1c

u
2

))
; ta ∧ tb, ia ∨ ib, ωa ∨ ωb}

(d) Division

ãn

b̃n
=

{(
Min

(
al1
al2
,
al1
cu2
,
cu1
al2
,
cu1
cu2

)
,
bm1
bm2
,Max

(
al1
al2
,
al1
cu2
,
cu1
al2
,
cu1
cu2

))
; ta ∧ tb, ia ∨ ib, ωa ∨ ωb

}
(e) Scalar Multiplication

γãn =


{(
γal1, γb

m
1 , γc

u
1

)
; ta, ia, ωa

}
, (γ > 0){(

γcu1 , γb
m
1 , γa

l
1

)
; ta, ia, ωa

}
, (γ < 0) .
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3. Mathematical Form of NLPP and NLFPP

The standard form of the NLPP is

Max(or)Min z̃(x̃) = c̃ix̃i + α̃ ∀ i = 1, 2, . . . , n

subject to

Ãjix̃i ≤ b̃j ∀ j = 1, 2, . . . ,m

and x̃i ≥ {(0, 0, 0) ; 1, 0, 0}

and that of an NLFPP is

Max(or)Min z̃(x̃) =
c̃ix̃i + α̃

d̃ix̃i + β̃
∀ i = 1, 2, . . . , n (1)

subject to

Ãjix̃i ≤ b̃j ∀ j = 1, 2, . . . ,m (2)

and x̃i ≥ {(0, 0, 0) ; 1, 0, 0}

where i = 1, 2, . . . , n and j = 1, 2, . . . ,m; x̃i, c̃i and d̃i ∈ Rn; b̃j ∈ Rm; Ãji is am× n-SVTNN coefficient
matrix; α̃ and β̃ are neutrosophic constants.

4. Conversion From NLFPP to NLPP

In this conversion we are going to deal with two cases, (i) is in objective function (1) we going to
consider α̃ is positive and β̃ is negative and in case (ii) we going to consider both α̃ and β̃ are negative.

4.1. Case - (i).

4.1.1. Conversion of objective function. Now (1) will be changed into

Max (or) Min z̃(x̃) =
c̃ix̃i + α̃

d̃ix̃i + (−β̃)
, (3)

where α̃ is positive and β̃ is negative.

Z̃(x̃) =
z̃(x̃) + 1

z̃(x̃)− 1

Z̃(x̃) =
(c̃i + d̃i)x̃i + (α̃− β̃)
(c̃i − d̃i)x̃i + (α̃+ β̃)

=
C̃ix̃i + λ̃

D̃ix̃i + µ̃
(4)

where C̃i = c̃i + d̃i; D̃i = c̃i − d̃i λ̃ = α̃− β̃ µ̃ = α̃+ β̃

In Equation (4), Multiply & divide by µ̃, and simplify it.
Now, we get the new objective function,
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Z̃ (ỹ) = Ẽiỹi + ρ̃. (5)

where Ẽi =
C̃iµ̃− D̃iλ̃

µ̃
; ỹi =

x̃i

D̃ix̃i + µ̃
and ρ̃ =

λ̃

µ̃
.

4.1.2. Conversion of the constraints (2).
Ãjix̃i ≤ b̃j .

We shall now determine the value of x̃i.
Here

ỹi =
x̃i

D̃ix̃i + µ̃

x̃i = ỹi

(
D̃ix̃i + µ̃

)
x̃i = D̃ix̃iỹi + ỹiµ̃

x̃i − D̃ix̃iỹi = ỹiµ̃

x̃i

(
1− ỹiD̃i

)
= ỹiµ̃

x̃i =
ỹiµ̃

1− ỹiD̃i

. (6)

Further substituting x̃i in

Ãjix̃i ≤ b̃j

Ãji

(
yiµ

1− yiDi

)
≤ b̃j , where x̃i =

ỹiµ̃

1− ỹiD̃i

Ãjiỹiµ̃ ≤ b̃j
(
1− ỹiD̃i

)
Ãjiỹiµ̃ ≤ b̃j − ỹiD̃ib̃j

Ãjiỹiµ̃+ ỹiD̃ib̃j ≤ b̃j(
Ãjiµ̃+ b̃jD̃i

)
ỹi ≤ b̃j

B̃jiỹi ≤ b̃j ,

where B̃ji = Ãjiµ̃+ b̃jD̃i and ỹi =
x̃i

D̃ix̃i + µ̃
.

We get the new constraint
B̃jiỹi ≤ b̃j . (7)

4.1.3. Calculation of unknown variables. After solving the converted NLPP, we obtain the values of ỹi.
Then find x̃i using

x̃i =
ỹiµ̃

1− ỹiD̃i

.
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On substituting the values of x̃i in the objective function, in

Max (or) Min z̃(x̃) = c̃ix̃i + α̃

d̃ix̃i − β̃

We get the optimal solution.

4.2. Case - (ii).

4.2.1. Objective function for this case is.

Max (or) Min z̃(x̃) =
c̃ix̃i − α̃
d̃ix̃i − β̃

where α̃ and β̃ are negative.
We can also consider,

Max (or) Min z̃(x̃) =
−c̃ix̃i + α̃

−d̃ix̃i + β̃
(8)

Substituting C̃i = −c̃i; D̃i = −d̃i λ̃ = α̃ µ̃ = β̃

Z̃(x̃) =
C̃ix̃i + λ̃

D̃ix̃i + µ̃

In Equation (8), Multiply & divide by µ̃, and simplify it.
Now, we get the new objective function,

Z̃ (ỹ) = Ẽiỹi + ρ̃. (9)

where Ẽi =
C̃iµ̃− D̃iλ̃

µ̃
; ỹi =

x̃i

−D̃ix̃i + µ̃
and ρ̃ =

λ̃

µ̃
.

4.2.2. Conversion of the constraints (2).

Ãjix̃i ≤ b̃j .

We shall now determine the value of x̃i. Here

ỹi =
x̃i

−D̃ix̃i + µ̃

x̃i = ỹi

(
−D̃ix̃i + µ̃

)
x̃i = −D̃ix̃iỹi + ỹiµ̃

x̃i + D̃ix̃iỹi = ỹiµ̃

x̃i

(
1̃ + ỹiD̃i

)
= ỹiµ̃

x̃i =
ỹiµ̃

1̃ + ỹiD̃i

.
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Further substituting x̃i in

Ãjix̃i ≤ b̃j

Ãji

(
yiµ

1 + yiDi

)
≤ b̃j , where x̃i =

ỹiµ̃

1̃ + ỹiD̃i

Ãjiỹiµ̃ ≤ b̃j
(
1̃ + ỹiD̃i

)
Ãjiỹiµ̃ ≤ b̃j + ỹiD̃ib̃j

Ãjiỹiµ̃− ỹiD̃ib̃j ≤ b̃j(
Ãjiµ̃+ b̃jD̃i

)
ỹi ≤ b̃j

B̃jiỹi ≤ b̃j ,

where B̃ji = Ãjiµ̃− b̃jD̃i and ỹi =
x̃i

−D̃ix̃i + µ̃
.

We get the new constraint
B̃jiỹi ≤ b̃j . (10)

4.2.3. Calculation of unknown variables. After solving the converted NLPP, we obtain the values of ỹi.
Then find x̃i using

x̃i =
ỹiµ̃

1̃ + ỹiD̃i

.

On substituting the values of x̃i in the objective function, in

Max (or) Min z̃(x̃) = c̃ix̃i − α̃
d̃ix̃i − β̃

We get the optimal solution.

5. Transformation Procedure

We now present the algorithm for finding the solution of a NLFPP. Consider the NLFPP

Max (or) Min z̃ (x̃) = c̃ix̃i + ã

d̃ix̃i + β̃
∀ i = 1, 2, . . . , n

subject to

Ãjix̃i ≤ b̃j

and x̃i ≥ {(0, 0, 0) ; 1, 0, 0} .

Step 1. Calculate Ẽi, ρ̃ from the values of C̃i, D̃i, λ̃, µ̃.

Step 2. Form the new objective function as Z̃ (ỹ) = Ẽiỹi + ρ̃.

Step 3. Calculate B̃ji from the values of Ãji, µ̃, b̃j , D̃i. This yields B̃jiỹi ≤ b̃j ; is the new constraints for
the above objective function obtained at step 2.
Step 4. Solve the above NLP problem obtained from steps 2 and 3 by Neutrosophic simplex algorithm.
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Step 5. The ỹi values are obtained from the simplex table.
Step 6. Using the values of ỹi, µ̃, D̃i, calculate x̃i and Max (or) Min z̃(x̃), which is the final Optimal
Neutrosophic Solution.

6. Numerical Example

Example 1. Consider the NLFPP.

Max z̃ = {(3, 4, 5) ; .3, .4, .6} x̃1 + {(5, 6, 7) ; .4, .6, .5} x̃2 + {(0, 0, 0) ; 1, 0, 0}
{(1, 1, 2) ; .4, .5, .3} x̃1 + {(1, 2, 3) ; .5, .3, .2} x̃2 − {(2, 3, 4) ; .5, .4, .3}

subject to

{(1, 2, 3) ; .2, .4, .3} x̃1 + {(2, 4, 6) ; .3, .5, .7} x̃2 ≤ {(14, 15, 16) ; .7, .5, .3}

{(1, 2, 4) ; .4, .6, .2} x̃1 + {(1, 4, 8) ; .6, .5, .4} x̃2 ≤ {(18, 19, 20) ; .6, .4, .2}

and x̃1, x̃2 ≥ {(0, 0, 0) ; 1, 0, 0} .

Solution. Here

c̃1 = {(3, 4, 5) ; .3, .4, .6} , c̃2 = {(5, 6, 7) ; .4, .6, .5} ,

α̃ = {(0, 0, 0) ; 1, 0, 0} , d̃1 = {(1, 1, 2) ; .4, .5, .3} ,

d̃2 = {(1, 2, 3) ; .5, .3, .2} , β̃ = {(−4, −3, −2) ; .5, .4, .3} ,

Ã11 = {(1, 2, 3) ; .2, .4, .8} , Ã12 = {(2, 4, 6) ; .3, .5, .7} ,

b̃1 = {(14, 15, 16) ; .7, .5, .3} , Ã21 = {(1, 2, 4) ; .4, .6, .2} ,

Ã22 = {(1, 4, 8) ; .6, .5, .4} , b̃2 = {(18, 19, 20) ; .6, .4, .2} ,

where Ã11, Ã12 and b̃1 are the coefficients of the first constraint and Ã21, Ã22 and b̃2 are the coefficients
of the second constraint.
We now calculate

C̃1 = c̃1 + d̃1 = {(3, 4, 5) ; .3, .4, .6}+ {(1, 1, 2) ; .4, .5, .3}

= {(4, 5, 7) ; .3, .5, .6}

C̃2 = c̃2 + d̃2 = {(5, 6, 7) ; .4, .6, .5}+ {(1, 2, 3) ; .5, .3, .2}

= {(6, 8, 10) ; .4, .6, .5}

D̃1 = c̃1 − d̃1 = {(3, 4, 5) ; .3, .4, .6} − {(1, 1, 2) ; .4, .5, .3}

= {(1, 3, 4) ; .3, .5, .6}

D̃2 = c̃2 − d̃2 = {(5, 6, 7) ; .4, .6, .5} − {(1, 2, 3) ; .5, .3, .2}

= {(2, 4, 6) ; .4, .6, .5}
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λ̃ = α̃− β̃ = {(0, 0, 0) ; 1, 0, 0} − {(−4, −3, −2) ; .5, .4, .3}

= {(2, 3, 4) ; .5, .4, .3}

µ̃ = α̃+ β̃ = {(0, 0, 0) ; 1, 0, 0}+ {(−4, −3, −2) ; .5, .4, .3}

= {(−4,−3,−2) ; .5, .4, .3}

ρ̃ =
λ̃

µ̃
=

{(2, 3, 4) ; .5, .4, .3}
{(−4,−3,−2) ; .5, .4, .3}

= {(−2,−1,−0.5) ; .5, .4, .3}

Ẽ1 =
C1µ̃− λ̃D̃1

µ̃
=C̃1 −

(
λ̃

µ̃

)
D̃1 =C̃1 − ρ̃D̃1 = {(4.5, 8, 15) ; .3, .5, .6}

Ẽ2 =
C2µ̃− λ̃D̃2

µ̃
=C̃2 −

(
λ̃

µ̃

)
D̃2 =C̃2 − ρ̃D̃2 = {(7, 12, 22) ; .4, .6, .5}

The new objective function is Z̃ (ỹ) = Ẽiỹi + ρ̃

Max Z̃ (ỹ) = Ẽ1ỹ1 + Ẽ2ỹ2 + ρ̃

= {(4.5, 8, 15) ; .3, .5, .6} ỹ1 + {(7, 12, 22) ; .4, .6, .5} ỹ2

+ {(−2,−1,−0.5) ; .5, .4, .3} .

Again B̃ji

B̃11 = Ã11µ̃+ b̃1D̃1 = {(2, 39, 62) ; .2, .5, .6}

B̃12 = Ã12µ̃+ b̃1D̃2 = {(4, 48, 92) ; .3, .6, .7}

B̃21 = Ã21µ̃+ b̃2D̃1 = {(2, 57, 78) ; .3, .6, .6}

B̃22 = Ã22µ̃+ b̃2D̃2 = {(4, 64, 118) ; .4, .6, .5} .

We now find the transformed constraints B̃jiỹi ≤ b̃j

{(2, 39, 62) ; .2, .5, .6} ỹ1 + {(4, 48, 92) ; .3, .6, .7} ỹ2 ≤ {(14, 15, 16) ; .7, .5, .3}

{(2, 57, 78) ; .3, .6, .6} ỹ1 + {(4, 64, 118) ; .4, .6, .5} ỹ2 ≤ {(18, 19, 20) ; .6, .4, .2}

and ỹ1, ỹ2 ≥ {(0, 0, 0) ; 1, 0, 0}

The standard form of NLPP

Max Z̃ (ỹ) = {(4.5, 8, 15) ; .3, .5, .6} ỹ1 + {(7, 12, 22) ; .4, .6, .5} ỹ2

+ {(−2,−1,−0.5) ; .5, .4, .3}
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subject to

{(2, 39, 62) ; .2, .5, .6} ỹ1 + {(4, 48, 92) ; .3, .6, .7} ỹ2 ≤ {(14, 15, 16) ; .7, .5, .3}

{(2, 57, 78) ; .3, .6, .6} ỹ1 + {(4, 64, 118) ; .4, .6, .5} ỹ2 ≤ {(18, 19, 20) ; .6, .4, .2}

and ỹ1, ỹ2 ≥ {(0, 0, 0) ; 1, 0, 0}

Using Neutrosophic Simplex algorithm, we solve this problem and obtain the values of ỹi as

Figure 2. Neutrosophic Simplex Table

ỹ1 = {(0, 0, 0) ; 1, 0, 0} ,

ỹ2 = {(0.15, 0.31, 4) ; .3, .6, .7} .

From the values of ỹi,we find the values of x̃i

x̃1 =
ỹ1β̃

1̃− ỹ1d̃1
= {(0, 0, 0) ; .3, .6, .7}

x̃2 =
ỹ2β̃

1̃− ỹ2d̃2
= {(−18.82, −1.02, 0.02) ; .3, .6, .7} .

On substituting these values in the given objective function, we obtain

Max z̃ = {(3, 4, 5) ; .3, .4, .6} x̃1 + {(5, 6, 7) ; .4, .6, .5} x̃2 + {(0, 0, 0) ; 1, 0, 0}
{(1, 1, 2) ; .4, .5, .3} x̃1 + {(1, 2, 3) ; .5, .3, .2} x̃2 − {(2, 3, 4) ; .5, .4, .3}

= {(−0.0023, 1.2142, 67.9072) ; .3, .6, .7}

The optimal solution is

Max z̃ = {(−0.0023, 1.2142, 67.9072) ; .3, .6, .7}

x̃1 = {(0, 0, 0) ; .3, .6, .7}

x̃2 = {(−18.82, −1.02, 0.02) ; .3, .6, .7} .
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Example 2. Consider the NLFPP

Max z̃ = {(1, 2, 3) ; .3, .4, .6} x̃1 + {(1, 2, 3) ; .4, .6, .5} x̃2 − {(6, 7, 8) ; .2, .5, .3}
{(5, 6, 7) ; .4, .5, .3} x̃1 + {(4, 5, 6) ; .5, .3, .2} x̃2 − {(3, 4, 5) ; .5, .4, .3}

subject to

{(6, 7, 8) ; .2, .4, .3} x̃1 + {(2, 3, 4) ; .3, .5, .7} x̃2 ≤ {(11, 12, 13) ; .7, .5, .3}

{(2, 4, 5) ; .4, .6, .2} x̃1 + {(1, 2, 3) ; .6, .5, .4} x̃2 ≤ {(6, 8, 10) ; .6, .4, .2}

and x̃1, x̃2 ≥ {(0, 0, 0) ; 1, 0, 0} .

Solution. Here

c̃1 = {(1, 2, 3) ; .3, .4, .6} , c̃2 = {(1, 2, 3) ; .4, .6, .5} ,

α̃ = {(−8, −7, −6) ; .2, .5, .3} , d̃1 = {(5, 6, 7) ; .4, .5, .3} ,

d̃2 = {(4, 5, 6) ; .5, .3, .2} , β̃ = {(−5,−4,−3) ; .5, .4, .3} ,

Ã11 = {(6, 7, 8) ; .2, .4, .3} , Ã12 = {(2, 3, 4) ; .3, .5, .7} ,

b̃1 = {(11, 12, 13) ; .7, .5, .3} , Ã21 = {(2, 4, 5) ; .4, .6, .2} ,

Ã22 = {(1, 2, 3) ; .6, .5, .4} , b̃2 = {(6, 8, 10) ; .6, .4, .2} ,

where Ã11, Ã12 and b̃1 are the coefficients of the first constraint and Ã21, Ã22 and b̃2 are the coefficients
of the second constraint.
We now calculate

C̃1 = {(−3,−2,−1) ; .3, .4, .6} , C̃2 = {(−3,−2,−1) ; .4, .6, .5} ,

λ̃ = {(6, 7, 8) ; .2, .5, .3} , D̃1 = {(−7,−6,−5) ; .4, .5, .3} ,

D̃2 = {(−6,−5,−4) ; .5, .3, .2} , µ̃ = {(3, 4, 5) ; .5, .4, .3} ,

ρ̃ =
λ̃

µ̃
= {(1.2, 1.75, 2.67) ; .2, .5, .3} .

Ẽ1 =
C1µ̃− λ̃D̃1

µ̃
= C̃1 −

(
λ̃

µ̃

)
D̃1 = C̃1 − ρ̃D̃1

= {(3, 8.5, 17.67) ; .2, .6, .7}

Ẽ2 =
C2µ̃− λ̃D̃2

µ̃
= C̃2 −

(
λ̃

µ̃

)
D̃2 = C̃2 − ρ̃D̃2

= {(1.8, 6.75, 15) ; .2, .6, .5}
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Again B̃ji

B̃11 = Ã11µ̃+ b̃1D̃1 = {(−73,−44,−15); .2, .5, .3}

B̃12 = Ã12µ̃+ b̃1D̃2 = {(−72,−48,−24); .3, .5, .7}

B̃21 = Ã21µ̃+ b̃2D̃1 = {(−64,−32,−5); .4, .6, .3}

B̃22 = Ã22µ̃+ b̃2D̃2 = {(−57,−32,−9); .5, .5, .4} .

So, we have the new objective function Z̃ (ỹ) = Ẽiỹi + ρ̃

Max Z̃ (ỹ) = Ẽ1ỹ1 + Ẽ2ỹ2 + ρ̃

= {(3, 8.5, 17.67); .2, .6, .7} y1 + {(1.8, 6.75, 15); .2, .6, .5} y2

+ {(1.2, 1.75, 2.67); .2, .5, .3}

Now we get the new constraint B̃jiỹi ≤ b̃j

{(−73,−44,−15); .2, .5, .3} ỹ1 + {(−72,−48,−24); .3, .5, .7} ỹ2 ≤ {(11, 12, 13); .7, .5, .3}

{(−64,−32,−5); .4, .6, .3} ỹ1 + {(−57,−32,−9); .5, .5, .4} ỹ2 ≤ {(6, 8, 10); .6, .4, .2}

ỹ1, ỹ2 ≥ {(0, 0, 0); 1, 0, 0}

Using Neutrosophic Simplex algorithm,

Figure 3. Neutrosophic Simplex Table

We cannot solve this problem. Because of the constraints are negative. Therefore the problem is
unbounded solution.

7. Conclusions

In this paper, a new technique for solving the NLFPP has been proposed. We have suggested the
methodology that efficiently addresses the problem. In the proposed technique, we transform NLFPP’s
into NLPP by a processing technique and then resolve them using the simplex method in Neutrosophic
environment. We illustrate with a numerical example to demonstrate our method.
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